
Industry Paper: The Uncertain Case of Credit Card Fraud
Detection

Ivo Correia
Feedzai

Av. João II, Lote 1.06.2.2
1990-095 Lisboa, Portugal

+351 211 985635

ivo.correia@feedzai.com

Fabiana Fournier
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8296489

fabiana@il.ibm.com

Inna Skarbovsky
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8281330

inna@il.ibm.com

ABSTRACT
Uncertainty is inherent in many real-time event-driven

applications. Credit card fraud detection is a typical uncertain

domain, where potential fraud incidents must be detected in real

time and tagged before the transaction has been accepted or

denied. We present extensions to the IBM Proactive Technology

Online (PROTON) open source tool to cope with uncertainty. The

inclusion of uncertainty aspects impacts all levels of the

architecture and logic of an event processing engine. The

extensions implemented in PROTON include the addition of new

built-in attributes and functions, support for new types of

operands, and support for event processing patterns to cope with

all these. The new capabilities were implemented as building

blocks and basic primitives in the complex event processing

programmatic language. This enables implementation of event-

driven applications possessing uncertainty aspects from different

domains in a generic manner. A first application was devised in

the domain of credit card fraud detection. Our preliminary results

are encouraging, showing potential benefits that stem from

incorporating uncertainty aspects to the domain of credit card

fraud detection.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving -

Uncertainty, fuzzy, and probabilistic reasoning; K.4.4 [Computers

and Society]: Electronic Commerce - Payment schemes.

General Terms

Design and Experimentation

Keywords

Complex event processing, pattern matching, uncertainty, credit

card fraud detection

1. INTRODUCTION AND MOTIVATION
In most complex event processing (CEP) systems there is an

underlying assumption that data is precise and certain, or that it

has been cleansed before processing [2]. Another basic

assumption is that the event rules or patterns are always

deterministic. However, in many real-time, event-driven

applications, these assumptions don’t hold. Consider, for example,

a (derived) event indicating credit card fraud based on a large

number of withdrawals from a customer’s account within a short

time frame, in increasing amounts. This activity may indicate a

fraud with some probability; however, it may also indicate a one-

time behavior for this customer.

In specific applications, uncertainty can be found in the input

events, in the output events, or in both [2]. In addition, there are

cases in which the pattern itself can be uncertain.

We distinguish between three types of uncertainty in the input

events:

1. Uncertainty in event content: one or more event

attributes have probabilities attached to them.

2. Uncertain event occurrence: events handled as atomic

units are represented along with their occurrence

probability.

3. Uncertain rules: alternative events may be triggered

based on rule elements, and are given probability

values.

Consequently, complex event processing engines are required to

accommodate and propagate the uncertainty from input events to

the output (complex) events.

As credit card becomes the most popular mode of payment for

both online and regular purchases, cases of credit card fraud are

also on the rise. Financial fraud has increased significantly with

the development of modern technology and the global

superhighways of communication, resulting in the loss of billions

of dollars worldwide each year. According to the BI Intelligence

study from March 5, 20141, the cost of global payment card fraud

grew by 19% in 2013, to$14 billion. The cost of U.S. payment

card fraud grew by 29% to $7.1 billion, while in the rest of the

world; card fraud grew by 11% to $6.8 billion. FICO published its

latest map of card fraud in Europe, showing that card fraud losses

in 2013 for the 19 European countries studied reached €1.55

billion2.

Fraud detection, including the real-time detection of patterns

across multiple locations or cards, was recently recognized as one

of the main activities required for embedding real-time

intelligence into bank operations [8][9]. Fraud detection in

banking and credit card processing depends on correlating events

across channels and accounts; this must be carried out in real time

1 http://www.businessinsider.com/the-us-accounts-for-over-half-

of-global-payment-card-fraud-sai-2014-3

2 http://www.fico.com/en/newsroom/fico-infographic-european-

card-fraud-losses-hit-new-high

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

DEBS’15, June 29 - July 3, 2015, OSLO, Norway

Copyright 2015 ACM 978-1-4503-3286-6/15/06...$15.00.

DOI: http://dx.doi.org/10.1145/2675743.2771877

mailto:ivo.correia@feedzai.com
mailto:fabiana@il.ibm.com
mailto:inna@il.ibm.com
http://dx.doi.org/10.1145/2675743.2771877

to prevent losses before they occur. Therefore, fraud detection has

been, and still is, one of the main classical applications for

complex event processing ([11], [9][15][10][8]).

Fraud detection is a domain that possesses inherent uncertainty.

Our previous example shows that certain “suspicious” behaviors

don’t necessarily indicate fraud.

We present a complex event processing tool that can efficiently

handle the types of uncertainty found in credit card fraud, and

show an implementation using real data. The tool is capable of

handling uncertainty in a generic manner, and not ad-hoc.

The remainder of this paper is organized as follows: Section 2

introduces the semantics applied in the proposed tooling.

Section 3 discusses the credit card fraud use case and event-driven

application. In Section 4 we describe the actual event-driven

application for the credit card fraud use case with the proposed

tool, and Section 5 describes the results obtained by running the

implementation over a real data set. We discuss related work in

Section 6. Section 7 concludes the paper and identifies future

research directions.

2. PRELIMINARIES
Each complex event processing engine uses its own terminology

and semantics, and our work follows the semantics presented by

Etzion and Niblet [6]. Below are some of the main terms used in

our work and implemented in our complex event processing

(Section 4.1).

2.1 Event Types
Generally speaking, an event is an occurrence within a particular

system or domain. It is something that has happened, or is

contemplated as having happened in that domain. The word

“event” is also used to mean a programming entity that represents

such an occurrence in a computing system. In the latter definition,

an event is an object of an event type. Events are actual instances

of the event types and have specific values. For example, the

event today at 10 p.m. a customer named John Doe withdrew 100

euros from his bank account, is an instance of the Transaction

event type. An event type specifies the information that is

contained in its event instances by defining a set of attributes.

The event attributes are grouped into the header or metadata (e.g.,

the occurrence time of the event instance) and the payload

(specific information about the event, e.g., customer name).

We refer to the following event types:

A raw event is an event that is introduced into an event

processing system by an event producer (an entity at the edge of

an event processing system that introduces events to the system).

An example of a raw event is a Transaction into a bank account.

A derived event is an event that is generated as a result of event

processing that takes place inside the event processing system. For

example: Increasing amounts have been withdrawn from a bank

account.

A situation is a derived event that is emitted outside the event

processing system and consumed by at least one consumer (an

entity at the edge of an event processing system that receives

events from the system). For example: a Fraud transaction.

2.2 Context
Context is a named specification of conditions that groups event

instances so they can be processed in a related way. In this work,

we employ the two most commonly used dimensions: temporal

and segmentation. A temporal context consists of one or more

time intervals, possibly overlapping. Each time interval

corresponds to a context partition, which contains events that

occur during that interval. A segmentation context is used to

group event instances into context partitions based on the value of

an attribute or collection of attributes in the instances themselves.

For example, consider a single stream of input events, in which

each event contains a credit card identifier attribute. The value of

this attribute can be used to group events so that each credit card

has a separate context partition. Each context partition contains

only events related to that credit card, so the behavior of each card

can be tracked independently of the other cards. A composite

context is a context composed of two or more contexts, known as

its members. The set of context partitions for the composite

context is the Cartesian product of the partition sets of the

member contexts.

2.3 Event Processing Network (EPN)
An Event Processing Network (EPN) is a conceptual model that

describes the event processing flow execution. An EPN comprises

a collection of event processing agents (EPAs), event producers,

events, and consumers (Figure 1). The network describes the flow

of events originating at event producers, flowing through various

event processing agents to eventually reach event consumers. For

example, in Figure 1, events from Producer 1 are processed by

Agent 1. Events derived by Agent 1 are of interest to Consumer 1,

but are also processed by Agent 3 together with events derived

from Agent 2. The intermediary processing between producers

and consumers in every installation is made up of several

functions. Often, the same function is applied to different events

for different purposes at different stages of the processing.

Figure 1. An event processing network

2.4 Event Processing Agent (EPA)
An Event Processing Agent (EPA) is a component that, given a

set of input/incoming events within a context, applies some logic

for generating a set of output/derived events. An EPA can apply

different event patterns to detect specific relations among the

input events.

An EPA performs three logical steps, also known as the pattern

matching process or event recognition (see Figure 2). All three

steps are optional, but at least one must be performed inside an

EPA.

Figure 2. Event recognition process in an EPA

Event
Producer 1

Event
Producer 2

Event
Consumer 1

Event
Consumer 2

EPA 1

EPA 3EPA 2

Event Processing Agent

Incoming/input
events

Derived/output
events

within
context

filtering

matching

deriving

participant events

matching set

Pattern matching process steps:

 Filtering: relevant events from the input events are

selected for processing according to the filter

conditions. The output of this step is a set of

participant events.

 Matching: takes all events that passed the filtering step

and looks for matches between these events, using an

event processing pattern or some other kind of matching

criterion. The output of this step is the matching set.

 Deriving: takes the output from the matching step and

uses it to derive the output events by applying

derivation formulas.

An event pattern is a template specifying one or more

combinations of events. Given a collection of events, if one or

more subsets of those events match a particular pattern, it can be

said that such a subset satisfies the pattern. Some common

examples of patterns:

 Sequence: at least one instance of all participating event

types must arrive in a specified order for the pattern to

be matched.

 Count: the number of instances in the participant event

set satisfies the pattern’s number assertion.

 All: at least one instance of all participating event types

must arrive for the pattern to be matched; the arrival

order in this case is immaterial.

 Trend: events need to satisfy a specific change

(increasing or decreasing) over time of an observed

specific attribute value.

 Absence: a specified event(s) must not occur within a

predefined time window. The matching set in this case

is empty.

 Average: the value of a specific attribute, averaged over

all participant events, satisfies the average threshold

assertion.

2.5 Pattern Policies
A pattern policy is a named parameter that disambiguates the

semantics of the pattern and the pattern matching process. Pattern

policies fine-tune the way the pattern detection process works.

Our event processing engine supports five types of policies:

Evaluation policy – When are the matching sets produced? The

EPA can either generate output incrementally (in this case the

evaluation policy is called Immediate) or at the end of the

temporal context (called Deferred).

Cardinality policy – How many matching sets are produced

within a single context partition? The cardinality policy helps

limit the number of matching sets generated, and thus the number

of derived events produced. The policy type can be single,

meaning only one matching set is generated; or unrestricted,

meaning there are no restrictions on the number of matching sets

generated.

Repeated/Instance Selection policy – What happens if the

matching step encounters multiple events of the same type? The

override repeated policy means that whenever a new event

instance is encountered and the participant set already contains the

required number of instances of that type, the new instance

replaces the oldest previous instance of that type. The every

repeated policy means that every instance is kept, meaning all

possible matching sets can be produced. First means that every

instance is kept, but only the earliest instance of each type is used

for matching. Last is the same as first, but the latest instance of

each type is used for matching.

Consumption policy – What happens to a particular event after it

has been included in the matching set? Possible consumption

policies are: consume, meaning each event instance can be used in

only one matching set; and reuse, meaning an event instance can

participate in an unrestricted number of matching sets.

Policy relevance can be dictated by the event pattern. For

example, the evaluation policy for an absence pattern is always

deferred (as we are testing the existence of an event instance for a

specified temporal context). Also, not all possible policy

combinations are meaningful. For example, the choice of

consumption policy is irrelevant if the cardinality policy is single,

because that means that the matching step runs only once.

3. THE CREDIT CARD FRAUD USE CASE

3.1 Credit Card Fraud Domain
Credit card fraud can be divided into two types: offline fraud and

online fraud.

 Offline or card is present (CP) fraud is committed by

using a stolen physical card at a call center or anywhere

else.

 Online fraud or card is not present (CNP) is committed

via Internet, phone, shopping, web, or in the absence of

a card holder.

In today’s fraud detection systems, the “suspicious” transaction is

marked and then manually inspected by human operators for a

final verdict to disambiguate dubious cases. Therefore, the

operators must be able to understand the motifs for the machine’s

reasoning, to make their final decision.

Another characteristic of this domain is that the dataset is very

unbalanced, that is, the “not fraud” class is much more frequent

(e.g., 1 to 2000 is common) than the “fraud” class.

Other important considerations include how fast the frauds can be

detected (detection time/time to alarm), how many styles/types of

fraud are detected, whether the detection was in online/real time

(event-driven) or batch mode (time-driven). In real-time

processing, transactions are analyzed as they come. Therefore, the

process of tagging fraud happens before the transaction has been

accepted or denied. If the transaction is marked as accepted,

nothing can be done afterwards if the transaction happens to be

fraudulent.

These considerations lead to a demanding environment, where

speed and accuracy in the decision process are of the utmost

importance.

Context is, in fact, one the most import aspects in fraud detection,

as different fraud patterns will arise in different contexts. For

example, in the CP scenario, two consecutive transactions with

the same card made in different countries will be the first sign of

fraud. However, in the CNP case, that situation happens quite

often, as online purchases from merchants in different countries

can easily be made in the space of a few minutes.

The full transaction flow is described in Figure 3. It starts at the

cardholder, when making a purchase from a given merchant. The

merchant’s terminal will then send the transaction to the acquirer

(acquiring bank), which relays the request to the issuer (issuing

bank) through the network, also known as brand, or processor.

The acquirer is the bank responsible for holding the merchants’

accounts. The issuer is the bank that issued the card. The

processor is the entity that serves as bridge between the acquirer

and the issuer. Once the transaction is accepted by the issuer, it

goes through the reverse path. Note that fraud can happen at any

of the stakeholders, although it is more common at the cardholder

or merchant. In other cases, a bank can be trying to avoid paying

transaction fees, thereby committing fraud. We currently consider

only cardholder and merchant detection, as the provided dataset

does not have enough information to correctly verify the other

cases.

Figure 3. Fraud stakeholders

3.2 Credit Card Fraud Event Processing

Network
The overarching aim of the CEP in this use case is to detect a

potential fraud incident in real-time, so corrective actions can be

taken. To this end, we have devised an EPN consisting of 13

EPAs (shown in Figure 4 and detailed in the following sections).

For the sake of simplicity, we only show the EPAs and the events

flow in the network. Dotted lines represent derived events that are

initiators of a context in other EPAs (in our EPN, EPA3

CVVAttack derived event initializes the contexts of EP9-EPA12;

and EPA5 SmallAmountFollowedByBigAmount derived event

initializes the temporal context of EPA13).

The two types of cases (CP and CNP) basically have the same

pattern logic, except for EPA6, EPA8, and EPA12, which are only

valid for the CP case, as explained in the following sections. For

the common patterns, the difference resides in the length of the

temporal windows, which can be either 2 or 5 minutes for the CP,

and only 2 min (shorter) for the CNP case. These windows lengths

have been chosen by fraud experts but other thresholds will be

considered in future experiments (see Section 7).

In Figure 4 we only show the CP EPAs in the EPN, but their

counterparts for the CNP case are also included in the complete

EPN and have been implemented and tested. As shown, situations

marked as potential (probabilistic) frauds are fired in the

following cases:

 Consecutive withdrawals of increasing or decreasing

amounts for a single card (EPA1 and EPA2).

 Several attempts to use a wrong CVV (Card

Verification Value) for the same card are made (EPA3).

 A high number of transactions in a short time-period for

a single card (EPA4).

 Small amount followed by big purchase for a single

card (EPA5).

 Many large withdrawals from a single ATM (EPA6).

 Sudden card use near the expiration date (EPA7).

 Consecutive attempts to use the same card in different

physical locations (EPA8).

 Combination of patterns, that is, a derived event of one

pattern is the temporal context initiator of another EPA.

In other words, two patterns that occur one after the

other, and therefore derive a new event with higher

probability of fraud than the original derived event (of

the single EPA). These are EPAs 9-13, whose contexts

are initiated by either EPA3 or EPA5 derived event (see

Figure 4, second part). See Section 3.2.2.9 for details

on these combined patterns.

Figure 4. Fraud use case initial EPN for the CP case

3.2.1 Fraud Use Case Event Types
Fourteen event types comprise the event inputs, outputs/derived,

and situations, as shown in Figure 4. To simplify, we only show

the user-defined attributes or the event payload (refer to 4.1.1 for

metadata attributes). Also note that the Transaction raw event

includes more fields or attributes. We present only the ones

required for pattern detection in our EPN implementation. During

run-time, the other attributes not specified in the event types will

be ignored by the CEP engine.

We use some naming conventions for the sake of clarity. We

denote event types with capital letters. Metadata attributes start

with a capital letter, as well as payload attributes that hold

Tr
an

sa
ct

io
n

EPA1
IncreasingAmounts

Si
tu

at
io

n
s

DecreasingAmounts

CVVAttack

EPA2

EPA8

EPA7

EPA6

EPA5

EPA4

EPA3

FlashAttack

SmallFollowedByBigAmounts

MultipleATMWithdrawals

SuddenUseNearExpirationDate

TransactionsinFarAwayPlaces

MultipleATMWithdrawals
AfterCVVAttack

SuddenCardUseNearExpiration
DateAfterCVVAttack

Tr
an

sa
ct

io
n

EPA3

Si
tu

at
io

n
s

EPA9

EPA13

EPA5

EPA12

EPA11

EPA10

FlashAttackAfterSmallFollowedByBigAmounts

SmallFollowedByBigAmounts

CVVAttack

IncreasingAmountsAfterCVVAttack

FlashAttackAfterCVVAttack

operators values (i.e., TrendCount denotes the number of input

events that satisfy the Trend operator, and TransactionsCount

denotes the number of input events that satisfy the Count

operator). Pattern operators and built-in functions are capitalized.

Built-in and payload attributes start with a lower case letter. Table

1 shows the event definitions for the fraud EPN, where:

card_pan (type: String) - The number that identifies the card. The

card BIN, which corresponds to the first six digits of the PAN, can

give information such as the issuer of the card.

terminal_id (Type: Long) - The internal identification of the

terminal.

cvv_validation (Type: Int) - Variable indicating whether the CVV

(Card Verification Value) was used or not. In the positive case, it

indicates whether it was valid (code =16) or not. This three digit

number printed on the signature panel on the back of the card

helps to verify authorized possession of a credit card.

amount_eur (Type: Double) - The amount in euros of the

transaction.

acquirer_country (type: Int) - The country of the acquiring bank.

is_cnp (Type: Bit) - Flag that states whether the transaction

happened in the CP or CNP context.

card_exp_date (type: Date (YYYYMM)) - The expiration date of

the card.

Table 1. Event types for the fraud use case

Event name Payload

Transaction card_pan; terminal_id;
cvv_validation; amount_eur;
acquirer_country; is cnp;
card_exp_date

IncreasingAmounts card_pan; TrendCount; is_cnp

DecreasingAmounts card_pan; TrendCount; is_cnp

CVVAttack card_pan; TransactionsCount;
is_cnp

FlashAttack card_pan; TransactionsCount;
is_cnp

SmallFollowedByBig
Amounts

card_pan; is_cnp

MultipleATMWithdrawals terminal_id; TransactionsCount

SuddenUseNearExpiration
Date

card_pan; TransactionsCount;
is_cnp; card_exp_date

TransactionsinFarAway
Places

card_pan

IncreasingAmountsAfter
CVVAttack

card_pan; TrendCount; is_cnp

FlashAttackAfterCVVAttack card_pan; TransactionsCount;
is_cnp

SuddenCardUseNearExpira
tion DateAfterCVVAttack

card_pan; TransactionsCount;
is_cnp; card_exp_date

MultipleATMWithdrawals
AfterCVVAttack

terminal_id; TransactionsCount

FlashAttackAfterSmall
FollowedByBigAmounts

card_pan; TransactionsCount;
is_cnp

3.2.2 Fraud Use Case Event Processing Agents
We describe the EPAs in the following order: event name;

meaning; event recognition process (following Figure 2); contexts

along with temporal context policy; and pattern policies.

In the event recognition process we only show the steps that take

place in the specific EPA, while the others are greyed out. For the

filtering step, we show the filtering expression; for the matching

step, we denote the pattern variables; and for the deriving step, we

denote the value assignments and calculations. For the sake of

simplicity, we show the assignments that are not copies of values;

all other derived event attribute values are copied from the input

events. For attributes, we only denote their names without the

prefix of ‘event_name.’ As aforementioned, we only show the

EPAs for the CP case with the filter condition is_cnp == 0 (the

filter condition will be is_cnp ==1 for the EPAs counterparts in

the CNP case). We also check whether the transaction is valid by

adding the condition cvv_validation ==16 (code number for a

valid CVV) in the filter.

In our current implementation we use the Sigmoid probabilistic

function to calculate the probability of the derived event. The

Sigmoid function has been selected since it fits situations that

exhibit a progression from small beginnings that accelerate over

time. A sigmoid curve is produced by a mathematical function

having an "S" shape [7]. Other parameters and functions might be

applicable as well, and are one of the topics for future work. A

Sigmoid function receives three parameters (a,b,x) and returns 1/

(1 + e^(-a (x - b))). The patterns have been tested with several

parameters. The ones shown in the figures have been chosen to

run the input events set. By using the Sigmoid function along with

immediate, unrestricted, and reuse pattern policies, we get derived

events with increased probabilities (higher Certainty values) as

outputs in the same temporal window, as parameter x gets higher

values with increased values in the pattern assertions. For

example, when used in the Count operator, the x denotes the

number of input events that satisfy the pattern assertion. This

value can only increase, therefore increasing the probability of the

derived event.

3.2.2.1 EPA1: IncreasingAmounts
EPA1 is a pattern that can be used to test the system detection

limits. It checks for at least two consecutive valid transactions

(i.e., trendN > 1) with increasing amounts.

Event recognition process:

Figure 5. Event recognition process for IncreasingAmounts

EPA

Pattern policies:

 Evaluation: Immediate

 Cardinality: Unrestricted

 Repeated: N/A

 Consumption: Reuse

is_cnp == 0 AND cvv_validation = =16

(amount_eur,
trendN>1)

Event Processing Agent

Transaction

within
context

filtering

(increasing)
TREND

deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trendCount

IncreasingAmounts

Context:

 Segmentation: by card_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction

o Terminator: +5 min

o Context policy: Ignore

Meaning: A temporal window of 5 minutes opens with the arrival

of a first Transaction event. In this elapsed time we check for a

Trend pattern over the amounts in the transactions per card.

According to the policies selected, we will derive a new event

every time the Trend pattern is satisfied (having higher

probabilities values in the Certainty attribute). In the derived

event we also report the actual number of transactions that satisfy

the Trend pattern (by the built-in trendCount attribute).

3.2.2.2 EPA2: DecreasingAmounts
This pattern is similar to EPA1, as it aims to test system detection

limits. EPA2 checks for at least two consecutive valid

transactions; that is, correct CVV, with decreasing amounts that

passed the card limit. The idea is that by passing the card limit,

the fraudster is obliged to decrease the amount of money in the

following transaction. The derived event is DecreasingAmounts.

The contexts and policies are the same as in EPA1. For the current

implementation we apply a standard average card limit in Europe.

Event recognition process:

Figure 6. Event recognition process for DecreasingAmounts

EPA

3.2.2.3 EPA3: CVV Attack
The fraudsters may only have access to partial information about

the card. Therefore, to obtain the rest of the information, such as

CVV, they can do a scan over possible CVV values. In EPA3 we

look for cases in which at least four attempts with incorrect CVV

are made in a very short period of time (two minutes).

Event recognition process:

Figure 7. Event recognition process for CVV Attack EPA

Pattern policies:

 Evaluation: Deferred

 Cardinality: N/A

 Repeated: N/A

 Consumption: N/A

Context:

 Segmentation: by card_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction.cvv_validation != 16

o Terminator: +2 min

o Context policy: Ignore

Meaning: A temporal window of 2 minutes opens with the arrival

of a first Transaction event with wrong CVV (cvv_validation !=

16). In this elapsed time, we check for at least 4 transactions with

wrong CVV. According to the policies selected, we will derive a

single event at the end of the temporal window. In the derived

event we also report the actual number of transactions that satisfy

the Count pattern (by the built-in count attribute).

3.2.2.4 EPA4: FlashAttack
EPA4 is similar to EPA3, but in this case, we look for a high

number of transactions in a short period of time.

Event recognition process:

Figure 8. Event recognition process for FlashAttack EPA

Pattern policies and contexts as in EPA3

3.2.2.5 EPA5: Small Amount Followed by Big

Amount
This pattern tests for system thresholds. Sometimes the fraudsters

test a small amount, and once the transaction succeeds, they

attempt a big purchase. We look for a sequence pattern where the

first transaction is related to a very small amount (cents) and the

second one in the sequence is related to a big amount (>200).

Note that T1 and T2 are aliases of the event type Transaction. The

SmallAmountFollowedByBigAmount derived event has a 0.8

probability of being a fraudulent transaction due to the nature of

this pattern.

Event recognition process:

Figure 9. Event recognition process for Small Amount

Followed by Big Amount EPA

Pattern policies:

 Evaluation: Immediate

 Cardinality: Single

(amount_eur,
trendN>1)

Event Processing Agent

Transaction

within
context

filtering

(decreasing)
TREND

deriving Certainty:Sigmoid(1,6,trend.count)
TrendCount:trendCount

DecreasingAmounts

is_cnp == 0 AND CVV_validation == 16 AND
amount_eur > card_limit

countN>3

Event Processing Agent

within
context

filtering

COUNT

deriving

is_cnp == 0 AND cvv_validation != 16

Transaction

Certainty: Sigmoid(1,9,count)
TransactionsCount:count

CVVAttack

countN>4

Event Processing Agent

within
context

filtering

COUNT

deriving

Transaction

Certainty: Sigmoid(1,9,count)
TransactionsCount:count

FlashAttack

is_cnp == 0 AND CVV_validation == 16

is_cnp == 0 AND CVV_validation == 16

Event Processing Agent

within
context

filtering

deriving Certainty: 0.8

SmallFollowedByBig
AmountsSEQUENCE

T1.amount_eur < 1 ; T2.amount_eur > 200

Transaction
(T1, T2)

 Repeated: T1=first; T2=override

 Consumption: N/A

Context:

 Segmentation: by card_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction.amount_eur < 1.0

o Terminator: +2 min

o Context policy: Ignore

Meaning: A short temporal window of 2 min opens with the

arrival of a first Transaction event with a small amount per card.

The pattern detects a small purchase, and if the consecutive

transaction is a big purchase it immediately emits the situation.

3.2.2.6 EPA6: Multiple max ATM withdrawals
Given that ATMs have an upper limit for withdrawals, in this kind

of attack, fraudsters are simply trying to take as much money as

they can in the fewest possible transactions. A typical large value

in an ATM in Europe is 200 euros. We look for at least three large

withdrawals in a single ATM. This EPA holds only for the CP

case.

Event recognition process:

Figure 10. Event recognition process for Multiple max ATM

withdrawals EPA

Pattern policies:

 Evaluation: Immediate

 Cardinality: Unrestricted

 Repeated: N/A

 Consumption: reuse

Context:

 Segmentation: by terminal_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction

o Terminator: +5 min

o Context policy: Ignore

Meaning: We derive a new event whenever the count pattern is

satisfied within a five minute window.

3.2.2.7 EPA7: Sudden Card Use Near the Expiration

Date
Fraudsters may obtain credit card credentials, and then sell them

to other people. When the expiration date approaches, and they

cannot sell those cards, they will try to make as much profit as

they can from those cards before they lose control over them. We

look for frequent transactions within a short period of time (2

min) for a single card on the day of, or the day before, the card

expiration date.

Event recognition process:

Figure 11. Event recognition process for Sudden Card Use

Near the Expiration Date EPA

Pattern policies:

 Evaluation: Deferred

 Cardinality: N/A

 Repeated: N/A

 Consumption: N/A

Context:

 Segmentation: by card_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction

o Terminator: +2 min

o Context policy: Ignore

3.2.2.8 EPA8: Transactions in Faraway Places
Due to speed limitations in traveling, it is impossible for the same

card to be used in faraway places. This means that the card has

been cloned. In this pattern, we check that two consecutive

transactions for a specific card cannot be at different physical

places within a short period of time. Note that we do not check for

CVV validity, as we are only interested in checking for use of the

same card in different places. In addition, the derived event has a

certainty of 1 (in this case the fraud indication is 100%) and

therefore the Certainty attribute is not shown in the deriving step

(the default is “1”). T1 and T2 are aliases of the event type

Transaction. This EPA holds only for the CP case.

Figure 12. Event recognition process for Transactions in Far

Away Places EPA

Pattern policies:

 Evaluation: Immediate

 Cardinality: Unrestricted

 Repeated: T1=first; T2=override

 Consumption: Consume

Context:

 Segmentation: by card_pan

 Temporal (non-overlapping windows):

o Initiator: Transaction

o Terminator: +5 min

is_cnp == 0 AND CVV_validation == 16 AND
0.9*large < amount_eur < large

Event Processing Agent

within
context

filtering

COUNT

deriving

countN>3

MultipleATMWithdr
awalsTransaction

Certainty: Sigmoid(1,9,count)
TransactionsCount:count

is_cnp == 0 AND CVV_validation == 16 AND (today -1 ==
card_exp_date OR today == card_exp_date)

countN>3

Event Processing Agent

within
context

filtering

COUNT

deriving

Transaction

Certainty: Sigmoid(1,9,count)
TransactionsCount:count

SuddenUseNearExpira
tionDate

Event Processing Agent

within
context

filtering

SEQUENCE

deriving

Transaction
(T1, T2)

T1.acquirer_country != T2.acquirer.country

Transactionsin
FarAwayPlaces

T1.is_cnp == 0; T2.is_cnp==0

o Context policy: Ignore

Meaning: In a 5 minute temporal window we detect and

immediately alert every attempt to use the same card for any two

consecutive transactions in faraway places.

3.2.2.9 EPA9-EPA13 Combined Patterns
The assumption is that when two patterns occur one after the

other, the probability of a fraud is higher than in the separate

EPAs. The sequencing between patterns is done by causing one

derived event to open the temporal context of another EPA. The

new derived event (of the latter new EPA), has the same

probability of the original EPA + 0.1. In other words, the new

EPA looks the same as the original EPA except for two

differences: the probability of the derived event is higher by 0.1,

and the context initiator is the derived event of the first EPA.

Other policies remain the same.

In EPA9, the IncreasingAmountsAfterCVVAttack situation is

derived when an Increasing Amount pattern occurs after several

attempts with the wrong CVV. The context is opened with the

CVVAttack derived event (in other words, EPA3 => EPA1).

In EPA10, the FlashAttackAfterCVVAttack situation is derived

when a Flash Attack occurs after several attempts with the wrong

CVV. The context is opened with the CVVAttack derived event (in

other words, EPA3 => EPA4).

In EPA11, the SuddenCardUseNearExpirationDateAfter

CVVAttack situation is derived when a Sudden Card Use Near

Expiration Date pattern occurs after several attempts with the

wrong CVV. The context is opened with the CVVAttack derived

event (in other words, EPA3 => EPA7).

In EPA12, the MultipleATMWithdrawalsAfterCVVAttack situation

is derived when a Multiple ATM withdrawals pattern occurs after

several attempts with the wrong CVV. The context is opened with

the CVVAttack derived event (in other words, EPA3 => EPA6).

This pattern holds only for the CP case (as EPA6).

In EPA13, the FlashAttackAfterSmallFollowedByBigAmounts

situation is derived when there is a Flash attack having the

sequence of a big purchase after a small one. The context is

opened with the SmallFollowedByBigAmounts derived event (in

other words, EPA5 => EPA3).

4. CREDIT CARD FRAUD USE CASE

IMPLEMENTATION

4.1 IBM Proactive Technology Online

(PROTON) Complex Event Processing Engine
We employ the IBM Proactive Technology Online (PROTON)

open source3 research asset as our baseline engine, and extend it

to cope with uncertainty capabilities as described in the following

sections. For further documentation regarding the CEP open

source asset refer to4. PROTON comprises a run-time engine,

producers, and consumers with the characteristics and capabilities

described in the Preliminaries section. Specifically, it includes an

3

https://github.com/ishkin/Proton/tree/master/IBM%20Proactive

%20Technology%20Online

4

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.ph

p/CEP_GE_-

_IBM_Proactive_Technology_Online_User_and_Programmer_

Guide

integrated run-time platform to develop, deploy, and maintain

event-driven applications using a single programming model.

PROTON has been chosen as it is our in-house CEP engine, and

possesses extensible semantic and programming models.

4.1.1 Event Attributes
Every event instance has a set of built-in attributes (metadata).

PROTON employs the following attributes in the event type's

metadata:

 Name – of the event type.

 OccurenceTime – a timestamp attribute, which we

expect the event source to fill in as the occurrence time

of the event. If left empty, this equals the detectionTime

attribute value.

 DetectionTime – a timestamp attribute that records the

time the CEP engine detected the event. The time is

measured in milliseconds, specifying the time difference

between the current machine time at the moment of

event detection, and midnight, January 1, 1970 UTC.

 EventId – a unique string identification of the event,

which can be set by the event source to match the

asynchronous output for the event.

 EventSource – holds the source of the event (usually the

name of event producer).

The above built-in attributes can be used in an expression in the

same manner as user-defined attributes. User-defined attributes

can be added to the event class by defining their types. If the

attribute is an array, its dimension should be specified.

4.1.2 PROTON Interfaces
The PROTON standalone version run-time engine has three main

interfaces with its environment as depicted in Figure 13.

1. Input adapters for receiving incoming events

2. Output adapters for sending derived events

3. CEP application definition (build time or authoring tool)

The application definitions, (i.e., the EPN), are written by the

application developer during the build-time. The definitions

output in JSON (JavaScript Object Notation) format are provided

as configuration to the CEP run-time engine. At run-time, the CEP

engine receives incoming events through the input adapters,

processes these incoming events according to the definitions, and

sends derived events through the output adapters (see Figure 13).

Figure 13. PROTON interfaces

4.1.3 Input and Output Adapters
As aforementioned, the definitions of the producers and

consumers are specified during the application build-time, and are

translated into input and output adapters during execution time.

The physical entities representing the logical entities of producers

2

JMS

Files

REST

DB

Custom

Input Adapters

JMS

Files

REST

DB

Custom

Output Adapters

PROTON Run time

PROTON Build-time

and consumers in PROTON are adapter instances. For each

producer, an input adapter is determined, which defines how to

pull the data from the source resource, and how to format the data

into PROTON's object format before delivering it to the run-time

engine. The adapter is environment-agnostic, but uses the

environment-specific connector object, injected into the adapter

during its creation, to connect to PROTON run-time.

In the trials carried out to test the use case implementation (see

Section 5) we use a comma separated values (CSV) file for input

and output. The input file contains real-time data anonymized for

privacy. The event types are specified in Section 3.2.1.

4.1.4 PROTON Definitions
The CEP application definitions file can be created in three ways:

1. Build-time user interface – The application developer

uses this to create the building blocks of the application

definitions, by filling in forms, without the need to write

any code. The generated file is exported in a JSON

format to the CEP run-time engine.

2. Programming – The JSON definitions file can be

generated programmatically by an external application,

and fed into the CEP run-time engine.

3. Manually – The JSON file is created manually, and fed

into the CEP run-time engine.

The created JSON file includes the following definitions:

Event types – the events that are expected to be received as input

or to be sent as output. An event type definition includes the event

name and a list of its attributes.

Producers – the event sources and the way PROTON gets events

from those sources.

Consumers – the event consumers and the way they get derived

events from PROTON.

Temporal contexts – time window contexts in which event

processing agents are active.

Segmentation contexts – semantic contexts that are used to group

several events to be used by the EPAs.

Composite contexts – grouping together several different contexts.

Event processing agents – patterns of incoming events in specific

context that detect situations and generate derived events. An EPA

includes most of the following general characteristics:

 Unique name

 EPA type (operator). For each operator, different sets of

properties and operands are applicable.

 Context

 Other properties, such as condition

 Participating events

 Segmentation contexts

 Derived events

The JSON file that is created at build-time contains all EPN

definitions, including definitions for event types, EPAs, contexts,

producers, and consumers. At execution, the run-time engine

accesses the metadata file, loads and parses all the definitions,

creates a thread per each input and output adapter, starts listening

for events incoming from the input adapters (producers), and

forwards events to output adapters (consumers).

4.1.5 Expressions in PROTON
When building an event processing application, we sometimes

need to set values to attributes or properties. We do so by writing

expressions. These expressions are tested at build-time and

evaluated at run-time by the PROTON EEP (Expandable

Expression Parser)

An expression can be any combination of:

 Constant (5, true, false, "silver", …)

 Field (<EventName>.<eventAttribute>)

 Built-in attribute (detectionTime, count, …) and built-in

aggregation attributes (Sum, Max, …)

 Operator (+, -, =, …)

 Segmentation context

(segmentationContext.CustomerKey)

 Built-in function (arrayContains(a,v),

distance(x1,y1,x2,y2), …)

Examples:

 Max(DayStart.initialStockLevel,0)

 if customerRating="gold" then "approve" else "reject"

endif

Examples of built-in functions:

 Max – Max(a,b,c) returns the maximum number among

the arguments

 Min – Min(x,100) returns the minimum number among

the arguments

 Average – Average(x,y,z,t) returns the average number

of the arguments

 Modulo – Mod(x,y) returns the remainder when

dividing x by y

 Round – Round(x) returns the closest integer value to x.

 Absolute – Abs(x) returns the absolute value of x

 CompareTo – CompareTo(str1,str2) compares two

strings lexicographically. The result is a negative integer

if str1 lexicographically precedes str2. The result is a

positive integer if str1 lexicographically follows the

str2. The result is zero if the strings are equal

 Distance – Distance(x1,y1,x2,y2) returns the distance

between (x1,y1) and (x2,y2)

 Angle – Angle(x,y,z,w) calculates the angle generated

between (x1,y1),(0,0),(x2,y2)

 IsNull – IsNull(val) checks whether the given val equals

null. Returns a Boolean value

 Power(a,x) - returns a^x for two doubles

 Exp(x) - returns e^x

PROTON EEP uses any of the following operators (Table 2).

Table 2: Operators in PROTON EEP

Type Operator Example

Mathematical + - / * customerBuy.quantity

+ 5

Comparison = == != > <

<= >=

customerRating !=

"gold"

Boolean and or not xor

& && | || ! ^

true false

customerOrigin =

"USA" or

customerLanguage =

"English"

If-then-else if <cond1> then

exp1

elseif <cond2> then

exp2

else exp3

endif

If customerRating =

"gold" then

customerRequest

else 0

endif

Lexical ++ (concatenation) "Name: " ++

Trans.customerName

EEP expressions can include the operand types: Boolean,

Datetime, Double, Integer, Numeric, String, or an array of each of

these simple types.

4.2 Extending PROTON’s Run-time Engine
Taking into consideration uncertainty aspects imposes

fundamental extensions to PROTON’s Extendable Expression

Parser (EEP) as described henceforth.

4.2.1 New Built-in Attributes
The event metadata in PROTON has been extended as follows:

 Addition of the built-in double Certainty attribute that

stores the certainty of this event. An event has a default

certainty value equal to 1, while it can have any value

between (0-1].

 Support for distribution values (see next Section) of

Occurrence time built-in attribute.

4.2.2 New Operand Types
The operand types have been extended to cope with distributions.

Two types of distributions are supported: continuous distribution

and discrete distribution. Canonic forms of distribution have been

implemented for each of these types. In the continuous case, there

is a continuous function whose integral equals to 1. In the discrete

case, it is a set of values with their associated probabilities where

the sum of all probabilities is equal to 1.

For continuous distributions we currently support the following:

 Exponential (mu) – where 1/mu is the expectation

 Gamma (n, mu) – where n is the shape and mu is the

scale

 Log-normal (mu, sigma) – where mu is the expectation

and sigma is the standard deviation

 Normal (mu, sigma) – where mu is the expectation and

sigma is the standard deviation

 Triangular (lower, middle, upper) – where lower is

the left point of the triangular base, upper is right point

and middle is the tip point of the triangular

 Uniform (a, b) – where a is the left point of the interval

and b is the right point

 Sigmoid(a,b,x) function which returns 1/ (1 + e^(-a (x

- b))) (see Section 3.2.2).

For discrete distributions, we currently support the following:

 Bernoulli (p) – where p is the probability of success

 Binomial (n, p) – where n is the number of trials and p

is the probability of success

 Uniform (list of numbers) – each number is associated

with a probability equals to 1/number of numbers

4.2.3 New Built-in Functions
 CDF – CDF(d, alpha) – returns the cumulative

distribution function of d (which is of type distribution)

at point alpha, which is the probability that d is smaller

or equal to alpha

 Mean – Mean(d) – returns the expectation of the

distribution d

 PDF – PDF(d, x) – returns the probability density

function of the distribution d at point x

 Percentile – Percentile(d, alpha) – returns the smallest

value x, for which CDF(d, x) is larger or equal to alpha

 Var – Var(d) – returns the variance of the distribution d

To cope with these new operand types, the EPAs’ operators have

been adjusted to deal with uncertain or probabilistic operands and

expressions.

4.3 Extending PROTON’s Authoring Tool
PROTON’s authoring tool forms have been accommodated to

support all the extensions described above. Figure 14 shows a

screenshot from PROTON’s authoring tool showing our use case

implementation and the addition of the Certainty built-in attribute.

Figure 14. PROTON 's authoring tool showing the new

Certainty attribute

5. EXPERIMENTATION AND ANALYSIS

5.1 Dataset
The dataset was provided by Feedzai5, experts in fraud detection

and prevention. Feedzai implements their own system for fraud

detection, which includes real-time alerts inspected by a human

operator for a final verdict. The most interesting question is

whether the use of uncertain events as indicators of fraud can

improve the accuracy of current systems.

The dataset contains 5600 M transactions comprising a file of 810

GB, and corresponding to nearly 3 years of transactions from

2009 to 2011. It is important to note that the data has been

completely anonymized due to security and privacy issues. Of all

these transactions, only around 0.05% represent fraud. Therefore,

it is crucial that the system is able to detect this small fraction of

fraudulent transactions.

The dataset schema includes a total of 27 fields. In our current

implementation, we only require 7 fields or attributes of the

Transaction raw event for pattern recognition (Table 1). The

remaining attributes are simply ignored by PROTON’s run-time

engine. Among these, is the is_fraud (Type: Bit), which is a label

indicating whether the specific transaction was marked as fraud or

5 https://www.feedzai.com/

not (by a human operator). This attribute serves for validation

testing, but again, is ignored by the CEP engine during run-time.

5.2 Implementation and Analysis
We implemented and tested our event processing network over

the input dataset. Our main objective was to understand the

general applicability of our event rules, specifically the inclusion

of uncertainty in the credit card fraud domain using the available

historical data. The preliminary results are encouraging. We were

able to recognize 80% out of the fraudulent transactions with high

certainty (>70%). We also detected around 0.02% additional

transactions with various certainty levels.

However, there are some limitations of historical data that make it

difficult for us to assess the level of precision and recall of our

results. First, our detected situations (i.e., events with a high

certainty of fraud) possess a wide range of uncertainty levels.

Therefore, we need a human operator to disambiguate between

“potential” to “real” frauds, depending on the uncertainty level of

the event. We selected the level of 70% as a threshold value, but

this number should be calibrated with the help of a human expert.

Second, the dataset used was heavily anonymized. This fact can

potentially influence the findings. Third, even with the help of a

human, deducing fraudulent situations using historical data is a

very complex task due to the time passed.

To overcome these limitations, we are now working on running

the tests in real-time on Feedzai’s premises. This way, data will be

minimally anonymized while receiving the final verdict from the

human operators at Feedzai. We hope in this way to get a full

validation of the current EPN, with possibilities for refining the

rules and parameters as part of the lessons learned.

In terms of system performance requirements and given the

current state-of-the-art, the precision should be over 20% and

recall over 70%. For precision, it means that out of every 100

events tagged as fraudulent, at least 20 of them are really fraud.

For recall, it means that out of every 100 fraudulent transactions

that pass through the system, at least 70 are caught. Again, our

aim is to demonstrate that the applicability of uncertainty can

improve the current metrics achieved.

The false positive rate (FPR) is correlated to the number of alerts

that are being raised. As mentioned in Section 3, alerts are

ultimately disambiguated by a human operator and therefore, it is

important that the system does not overwhelm them with work.

Too many alerts will mean that the operator will pay less attention

to each of them, increasing the chances of missing true fraud.

There also may be too few analysts for the number of alerts,

which means some of them must be discarded.

It is important to note that the success rate should not only be

measured in terms of transactions caught, but also by the value of

the chargebacks. For example, for a merchant, it is certainly more

important to catch a fraudulent transaction of €5000 than 100

transactions of €100.

6. RELATED WORK
In this section we survey related work in two areas: fraud

detection and uncertainty in event-driven systems.

While predictive models for credit card fraud detection are in

active use in practice, there are relatively few studies reported on

the use of data mining approaches for credit card fraud detection,

possibly due to the lack of available data for research [3]. Survey

papers related to data mining and machine learning techniques can

be found in [5], [16], [12], and [3]. Methods for fraud detection

include: A Fusion Approach Using Dempster-Shafer Theory and

Bayesian Learning, Hidden Markov Model, Neural Network,

Bayesian Network, Genetic Algorithm, Artificial Immune System,

K- nearest neighbor algorithm, Support Vector Machine, Decision

Tree, Fuzzy Logic Based System, Random Forests, and Meta

Learning Strategy. In this work, we apply complex event

processing techniques for real-time detection of fraud. Future

work includes the incorporation of machine learning into the

design-time process of defining the event patterns.

Event-processing platforms are becoming more widely deployed

within the broader financial services industry for activities such as

fraud detection. The need to embed real-time intelligence into

bank operations is being recognized by banks. “These capabilities

are seen as critical for activities as fraud detection, including the

real-time detection of patterns across multiple locations or

cards” [8]. Although there are several commercial tools that have

some implementations in fraud detection, we are not familiar with

any tool that offers uncertainty capabilities as part of their built-in

building blocks.

With relation to uncertainty in the input events, a first source of

uncertainty may involve imprecise measurements on the values of

attributes belonging to the event tuple. Previous works

include [13], [4], [14], and [21]. In this case, an attribute is

accompanied by its probability density function (pdf). Attribute

uncertainty can be embodied in two ways. A first alternative is to

utilize the information of the pdf of an attribute by incorporating it

in the corresponding attribute’s value in the event. The second,

much more popular, alternative is to interpret the available

information (pdf) about a continuous attribute’s value to

categorical attribute values, along with their respective

probabilities. A second form of uncertainty may involve the event

occurrence, where event e is examined as an atomic unit. In the

latter case, e is represented by a tuple < e, pe > where pe denotes

its occurrence probability. The previously mentioned works, with

the exception of [21], assume or explicitly present (e.g., [18])

ways of mapping the uncertainty present in the attribute values of

an event to an uncertainty value for the event apparition. The third

type of uncertainty studied in the literature, see [4], [18], [19],

and [20] involves the aspect of uncertain rules.

In the literature, handling uncertain events and their propagation

through the event processing network mainly focuses on three

approaches: independence of events (e.g., [4]); Markovian

property adoption ([13] and [17]); and Bayesian network

construction ([4], [18], [19], and [20]).

In our approach, we assume that the input events (i.e., the card

transactions) are independent, and accordingly, the EPAs’

operators (Trend, Count, and other aggregators) have been

adjusted to deal with uncertain or probabilistic operands and

expressions. This is in addition to the overloading of mathematical

operations on distributions, (e.g., sum of two variables

representing distribution values).

7. CONCLUSIONS AND FUTURE WORK
In the state-of-the-art, there are only a few CEP engines that

support all varieties of uncertainty. The need to support

uncertainty is gradually being acknowledged, and it seems that

this may constitute a significant line of research and development

for CEP engines [1]. In the short review of probabilistic CEP

systems in [1], two limitations were identified for most of the

current probabilistic engines: the absence of support for:

constructing hierarchies of complex events and uncertainty in the

rules defining complex events.

In this work, we present extensions carried out in open source

PROTON to cope with the requirements of event processing

under uncertainty, as demonstrated in a real scenario of credit card

fraud.

The inclusion of uncertainty aspects, mainly manifested in the

run-time module, impacts all levels of the architecture and logic

of an event processing engine. The extensions made in the

complex event processing engine include the addition of new

built-in attributes and functions, the support of new types of

operands, and the support of the event processing patterns to cope

with all these. Although these extensions are driven by the credit

card fraud use case requirements, these have not been

implemented ad-hoc, but as generic building blocks and

primitives in the complex event processing programmatic

language, therefore applicable to any domain and application.

Our preliminary results are encouraging, showing potential

benefits that stem from incorporating uncertainty aspects to the

domain of credit card fraud detection. Future refined EPNs will

include additional probabilistic functions (besides the Sigmoid

used in this first implementation); as well as other threshold and

temporal windows values.

In our current implementation, we assume input events are

independent, which simplifies the evaluation of the corresponding

probabilistic formulas. For instance, the probability of a complex

event detected based on an OR operator inherits the sum of

probabilities of the input events as its uncertainty tag. Moreover,

events derived from Seq or And (All) operator pattern matching,

obtain an uncertainty value that is the product of the probabilities

of input events. However, for other domains, this assumption

might not hold, and dependency should be taken into account.

Future work will include investigating handling dependent event

occurrences.

We plan to consider learning mechanisms to automatically

generate rules from historical data analysis. Defining parameters

such as event patterns, thresholds, and sizes of time windows is

especially complicated in most cases; users have to try several

configurations until they find a setting that works well. Once

founded, these parameters should be revised regularly, as

fraudsters change their modus operandi from time to time.

Therefore, the system should be updated with new definitions

when conditions change.

8. ACKNOWLEDGMENTS
The research leading to these results has received funding from

the European Union's Seventh Framework Programme FP7/2007-

2013 under grant agreement 619435 (SPEEDD).

9. REFERENCES
[1] Alevizos E., Skarlatidis A., Artikis A. and Paliouras G. 2015.

Complex Event Recognition under Uncertainty: A Short

Survey. Event Processing, Forecasting and Decision-Making

in the Big Data Era (EPForDM), EDBT/ICDT Workshops,

97-103.

[2] Artikis A., Etzion O., Feldman Z., and Fournier, F. 2012.

Event Processing under Uncertainty. International

Conference on Distributed Event-Based Systems (DEBS12),

32-43.

[3] Bhattacharyya S., Tharakunnel S. J, K., and Westland J.

2011. Data mining for credit card fraud: A comparative

study. Decision Support Systems, 50, 602-613.

[4] Cugola G., Margara A., Matteucci M., and Tamburrelli G.

2014. Introducing uncertainty in complex event processing:

model, implementation, and validation. Computing, 1–42.

[5] Durga K. and Lovelin Ponn Felciah M. 2014. A Survey -

Fraud Detections on Credit Cards. International Journal of

Innovative Science, Engineering & Technology (IJISET),

1(3), May 2014.

[6] Etzion O. and Niblet P. 2010. Event processing in action.

Manning.

[7] Hastie T., Tibshirani R., and Friedman J. 2009. The elements

of statistical learning. Vol. 2. No. 1. New York: Springer.

[8] Knox M. 2013. Hype Cycle for Bank Operations Innovation.

Gartner report G00252360. Published: 24 July 2013.

[9] LeHong H., Fenn J., and Toit R. L-du. 2014. Hype Cycle for

Emerging Technologies. Gartner report G00264126.

Published: 28 July 2014.

[10] LeHong H. and Velosa A. 2014. Hype Cycle for the Internet

of Things. Gartner report G00264127. Published: 21 July

2014.

[11] Linden A. 2104. Hype Cycle for Advanced Analytics and

Data Science. Gartner report G00262076. Published: 30 July

2014.

[12] Phua C., Lee V., Smith K. and Gayler R. 2010. A

Comprehensive Survey of Data Mining-based Fraud

Detection Research. School of Business Systems, Faculty of

Information Technology, Monash University, Australia.

[13] Ré C., Letchner J., Balazinksa M., and Suciu D. 2008. Event

queries on correlated probabilistic streams. In Proceedings of

the 2008 ACM SIGMOD International Conference on

Management of Data (SIGMOD08), 715–728.

[14] Shen Z., Kawashima H., and Kitagama H. 2008. Probabilistic

event stream processing with lineage. In Proceedings of Data

Engineering Workshop (DEWS08).

[15] Steenstrup K. 2014. Hype Cycle for Operational Technology.

Gartner report G00263170. Published: 23 July 2014.

[16] Tripathi K.K. and Pavaskar M.A. 2012. Survey on Credit

Card Fraud Detection Methods. International Journal of

Emerging Technology and Advanced Engineering, 2(11),

November 2012.

[17] Wang Y.H., Cao K., and Zhang X.M. 2013. Complex event

processing over distributed probabilistic event streams.
Computers & Mathematics with Applications, 66(10), 1808 –

1821.

[18] Wasserkrug S., Gal A., Etzion O., and Turchin Y. 2008.

Complex event processing over uncertain data. In

Proceedings of the Second ACM conference on Distributed

Event-Based Systems (DEBS08), 253–264.

[19] Wasserkrug S, Gal A., Etzion O., and Turchin Y. 2012.

Efficient processing of uncertain events in rule-based

systems. IEEE Transactions on Knowledge and Data

Engineering, 24(1), 45–58.

[20] Wasserkrug S., Gal A., and Etzion. 2012. O. A model for

reasoning with uncertain rules in event composition systems.

In Proceedings of CoRR.

[21] Zhang H., Diao Y., and Immerman N. 2010. Recognizing

patterns in streams with imprecise timestamps. Proc. VLDB

Endowment, 3(1-2):244–255.

