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ABSTRACT 
Uncertainty is inherent in many real-time event-driven 

applications. Credit card fraud detection is a typical uncertain 

domain, where potential fraud incidents must be detected in real 

time and tagged before the transaction has been accepted or 

denied.  We present extensions to the IBM Proactive Technology 

Online (PROTON) open source tool to cope with uncertainty. The 

inclusion of uncertainty aspects impacts all levels of the 

architecture and logic of an event processing engine. The 

extensions implemented in PROTON include the addition of new 

built-in attributes and functions, support for new types of 

operands, and support for event processing patterns to cope with 

all these. The new capabilities were implemented as building 

blocks and basic primitives in the complex event processing 

programmatic language. This enables implementation of event-

driven applications possessing uncertainty aspects from different 

domains in a generic manner. A first application was devised in 

the domain of credit card fraud detection. Our preliminary results 

are encouraging, showing potential benefits that stem from 

incorporating uncertainty aspects to the domain of credit card 

fraud detection.  

Categories and Subject Descriptors 
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving - 

Uncertainty, fuzzy, and probabilistic reasoning; K.4.4 [Computers 

and Society]: Electronic Commerce - Payment schemes. 

General Terms 

Design and Experimentation 

Keywords 

Complex event processing, pattern matching, uncertainty, credit 

card fraud detection 

1. INTRODUCTION AND MOTIVATION 
In most complex event processing (CEP) systems there is an 

underlying assumption that data is precise and certain, or that it 

has been cleansed before processing [2]. Another basic 

assumption is that the event rules or patterns are always 

deterministic. However, in many real-time, event-driven 

applications, these assumptions don’t hold. Consider, for example, 

a (derived) event indicating credit card fraud based on a large 

number of withdrawals from a customer’s account within a short 

time frame, in increasing amounts. This activity may indicate a 

fraud with some probability; however, it may also indicate a one-

time behavior for this customer.  

In specific applications, uncertainty can be found in the input 

events, in the output events, or in both [2]. In addition, there are 

cases in which the pattern itself can be uncertain. 

We distinguish between three types of uncertainty in the input 

events: 

1. Uncertainty in event content: one or more event 

attributes have probabilities attached to them. 

2. Uncertain event occurrence: events handled as atomic 

units are represented along with their occurrence 

probability. 

3. Uncertain rules: alternative events may be triggered 

based on rule elements, and are given probability 

values. 

Consequently, complex event processing engines are required to 

accommodate and propagate the uncertainty from input events to 

the output (complex) events.  

As credit card becomes the most popular mode of payment for 

both online and regular purchases, cases of credit card fraud are 

also on the rise. Financial fraud has increased significantly with 

the development of modern technology and the global 

superhighways of communication, resulting in the loss of billions 

of dollars worldwide each year. According to the BI Intelligence 

study from March 5, 20141, the cost of global payment card fraud 

grew by 19% in 2013, to$14 billion. The cost of U.S. payment 

card fraud grew by 29% to $7.1 billion, while in the rest of the 

world; card fraud grew by 11% to $6.8 billion. FICO published its 

latest map of card fraud in Europe, showing that card fraud losses 

in 2013 for the 19 European countries studied reached €1.55 

billion2. 

 

Fraud detection, including the real-time detection of patterns 

across multiple locations or cards, was recently recognized as one 

of the main activities required for embedding real-time 

intelligence into bank operations [8][9]. Fraud detection in 

banking and credit card processing depends on correlating events 

across channels and accounts; this must be carried out in real time 

                                                                 

1 http://www.businessinsider.com/the-us-accounts-for-over-half-

of-global-payment-card-fraud-sai-2014-3 

2 http://www.fico.com/en/newsroom/fico-infographic-european-

card-fraud-losses-hit-new-high 
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to prevent losses before they occur. Therefore, fraud detection has 

been, and still is, one of the main classical applications for 

complex event processing ([11], [9][15][10][8]). 

Fraud detection is a domain that possesses inherent uncertainty. 

Our previous example shows that certain “suspicious” behaviors 

don’t necessarily indicate fraud. 

We present a complex event processing tool that can efficiently 

handle the types of uncertainty found in credit card fraud, and 

show an implementation using real data. The tool is capable of 

handling uncertainty in a generic manner, and not ad-hoc. 

The remainder of this paper is organized as follows: Section 2 

introduces the semantics applied in the proposed tooling. 

Section 3 discusses the credit card fraud use case and event-driven 

application. In Section 4 we describe the actual event-driven 

application for the credit card fraud use case with the proposed 

tool, and Section 5 describes the results obtained by running the 

implementation over a real data set. We discuss related work in 

Section 6. Section 7 concludes the paper and identifies future 

research directions.  

2. PRELIMINARIES 
Each complex event processing engine uses its own terminology 

and semantics, and our work follows the semantics presented by 

Etzion and Niblet [6]. Below are some of the main terms used in 

our work and implemented in our complex event processing 

(Section 4.1).  

2.1 Event Types 
Generally speaking, an event is an occurrence within a particular 

system or domain. It is something that has happened, or is 

contemplated as having happened in that domain. The word 

“event” is also used to mean a programming entity that represents 

such an occurrence in a computing system. In the latter definition, 

an event is an object of an event type. Events are actual instances 

of the event types and have specific values. For example, the 

event today at 10 p.m. a customer named John Doe withdrew 100 

euros from his bank account, is an instance of the Transaction 

event type. An event type specifies the information that is 

contained in its event instances by defining a set of attributes. 

The event attributes are grouped into the header or metadata (e.g., 

the occurrence time of the event instance) and the payload 

(specific information about the event, e.g., customer name).  

We refer to the following event types: 

A raw event is an event that is introduced into an event 

processing system by an event producer (an entity at the edge of 

an event processing system that introduces events to the system). 

An example of a raw event is a Transaction into a bank account. 

A derived event is an event that is generated as a result of event 

processing that takes place inside the event processing system. For 

example: Increasing amounts have been withdrawn from a bank 

account. 

A situation is a derived event that is emitted outside the event 

processing system and consumed by at least one consumer (an 

entity at the edge of an event processing system that receives 

events from the system). For example: a Fraud transaction. 

2.2 Context 
Context is a named specification of conditions that groups event 

instances so they can be processed in a related way. In this work, 

we employ the two most commonly used dimensions: temporal 

and segmentation. A temporal context consists of one or more 

time intervals, possibly overlapping. Each time interval 

corresponds to a context partition, which contains events that 

occur during that interval. A segmentation context is used to 

group event instances into context partitions based on the value of 

an attribute or collection of attributes in the instances themselves. 

For example, consider a single stream of input events, in which 

each event contains a credit card identifier attribute. The value of 

this attribute can be used to group events so that each credit card 

has a separate context partition. Each context partition contains 

only events related to that credit card, so the behavior of each card 

can be tracked independently of the other cards. A composite 

context is a context composed of two or more contexts, known as 

its members. The set of context partitions for the composite 

context is the Cartesian product of the partition sets of the 

member contexts. 

2.3 Event Processing Network (EPN) 
An Event Processing Network (EPN) is a conceptual model that 

describes the event processing flow execution. An EPN comprises 

a collection of event processing agents (EPAs), event producers, 

events, and consumers (Figure 1). The network describes the flow 

of events originating at event producers, flowing through various 

event processing agents to eventually reach event consumers. For 

example, in Figure 1, events from Producer 1 are processed by 

Agent 1. Events derived by Agent 1 are of interest to Consumer 1, 

but are also processed by Agent 3 together with events derived 

from Agent 2. The intermediary processing between producers 

and consumers in every installation is made up of several 

functions. Often, the same function is applied to different events 

for different purposes at different stages of the processing.  

 

Figure 1. An event processing network 

2.4 Event Processing Agent (EPA) 
An Event Processing Agent (EPA) is a component that, given a 

set of input/incoming events within a context, applies some logic 

for generating a set of output/derived events. An EPA can apply 

different event patterns to detect specific relations among the 

input events.  

An EPA performs three logical steps, also known as the pattern 

matching process or event recognition (see Figure 2). All three 

steps are optional, but at least one must be performed inside an 

EPA. 

 

Figure 2. Event recognition process in an EPA 
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Pattern matching process steps: 

 Filtering: relevant events from the input events are 

selected for processing according to the filter 

conditions. The output of this step is a set of 

participant events. 

 Matching: takes all events that passed the filtering step 

and looks for matches between these events, using an 

event processing pattern or some other kind of matching 

criterion. The output of this step is the matching set.  

 Deriving: takes the output from the matching step and 

uses it to derive the output events by applying 

derivation formulas.  

An event pattern is a template specifying one or more 

combinations of events. Given a collection of events, if one or 

more subsets of those events match a particular pattern, it can be 

said that such a subset satisfies the pattern. Some common 

examples of patterns:  

 Sequence: at least one instance of all participating event 

types must arrive in a specified order for the pattern to 

be matched. 

 Count: the number of instances in the participant event 

set satisfies the pattern’s number assertion. 

 All: at least one instance of all participating event types 

must arrive for the pattern to be matched; the arrival 

order in this case is immaterial. 

 Trend: events need to satisfy a specific change 

(increasing or decreasing) over time of an observed 

specific attribute value. 

 Absence: a specified event(s) must not occur within a 

predefined time window. The matching set in this case 

is empty. 

 Average: the value of a specific attribute, averaged over 

all participant events, satisfies the average threshold 

assertion. 

2.5 Pattern Policies 
A pattern policy is a named parameter that disambiguates the 

semantics of the pattern and the pattern matching process. Pattern 

policies fine-tune the way the pattern detection process works. 

Our event processing engine supports five types of policies: 

Evaluation policy – When are the matching sets produced? The 

EPA can either generate output incrementally (in this case the 

evaluation policy is called Immediate) or at the end of the 

temporal context (called Deferred).  

Cardinality policy – How many matching sets are produced 

within a single context partition? The cardinality policy helps 

limit the number of matching sets generated, and thus the number 

of derived events produced. The policy type can be single, 

meaning only one matching set is generated; or unrestricted, 

meaning there are no restrictions on the number of matching sets 

generated. 

Repeated/Instance Selection policy – What happens if the 

matching step encounters multiple events of the same type? The 

override repeated policy means that whenever a new event 

instance is encountered and the participant set already contains the 

required number of instances of that type, the new instance 

replaces the oldest previous instance of that type. The every 

repeated policy means that every instance is kept, meaning all 

possible matching sets can be produced. First means that every 

instance is kept, but only the earliest instance of each type is used 

for matching. Last is the same as first, but the latest instance of 

each type is used for matching.  

Consumption policy – What happens to a particular event after it 

has been included in the matching set? Possible consumption 

policies are: consume, meaning each event instance can be used in 

only one matching set; and reuse, meaning an event instance can 

participate in an unrestricted number of matching sets. 

Policy relevance can be dictated by the event pattern. For 

example, the evaluation policy for an absence pattern is always 

deferred (as we are testing the existence of an event instance for a 

specified temporal context). Also, not all possible policy 

combinations are meaningful. For example, the choice of 

consumption policy is irrelevant if the cardinality policy is single, 

because that means that the matching step runs only once. 

3. THE CREDIT CARD FRAUD USE CASE 

3.1 Credit Card Fraud Domain 
Credit card fraud can be divided into two types: offline fraud and 

online fraud. 

 Offline or card is present (CP) fraud is committed by 

using a stolen physical card at a call center or anywhere 

else. 

 Online fraud or card is not present (CNP) is committed 

via Internet, phone, shopping, web, or in the absence of 

a card holder. 

In today’s fraud detection systems, the “suspicious” transaction is 

marked and then manually inspected by human operators for a 

final verdict to disambiguate dubious cases. Therefore, the 

operators must be able to understand the motifs for the machine’s 

reasoning, to make their final decision. 

Another characteristic of this domain is that the dataset is very 

unbalanced, that is, the “not fraud” class is much more frequent 

(e.g., 1 to 2000 is common) than the “fraud” class. 

Other important considerations include how fast the frauds can be 

detected (detection time/time to alarm), how many styles/types of 

fraud are detected, whether the detection was in online/real time 

(event-driven) or batch mode (time-driven). In real-time 

processing, transactions are analyzed as they come. Therefore, the 

process of tagging fraud happens before the transaction has been 

accepted or denied. If the transaction is marked as accepted, 

nothing can be done afterwards if the transaction happens to be 

fraudulent. 

These considerations lead to a demanding environment, where 

speed and accuracy in the decision process are of the utmost 

importance.  

Context is, in fact, one the most import aspects in fraud detection, 

as different fraud patterns will arise in different contexts. For 

example, in the CP scenario, two consecutive transactions with 

the same card made in different countries will be the first sign of 

fraud. However, in the CNP case, that situation happens quite 

often, as online purchases from merchants in different countries 

can easily be made in the space of a few minutes. 

The full transaction flow is described in Figure 3. It starts at the 

cardholder, when making a purchase from a given merchant. The 

merchant’s terminal will then send the transaction to the acquirer 

(acquiring bank), which relays the request to the issuer (issuing 



bank) through the network, also known as brand, or processor. 

The acquirer is the bank responsible for holding the merchants’ 

accounts. The issuer is the bank that issued the card. The 

processor is the entity that serves as bridge between the acquirer 

and the issuer. Once the transaction is accepted by the issuer, it 

goes through the reverse path. Note that fraud can happen at any 

of the stakeholders, although it is more common at the cardholder 

or merchant. In other cases, a bank can be trying to avoid paying 

transaction fees, thereby committing fraud. We currently consider 

only cardholder and merchant detection, as the provided dataset 

does not have enough information to correctly verify the other 

cases. 

 

Figure 3. Fraud stakeholders 

3.2 Credit Card Fraud Event Processing 

Network 
The overarching aim of the CEP in this use case is to detect a 

potential fraud incident in real-time, so corrective actions can be 

taken. To this end, we have devised an EPN consisting of 13 

EPAs (shown in Figure 4 and detailed in the following sections). 

For the sake of simplicity, we only show the EPAs and the events 

flow in the network. Dotted lines represent derived events that are 

initiators of a context in other EPAs (in our EPN, EPA3 

CVVAttack derived event initializes the contexts of EP9-EPA12; 

and EPA5 SmallAmountFollowedByBigAmount derived event 

initializes the temporal context of EPA13). 

The two types of cases (CP and CNP) basically have the same 

pattern logic, except for EPA6, EPA8, and EPA12, which are only 

valid for the CP case, as explained in the following sections. For 

the common patterns, the difference resides in the length of the 

temporal windows, which can be either 2 or 5 minutes for the CP, 

and only 2 min (shorter) for the CNP case. These windows lengths 

have been chosen by fraud experts but other thresholds will be 

considered in future experiments (see Section 7).  

In Figure 4 we only show the CP EPAs in the EPN, but their 

counterparts for the CNP case are also included in the complete 

EPN and have been implemented and tested. As shown, situations 

marked as potential (probabilistic) frauds are fired in the 

following cases: 

 Consecutive withdrawals of increasing or decreasing 

amounts for a single card (EPA1 and EPA2). 

 Several attempts to use a wrong CVV (Card 

Verification Value) for the same card are made (EPA3).  

 A high number of transactions in a short time-period for 

a single card (EPA4). 

 Small amount followed by big purchase for a single 

card (EPA5).  

 Many large withdrawals from a single ATM (EPA6).  

 Sudden card use near the expiration date (EPA7). 

 Consecutive attempts to use the same card in different 

physical locations (EPA8). 

 Combination of patterns, that is, a derived event of one 

pattern is the temporal context initiator of another EPA. 

In other words, two patterns that occur one after the 

other, and therefore derive a new event with higher 

probability of fraud than the original derived event (of 

the single EPA). These are EPAs 9-13, whose contexts 

are initiated by either EPA3 or EPA5 derived event (see 

Figure 4, second part). See Section 3.2.2.9  for details 

on these combined patterns. 

 

 

Figure 4. Fraud use case initial EPN for the CP case 

3.2.1 Fraud Use Case Event Types 
Fourteen event types comprise the event inputs, outputs/derived, 

and situations, as shown in Figure 4. To simplify, we only show 

the user-defined attributes or the event payload (refer to 4.1.1 for 

metadata attributes). Also note that the Transaction raw event 

includes more fields or attributes. We present only the ones 

required for pattern detection in our EPN implementation. During 

run-time, the other attributes not specified in the event types will 

be ignored by the CEP engine. 

We use some naming conventions for the sake of clarity. We 

denote event types with capital letters. Metadata attributes start 

with a capital letter, as well as payload attributes that hold 
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operators values (i.e., TrendCount denotes the number of input 

events that satisfy the Trend operator, and TransactionsCount 

denotes the number of input events that satisfy the Count 

operator). Pattern operators and built-in functions are capitalized. 

Built-in and payload attributes start with a lower case letter. Table 

1 shows the event definitions for the fraud EPN, where: 

card_pan (type: String) - The number that identifies the card. The 

card BIN, which corresponds to the first six digits of the PAN, can 

give information such as the issuer of the card. 

terminal_id (Type: Long) - The internal identification of the 

terminal. 

cvv_validation (Type: Int) - Variable indicating whether the CVV 

(Card Verification Value) was used or not. In the positive case, it 

indicates whether it was valid (code =16) or not. This three digit 

number printed on the signature panel on the back of the card 

helps to verify authorized possession of a credit card.  

amount_eur (Type: Double) - The amount in euros of the 

transaction. 

acquirer_country  (type: Int) -  The country of the acquiring bank. 

is_cnp (Type: Bit) - Flag that states whether the transaction 

happened in the CP or CNP context. 

card_exp_date (type: Date (YYYYMM)) - The expiration date of 

the card. 

Table 1. Event types for the fraud use case 

Event name Payload 

Transaction card_pan; terminal_id; 
cvv_validation; amount_eur; 
acquirer_country; is cnp; 
card_exp_date 

IncreasingAmounts card_pan; TrendCount; is_cnp 

DecreasingAmounts card_pan; TrendCount; is_cnp 

CVVAttack card_pan; TransactionsCount; 
is_cnp 

FlashAttack card_pan; TransactionsCount; 
is_cnp  

SmallFollowedByBig 
Amounts 

card_pan; is_cnp 

 

MultipleATMWithdrawals terminal_id; TransactionsCount 

SuddenUseNearExpiration
Date 

card_pan; TransactionsCount; 
is_cnp; card_exp_date  

TransactionsinFarAway 
Places 

card_pan 

IncreasingAmountsAfter 
CVVAttack 

card_pan; TrendCount; is_cnp 

FlashAttackAfterCVVAttack card_pan; TransactionsCount; 
is_cnp 

SuddenCardUseNearExpira
tion DateAfterCVVAttack 

card_pan; TransactionsCount; 
is_cnp; card_exp_date 

MultipleATMWithdrawals 
AfterCVVAttack 

terminal_id; TransactionsCount  

FlashAttackAfterSmall 
FollowedByBigAmounts 

card_pan; TransactionsCount; 
is_cnp  

3.2.2 Fraud Use Case Event Processing Agents  
We describe the EPAs in the following order: event name; 

meaning; event recognition process (following Figure 2); contexts 

along with temporal context policy; and pattern policies. 

In the event recognition process we only show the steps that take 

place in the specific EPA, while the others are greyed out. For the 

filtering step, we show the filtering expression; for the matching 

step, we denote the pattern variables; and for the deriving step, we 

denote the value assignments and calculations. For the sake of 

simplicity, we show the assignments that are not copies of values; 

all other derived event attribute values are copied from the input 

events. For attributes, we only denote their names without the 

prefix of ‘event_name.’ As aforementioned, we only show the 

EPAs for the CP case with the filter condition is_cnp == 0 (the 

filter condition will be is_cnp ==1 for the EPAs counterparts in 

the CNP case). We also check whether the transaction is valid by 

adding the condition cvv_validation ==16 (code number for a 

valid CVV) in the filter. 

In our current implementation we use the Sigmoid probabilistic 

function to calculate the probability of the derived event. The 

Sigmoid function has been selected since it fits situations that 

exhibit a progression from small beginnings that accelerate over 

time. A sigmoid curve is produced by a mathematical function 

having an "S" shape [7]. Other parameters and functions might be 

applicable as well, and are one of the topics for future work. A 

Sigmoid function receives three parameters (a,b,x) and returns 1/ 

( 1 + e^(-a ( x - b ) ) ). The patterns have been tested with several 

parameters. The ones shown in the figures have been chosen to 

run the input events set. By using the Sigmoid function along with 

immediate, unrestricted, and reuse pattern policies, we get derived 

events with increased probabilities (higher Certainty values) as 

outputs in the same temporal window, as parameter x gets higher 

values with increased values in the pattern assertions. For 

example, when used in the Count operator, the x denotes the 

number of input events that satisfy the pattern assertion. This 

value can only increase, therefore increasing the probability of the 

derived event. 

3.2.2.1 EPA1: IncreasingAmounts 
EPA1 is a pattern that can be used to test the system detection 

limits. It checks for at least two consecutive valid transactions 

(i.e., trendN > 1) with increasing amounts.  

Event recognition process: 

 

Figure 5. Event recognition process for IncreasingAmounts 

EPA 

Pattern policies: 

 Evaluation: Immediate 

 Cardinality: Unrestricted 

 Repeated: N/A 

 Consumption: Reuse 
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Context: 

 Segmentation: by card_pan 

 Temporal (non-overlapping windows):  

o Initiator: Transaction 

o Terminator: +5 min  

o Context policy: Ignore 

Meaning: A temporal window of 5 minutes opens with the arrival 

of a first Transaction event. In this elapsed time we check for a 

Trend pattern over the amounts in the transactions per card. 

According to the policies selected, we will derive a new event 

every time the Trend pattern is satisfied (having higher 

probabilities values in the Certainty attribute). In the derived 

event we also report the actual number of transactions that satisfy 

the Trend pattern (by the built-in trendCount attribute). 

3.2.2.2 EPA2: DecreasingAmounts 
This pattern is similar to EPA1, as it aims to test system detection 

limits. EPA2 checks for at least two consecutive valid 

transactions; that is, correct CVV, with decreasing amounts that 

passed the card limit. The idea is that by passing the card limit, 

the fraudster is obliged to decrease the amount of money in the 

following transaction. The derived event is DecreasingAmounts. 

The contexts and policies are the same as in EPA1. For the current 

implementation we apply a standard average card limit in Europe. 

Event recognition process: 

 

Figure 6. Event recognition process for DecreasingAmounts 

EPA 

3.2.2.3 EPA3: CVV Attack 
The fraudsters may only have access to partial information about 

the card. Therefore, to obtain the rest of the information, such as 

CVV, they can do a scan over possible CVV values. In EPA3 we 

look for cases in which at least four attempts with incorrect CVV 

are made in a very short period of time (two minutes). 

Event recognition process: 

 

Figure 7. Event recognition process for CVV Attack EPA 

Pattern policies: 

 Evaluation: Deferred  

 Cardinality: N/A 

 Repeated: N/A 

 Consumption: N/A 

Context: 

 Segmentation: by card_pan 

 Temporal (non-overlapping windows):  

o Initiator: Transaction.cvv_validation != 16 

o Terminator: +2 min  

o Context policy: Ignore 

Meaning: A temporal window of 2 minutes opens with the arrival 

of a first Transaction event with wrong CVV (cvv_validation != 

16). In this elapsed time, we check for at least 4 transactions with 

wrong CVV. According to the policies selected, we will derive a 

single event at the end of the temporal window. In the derived 

event we also report the actual number of transactions that satisfy 

the Count pattern (by the built-in count attribute). 

3.2.2.4 EPA4: FlashAttack  
EPA4 is similar to EPA3, but in this case, we look for a high 

number of transactions in a short period of time.  

Event recognition process: 

 

Figure 8. Event recognition process for FlashAttack EPA 

Pattern policies and contexts as in EPA3 

3.2.2.5 EPA5: Small Amount Followed by Big 

Amount 
This pattern tests for system thresholds. Sometimes the fraudsters 

test a small amount, and once the transaction succeeds, they 

attempt a big purchase. We look for a sequence pattern where the 

first transaction is related to a very small amount (cents) and the 

second one in the sequence is related to a big amount (>200). 

Note that T1 and T2 are aliases of the event type Transaction. The 

SmallAmountFollowedByBigAmount derived event has a 0.8 

probability of being a fraudulent transaction due to the nature of 

this pattern. 

Event recognition process: 

 

Figure 9. Event recognition process for Small Amount 

Followed by Big Amount EPA 
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 Repeated: T1=first; T2=override 

 Consumption: N/A 

Context: 

 Segmentation: by card_pan 

 Temporal (non-overlapping windows):  

o Initiator: Transaction.amount_eur < 1.0 

o Terminator: +2 min  

o Context policy: Ignore 

Meaning: A short temporal window of 2 min opens with the 

arrival of a first Transaction event with a small amount per card. 

The pattern detects a small purchase, and if the consecutive 

transaction is a big purchase it immediately emits the situation. 

3.2.2.6 EPA6: Multiple max ATM withdrawals 
Given that ATMs have an upper limit for withdrawals, in this kind 

of attack, fraudsters are simply trying to take as much money as 

they can in the fewest possible transactions. A typical large value 

in an ATM in Europe is 200 euros. We look for at least three large 

withdrawals in a single ATM. This EPA holds only for the CP 

case. 

Event recognition process: 

 

Figure 10. Event recognition process for Multiple max ATM 

withdrawals EPA 

Pattern policies: 

 Evaluation: Immediate  

 Cardinality: Unrestricted 

 Repeated: N/A 

 Consumption: reuse 

Context: 

 Segmentation: by terminal_pan 

 Temporal (non-overlapping windows):  

o Initiator: Transaction 

o Terminator: +5 min  

o Context policy: Ignore 

Meaning: We derive a new event whenever the count pattern is 

satisfied within a five minute window. 

3.2.2.7 EPA7: Sudden Card Use Near the Expiration 

Date 
Fraudsters may obtain credit card credentials, and then sell them 

to other people. When the expiration date approaches, and they 

cannot sell those cards, they will try to make as much profit as 

they can from those cards before they lose control over them. We 

look for frequent transactions within a short period of time (2 

min) for a single card on the day of, or the day before, the card 

expiration date. 

Event recognition process: 

 

Figure 11. Event recognition process for Sudden Card Use 

Near the Expiration Date EPA 

Pattern policies: 

 Evaluation: Deferred  

 Cardinality: N/A 

 Repeated: N/A 

 Consumption: N/A 

Context: 

 Segmentation: by card_pan 

 Temporal (non-overlapping windows):  

o Initiator: Transaction 

o Terminator: +2 min  

o Context policy: Ignore 

3.2.2.8 EPA8: Transactions in Faraway Places     
Due to speed limitations in traveling, it is impossible for the same 

card to be used in faraway places. This means that the card has 

been cloned. In this pattern, we check that two consecutive 

transactions for a specific card cannot be at different physical 

places within a short period of time. Note that we do not check for 

CVV validity, as we are only interested in checking for use of the 

same card in different places. In addition, the derived event has a 

certainty of 1 (in this case the fraud indication is 100%) and 

therefore the Certainty attribute is not shown in the deriving step 

(the default is “1”). T1 and T2 are aliases of the event type 

Transaction. This EPA holds only for the CP case. 

 

Figure 12. Event recognition process for Transactions in Far 

Away Places EPA 

Pattern policies: 
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 Consumption: Consume 
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o Context policy: Ignore 

Meaning: In a 5 minute temporal window we detect and 

immediately alert every attempt to use the same card for any two 

consecutive transactions in faraway places. 

3.2.2.9 EPA9-EPA13 Combined Patterns 
The assumption is that when two patterns occur one after the 

other, the probability of a fraud is higher than in the separate 

EPAs. The sequencing between patterns is done by causing one 

derived event to open the temporal context of another EPA. The 

new derived event (of the latter new EPA), has the same 

probability of the original EPA + 0.1. In other words, the new 

EPA looks the same as the original EPA except for two 

differences: the probability of the derived event is higher by 0.1, 

and the context initiator is the derived event of the first EPA. 

Other policies remain the same.  

In EPA9, the IncreasingAmountsAfterCVVAttack situation is 

derived when an Increasing Amount pattern occurs after several 

attempts with the wrong CVV. The context is opened with the 

CVVAttack derived event (in other words, EPA3 => EPA1). 

In EPA10, the FlashAttackAfterCVVAttack situation is derived 

when a Flash Attack occurs after several attempts with the wrong 

CVV. The context is opened with the CVVAttack derived event (in 

other words, EPA3 => EPA4). 

In EPA11, the SuddenCardUseNearExpirationDateAfter 

CVVAttack situation is derived when a Sudden Card Use Near 

Expiration Date pattern occurs after several attempts with the 

wrong CVV. The context is opened with the CVVAttack derived 

event (in other words, EPA3 => EPA7). 

In EPA12, the MultipleATMWithdrawalsAfterCVVAttack situation 

is derived when a Multiple ATM withdrawals pattern occurs after 

several attempts with the wrong CVV. The context is opened with 

the CVVAttack derived event (in other words, EPA3 => EPA6). 

This pattern holds only for the CP case (as EPA6). 

In EPA13, the FlashAttackAfterSmallFollowedByBigAmounts 

situation is derived when there is a Flash attack having the 

sequence of a big purchase after a small one. The context is 

opened with the SmallFollowedByBigAmounts derived event (in 

other words, EPA5 => EPA3).  

4. CREDIT CARD FRAUD USE CASE 

IMPLEMENTATION 

4.1 IBM Proactive Technology Online 

(PROTON) Complex Event Processing Engine 
We employ the IBM Proactive Technology Online (PROTON) 

open source3 research asset as our baseline engine, and extend it 

to cope with uncertainty capabilities as described in the following 

sections. For further documentation regarding the CEP open 

source asset refer to4. PROTON comprises a run-time engine, 

producers, and consumers with the characteristics and capabilities 

described in the Preliminaries section. Specifically, it includes an 
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integrated run-time platform to develop, deploy, and maintain 

event-driven applications using a single programming model. 

PROTON has been chosen as it is our in-house CEP engine, and 

possesses extensible semantic and programming models.  

4.1.1 Event Attributes 
Every event instance has a set of built-in attributes (metadata). 

PROTON employs the following attributes in the event type's 

metadata:  

 Name – of the event type. 

 OccurenceTime – a timestamp attribute, which we 

expect the event source to fill in as the occurrence time 

of the event. If left empty, this equals the detectionTime 

attribute value.  

 DetectionTime – a timestamp attribute that records the 

time the CEP engine detected the event. The time is 

measured in milliseconds, specifying the time difference 

between the current machine time at the moment of 

event detection, and midnight, January 1, 1970 UTC.  

 EventId – a unique string identification of the event, 

which can be set by the event source to match the 

asynchronous output for the event. 

 EventSource – holds the source of the event (usually the 

name of event producer). 

The above built-in attributes can be used in an expression in the 

same manner as user-defined attributes. User-defined attributes 

can be added to the event class by defining their types. If the 

attribute is an array, its dimension should be specified.   

4.1.2 PROTON Interfaces 
The PROTON standalone version run-time engine has three main 

interfaces with its environment as depicted in Figure 13. 

1. Input adapters for receiving incoming events 

2. Output adapters for sending derived events 

3. CEP application definition (build time or authoring tool) 

The application definitions, (i.e., the EPN), are written by the 

application developer during the build-time. The definitions 

output in JSON (JavaScript Object Notation) format are provided 

as configuration to the CEP run-time engine. At run-time, the CEP 

engine receives incoming events through the input adapters, 

processes these incoming events according to the definitions, and 

sends derived events through the output adapters (see Figure 13).  

 

Figure 13. PROTON interfaces 

4.1.3 Input and Output Adapters 
As aforementioned, the definitions of the producers and 

consumers are specified during the application build-time, and are 

translated into input and output adapters during execution time. 
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and consumers in PROTON are adapter instances.  For each 

producer, an input adapter is determined, which defines how to 

pull the data from the source resource, and how to format the data 

into PROTON's object format before delivering it to the run-time 

engine. The adapter is environment-agnostic, but uses the 

environment-specific connector object, injected into the adapter 

during its creation, to connect to PROTON run-time. 

In the trials carried out to test the use case implementation (see 

Section 5) we use a comma separated values (CSV) file for input 

and output. The input file contains real-time data anonymized for 

privacy. The event types are specified in Section 3.2.1. 

4.1.4 PROTON Definitions 
The CEP application definitions file can be created in three ways: 

1. Build-time user interface – The application developer 

uses this to create the building blocks of the application 

definitions, by filling in forms, without the need to write 

any code. The generated file is exported in a JSON 

format to the CEP run-time engine.  

2. Programming – The JSON definitions file can be 

generated programmatically by an external application, 

and fed into the CEP run-time engine. 

3. Manually – The JSON file is created manually, and fed 

into the CEP run-time engine. 

The created JSON file includes the following definitions: 

Event types – the events that are expected to be received as input 

or to be sent as output. An event type definition includes the event 

name and a list of its attributes.  

Producers – the event sources and the way PROTON gets events 

from those sources. 

Consumers – the event consumers and the way they get derived 

events from PROTON. 

Temporal contexts – time window contexts in which event 

processing agents are active. 

Segmentation contexts – semantic contexts that are used to group 

several events to be used by the EPAs. 

Composite contexts – grouping together several different contexts. 

Event processing agents – patterns of incoming events in specific 

context that detect situations and generate derived events. An EPA 

includes most of the following general characteristics:  

 Unique name 

 EPA type (operator). For each operator, different sets of 

properties and operands are applicable. 

 Context 

 Other properties, such as condition 

 Participating events 

 Segmentation contexts 

 Derived events 

The JSON file that is created at build-time contains all EPN 

definitions, including definitions for event types, EPAs, contexts, 

producers, and consumers. At execution, the run-time engine 

accesses the metadata file, loads and parses all the definitions, 

creates a thread per each input and output adapter, starts listening 

for events incoming from the input adapters (producers), and 

forwards events to output adapters (consumers). 

4.1.5 Expressions in PROTON 
When building an event processing application, we sometimes 

need to set values to attributes or properties. We do so by writing 

expressions. These expressions are tested at build-time and 

evaluated at run-time by the PROTON EEP (Expandable 

Expression Parser) 

An expression can be any combination of: 

 Constant (5, true, false, "silver", …) 

 Field (<EventName>.<eventAttribute>) 

 Built-in attribute (detectionTime, count, …) and built-in 

aggregation attributes (Sum, Max, …) 

 Operator (+, -, =, …) 

 Segmentation context 

(segmentationContext.CustomerKey) 

 Built-in function (arrayContains(a,v), 

distance(x1,y1,x2,y2), …)  

Examples: 

 Max(DayStart.initialStockLevel,0) 

 if customerRating="gold" then "approve" else "reject" 

endif 

Examples of built-in functions:  

 Max – Max(a,b,c) returns the maximum number among 

the arguments 

 Min – Min(x,100) returns the minimum number among 

the arguments 

 Average – Average(x,y,z,t) returns the average number 

of the arguments 

 Modulo – Mod(x,y) returns the remainder when 

dividing x by y 

 Round – Round(x) returns the closest integer value to x. 

 Absolute – Abs(x) returns the absolute value of x 

 CompareTo – CompareTo(str1,str2) compares two 

strings lexicographically. The result is a negative integer 

if str1  lexicographically precedes str2. The result is a 

positive integer if str1 lexicographically follows the 

str2. The result is zero if the strings are equal 

 Distance – Distance(x1,y1,x2,y2) returns the distance 

between (x1,y1) and (x2,y2) 

 Angle – Angle(x,y,z,w) calculates the angle generated 

between (x1,y1),(0,0),(x2,y2) 

 IsNull – IsNull(val) checks whether the given val equals 

null. Returns a Boolean value 

 Power(a,x) - returns a^x for two doubles 

 Exp(x) - returns e^x 

PROTON EEP uses any of the following operators (Table 2). 

Table 2: Operators in PROTON EEP 

Type Operator Example 

Mathematical +    -    /    * customerBuy.quantity 

+ 5 

Comparison =   ==   !=   >   <   

<=   >= 

customerRating != 

"gold" 

Boolean and   or   not   xor 

&   &&   |   ||   !   ^  

true false 

customerOrigin = 

"USA" or 

customerLanguage = 

"English" 



If-then-else if <cond1> then 

exp1 

elseif <cond2> then 

exp2 

else exp3 

endif 

If customerRating = 

"gold" then 

customerRequest 

else 0 

endif 

Lexical ++ (concatenation) "Name: " ++ 

Trans.customerName 

 

EEP expressions can include the operand types: Boolean, 

Datetime, Double, Integer, Numeric, String, or an array of each of 

these simple types. 

4.2 Extending PROTON’s Run-time Engine  
Taking into consideration uncertainty aspects imposes 

fundamental extensions to PROTON’s Extendable Expression 

Parser (EEP) as described henceforth.  

4.2.1 New Built-in Attributes 
The event metadata in PROTON has been extended as follows: 

 Addition of the built-in double Certainty attribute that 

stores the certainty of this event. An event has a default 

certainty value equal to 1, while it can have any value 

between (0-1].  

 Support for distribution values (see next Section) of 

Occurrence time built-in attribute. 

4.2.2 New Operand Types 
The operand types have been extended to cope with distributions. 

Two types of distributions are supported: continuous distribution 

and discrete distribution. Canonic forms of distribution have been 

implemented for each of these types. In the continuous case, there 

is a continuous function whose integral equals to 1. In the discrete 

case, it is a set of values with their associated probabilities where 

the sum of all probabilities is equal to 1.  

For continuous distributions we currently support the following: 

 Exponential (mu) – where 1/mu is the expectation  

 Gamma (n, mu) – where n is the shape and mu is the 

scale  

 Log-normal (mu, sigma) – where mu is the expectation 

and sigma is the standard deviation 

 Normal (mu, sigma) – where mu is the expectation and 

sigma is the standard deviation 

 Triangular (lower, middle, upper) – where lower is 

the left point of the triangular base, upper is right point 

and middle is the tip point of the triangular 

 Uniform (a, b) – where a is the left point of the interval 

and b is the right point 

 Sigmoid(a,b,x) function which returns 1/ ( 1 + e^(-a ( x 

- b ) ) ) (see  Section 3.2.2).  

For discrete distributions, we currently support the following: 

 Bernoulli (p) – where p is the probability of success   

 Binomial (n, p) – where n is the number of trials and p 

is the probability of success  

 Uniform (list of numbers) – each number is associated 

with a probability equals to 1/number of numbers  

4.2.3 New Built-in Functions 
 CDF – CDF(d, alpha) – returns the cumulative 

distribution function of d (which is of  type distribution) 

at point alpha, which is the probability that d is smaller 

or equal to alpha 

 Mean – Mean(d) – returns the expectation of the 

distribution d 

 PDF – PDF(d, x) – returns the probability density 

function of the distribution d at point x 

 Percentile – Percentile(d, alpha) – returns the smallest 

value x, for which CDF(d, x) is larger or equal to alpha 

 Var – Var(d) – returns the variance of the distribution d  

To cope with these new operand types, the EPAs’ operators have 

been adjusted to deal with uncertain or probabilistic operands and 

expressions.  

4.3 Extending PROTON’s Authoring Tool 
PROTON’s authoring tool forms have been accommodated to 

support all the extensions described above. Figure 14 shows a 

screenshot from PROTON’s authoring tool showing our use case 

implementation and the addition of the Certainty built-in attribute. 

 

Figure 14. PROTON 's authoring tool showing the new 

Certainty attribute 

5. EXPERIMENTATION AND ANALYSIS 

5.1 Dataset 
The dataset was provided by Feedzai5, experts in fraud detection 

and prevention. Feedzai implements their own system for fraud 

detection, which includes real-time alerts inspected by a human 

operator for a final verdict. The most interesting question is 

whether the use of uncertain events as indicators of fraud can 

improve the accuracy of current systems.  

The dataset contains 5600 M transactions comprising a file of 810 

GB, and corresponding to nearly 3 years of transactions from 

2009 to 2011. It is important to note that the data has been 

completely anonymized due to security and privacy issues. Of all 

these transactions, only around 0.05% represent fraud. Therefore, 

it is crucial that the system is able to detect this small fraction of 

fraudulent transactions. 

The dataset schema includes a total of 27 fields. In our current 

implementation, we only require 7 fields or attributes of the 

Transaction raw event for pattern recognition (Table 1). The 

remaining attributes are simply ignored by PROTON’s run-time 

engine. Among these, is the is_fraud (Type: Bit), which is a label 

indicating whether the specific transaction was marked as fraud or 
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not (by a human operator). This attribute serves for validation 

testing, but again, is ignored by the CEP engine during run-time.   

5.2 Implementation and Analysis 
We implemented and tested our event processing network over 

the input dataset. Our main objective was to understand the 

general applicability of our event rules, specifically the inclusion 

of uncertainty in the credit card fraud domain using the available 

historical data. The preliminary results are encouraging. We were 

able to recognize 80% out of the fraudulent transactions with high 

certainty (>70%). We also detected around 0.02% additional 

transactions with various certainty levels.  

However, there are some limitations of historical data that make it 

difficult for us to assess the level of precision and recall of our 

results. First, our detected situations (i.e., events with a high 

certainty of fraud) possess a wide range of uncertainty levels. 

Therefore, we need a human operator to disambiguate between 

“potential” to “real” frauds, depending on the uncertainty level of 

the event. We selected the level of 70% as a threshold value, but 

this number should be calibrated with the help of a human expert.  

Second, the dataset used was heavily anonymized. This fact can 

potentially influence the findings. Third, even with the help of a 

human, deducing fraudulent situations using historical data is a 

very complex task due to the time passed. 

To overcome these limitations, we are now working on running 

the tests in real-time on Feedzai’s premises. This way, data will be 

minimally anonymized while receiving the final verdict from the 

human operators at Feedzai. We hope in this way to get a full 

validation of the current EPN, with possibilities for refining the 

rules and parameters as part of the lessons learned.  

In terms of system performance requirements and given the 

current state-of-the-art, the precision should be over 20% and 

recall over 70%. For precision, it means that out of every 100 

events tagged as fraudulent, at least 20 of them are really fraud. 

For recall, it means that out of every 100 fraudulent transactions 

that pass through the system, at least 70 are caught. Again, our 

aim is to demonstrate that the applicability of uncertainty can 

improve the current metrics achieved. 

The false positive rate (FPR) is correlated to the number of alerts 

that are being raised. As mentioned in Section 3, alerts are 

ultimately disambiguated by a human operator and therefore, it is 

important that the system does not overwhelm them with work. 

Too many alerts will mean that the operator will pay less attention 

to each of them, increasing the chances of missing true fraud. 

There also may be too few analysts for the number of alerts, 

which means some of them must be discarded. 

It is important to note that the success rate should not only be 

measured in terms of transactions caught, but also by the value of 

the chargebacks. For example, for a merchant, it is certainly more 

important to catch a fraudulent transaction of €5000 than 100 

transactions of €100. 

6. RELATED WORK 
In this section we survey related work in two areas: fraud 

detection and uncertainty in event-driven systems. 

While predictive models for credit card fraud detection are in 

active use in practice, there are relatively few studies reported on 

the use of data mining approaches for credit card fraud detection, 

possibly due to the lack of available data for research [3].  Survey 

papers related to data mining and machine learning techniques can 

be found in [5], [16], [12], and [3]. Methods for fraud detection 

include: A Fusion Approach Using Dempster-Shafer Theory and 

Bayesian Learning, Hidden Markov Model, Neural Network, 

Bayesian Network, Genetic Algorithm, Artificial Immune System, 

K- nearest neighbor algorithm, Support Vector Machine, Decision 

Tree, Fuzzy Logic Based System, Random Forests, and Meta 

Learning Strategy. In this work, we apply complex event 

processing techniques for real-time detection of fraud. Future 

work includes the incorporation of machine learning into the 

design-time process of defining the event patterns. 

Event-processing platforms are becoming more widely deployed 

within the broader financial services industry for activities such as 

fraud detection. The need to embed real-time intelligence into 

bank operations is being recognized by banks. “These capabilities 

are seen as critical for activities as fraud detection, including the 

real-time detection of patterns across multiple locations or 

cards” [8]. Although there are several commercial tools that have 

some implementations in fraud detection, we are not familiar with 

any tool that offers uncertainty capabilities as part of their built-in 

building blocks.  

With relation to uncertainty in the input events, a first source of 

uncertainty may involve imprecise measurements on the values of 

attributes belonging to the event tuple. Previous works 

include [13], [4], [14], and [21]. In this case, an attribute is 

accompanied by its probability density function (pdf). Attribute 

uncertainty can be embodied in two ways. A first alternative is to 

utilize the information of the pdf of an attribute by incorporating it 

in the corresponding attribute’s value in the event. The second, 

much more popular, alternative is to interpret the available 

information (pdf) about a continuous attribute’s value to 

categorical attribute values, along with their respective 

probabilities. A second form of uncertainty may involve the event 

occurrence, where event e is examined as an atomic unit. In the 

latter case, e is represented by a tuple < e, pe > where pe denotes 

its occurrence probability. The previously mentioned works, with 

the exception of [21], assume or explicitly present (e.g., [18]) 

ways of mapping the uncertainty present in the attribute values of 

an event to an uncertainty value for the event apparition. The third 

type of uncertainty studied in the literature, see [4], [18], [19], 

and [20] involves the aspect of uncertain rules. 

In the literature, handling uncertain events and their propagation 

through the event processing network mainly focuses on three 

approaches: independence of events (e.g., [4]); Markovian 

property adoption ([13] and [17]); and Bayesian network 

construction ([4], [18], [19], and [20]).  

In our approach, we assume that the input events (i.e., the card 

transactions) are independent, and accordingly, the EPAs’ 

operators (Trend, Count, and other aggregators) have been 

adjusted to deal with uncertain or probabilistic operands and 

expressions. This is in addition to the overloading of mathematical 

operations on distributions, (e.g., sum of two variables 

representing distribution values). 

7. CONCLUSIONS AND FUTURE WORK 
In the state-of-the-art, there are only a few CEP engines that 

support all varieties of uncertainty. The need to support 

uncertainty is gradually being acknowledged, and it seems that 

this may constitute a significant line of research and development 

for CEP engines [1]. In the short review of probabilistic CEP 

systems in [1], two limitations were identified for most of the 

current probabilistic engines: the absence of support for: 

constructing hierarchies of complex events and uncertainty in the 

rules defining complex events. 



In this work, we present extensions carried out in open source 

PROTON to cope with the requirements of event processing 

under uncertainty, as demonstrated in a real scenario of credit card 

fraud. 

The inclusion of uncertainty aspects, mainly manifested in the 

run-time module, impacts all levels of the architecture and logic 

of an event processing engine. The extensions made in the 

complex event processing engine include the addition of new 

built-in attributes and functions, the support of new types of 

operands, and the support of the event processing patterns to cope 

with all these. Although these extensions are driven by the credit 

card fraud use case requirements, these have not been 

implemented ad-hoc, but as generic building blocks and 

primitives in the complex event processing programmatic 

language, therefore applicable to any domain and application. 

Our preliminary results are encouraging, showing potential 

benefits that stem from incorporating uncertainty aspects to the 

domain of credit card fraud detection. Future refined EPNs will 

include additional probabilistic functions (besides the Sigmoid 

used in this first implementation); as well as other threshold and 

temporal windows values.  

In our current implementation, we assume input events are 

independent, which simplifies the evaluation of the corresponding 

probabilistic formulas. For instance, the probability of a complex 

event detected based on an OR operator inherits the sum of 

probabilities of the input events as its uncertainty tag. Moreover, 

events derived from Seq or And (All) operator pattern matching, 

obtain an uncertainty value that is the product of the probabilities 

of input events. However, for other domains, this assumption 

might not hold, and dependency should be taken into account. 

Future work will include investigating handling dependent event 

occurrences.  

We plan to consider learning mechanisms to automatically 

generate rules from historical data analysis. Defining parameters 

such as event patterns, thresholds, and sizes of time windows is 

especially complicated in most cases; users have to try several 

configurations until they find a setting that works well. Once 

founded, these parameters should be revised regularly, as 

fraudsters change their modus operandi from time to time. 

Therefore, the system should be updated with new definitions 

when conditions change. 
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