
i	
	

	

Scalable	Data	Analytics,	
Scalable	Algorithms,	Software	Frameworks	
and	Visualization	ICT-2013	4.2.a	

	
Project	 FP7-619435/SPEEDD	
Deliverable	 D3.2	(revised)	
Distribution	 Public	

	

	

	 	
	 	
	

	

	

	

	

	

																																																																						 	

																																																																																					http://speedd-project.eu	

	

Second	version	of	event	recognition	and	

forecasting	technology	–	Part	I	
Fabiana	Fournier	(IBM)	and	Inna	Skarbovsky	(IBM)	

																																																										

																																																									Status:	Revised	(Version	2.0)	

	

	

ii	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

																																																																									August	2016	

		

																																																												

	

																																																												

Project	 	
Project	Ref.	no	 FP7-619435	
Project	acronym	 SPEEDD	
Project	full	title	 Scalable	ProactivE	Event-Driven	Decision	Making	
Project	site	 http://speedd-project.eu/	
Project	start	 February	2014	
Project	duration	 3	years	
EC	Project	Officer	 Stefano	Bertolo	
	 	
Deliverable	 	
Deliverable	type	 Prototype	
Distribution	level	 Public	
Deliverable	Number	 D3.2	
Deliverable	Title	 Second	version	of	event	recognition	and	forecasting	technology	
Contractual	date	of	delivery	 M22	(November	2015)	
Actual	date	of	delivery	 August	2016	
Relevant	Task(s)	 WP3/Tasks	3.2-3.3	
Partner	Responsible	 IBM	
Other	contributors	 NCSR	
Number	of	pages	 79	
Author(s)	 Fabiana	Fournier	(IBM)	and	Inna	Skarbovsky	(IBM)	
Internal	Reviewers	 Ivo	Correia	(Feedzai)	and	Elias	Alevizos	(NCSR)	
Status	&	version	 Revised	
Keywords	 Complex	event	processing,	forecasted/predicted	event,	event	

recognition,	uncertain	event	
	 	
	

	 	

iii	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Executive	summary		
This	document	 is	the	first	part	of	Deliverable	3.2	“Second	version	of	event	recognition	and	forecasting	
technology”	 and	 its	 purpose	 is	 to	 present	 the	 intermediate	 results	 of	 T3.2	 (event	 recognition	 under	
uncertainty)	 and	 T3.3	 (event	 forecasting	 under	 uncertainty),	 and	 the	 second	 version	 of	 the	 event	
recognition	and	forecasting	component	(software).	

A	new	version	of	the	event-driven	application	for	the	two	use	cases	of	the	project,	the	credit	card	fraud	
detection	 and	 the	 traffic	management,	were	 developed,	 implemented,	 and	 tested	 during	 the	 second	
year	 of	 the	 project.	 The	 full	 description	 of	 the	 applications	 is	 detailed	 along	 with	 evaluation	 tests	
performed.	As	a	 result	of	 the	performance	evaluation,	 a	 root	 cause	analysis	has	been	performed	and	
improvements	in	the	run-time	engine	have	been	incorporated.		

Our	main	 findings	 from	 both	 applications	 show	 the	 latent	 benefits	 from	 the	 inclusion	 of	 uncertainty	
aspects	 in	both	applications.	 In	 the	 fraud	detection	use	case	–	we	are	able	 to	derive	a	potential	 fraud	
before	 reaching	 the	 threshold	 determined	 and	 therefore,	 have	 the	 chance	 to	 block	 the	 credit	 card	
(alternatively,	deny	the	next	transaction)	before	further	transactions	take	place.	In	the	traffic	use	case	-	
we	are	able	to	forecast	a	congestion	before	it	actually	happens	and	therefore	proactive	actions	can	be	
taken	to	alleviate	the	congestion.		

	

	

	 	

iv	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Document	history		
	

Version	 Date	 Author	 Change	Description	
0.1	
0.2	

31/10/2015	
15/11/2015	

Fabiana	Fournier	(IBM)	
Fabiana	Fournier	(IBM)	

First	draft	
Second	draft	for	internal	review	

0.3	 25/11/2015	 Fabiana	Fournier	(IBM)	 Updates	per	internal	review	
1.0	
2.0	

30/11/2015	
17/07/2016	

Fabiana	Fournier	(IBM)	
Fabiana	Fournier	(IBM)	

Final	fixes	and	cleanup	
Revised	 version	 upon	 second	 annual	
review	comments	

3.0	 25/07/2016	 Fabiana	Fournier	(IBM)	 Final	version	after	internal	review	
	 	

v	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Table	of	contents	
1	 Introduction	...	1	

1.1	 Purpose	and	scope	of	the	document	...	1	

1.2	 Relationship	with	other	documents	...	1	

1.3	 Updates	since	the	first	version	...	2	

2	 Preliminaries	..	2	

2.1	 Event	Processing	Network	(EPN)	..	2	

2.2	 Pattern	matching	process	...	3	

3	 Extensions	made	to	PROTON	...	4	

4	 Event	processing	application	for	the	credit	card	fraud	detection	use	case	...	5	

4.1	 Design	of	second	EPN	for	the	credit	card	fraud	detection	use	case	..	5	

4.1.1	 Event	types	...	8	

4.1.2	 Event	processing	agents	...	10	

4.1.3	 CP-EPAs	...	10	

4.1.4	 CNP-EPAs	..	19	

4.2	 Implementation	and	evaluation	of	second	EPN	for	the	fraud	detection	use	case	21	

4.2.1	 Implemented	EPN	...	21	

4.2.2	 Evaluation	results	...	28	

5	 Event	processing	application	for	the	traffic	management	use	case	...	31	

5.1	 Design	of	second	EPN	for	the	traffic	management	use	case	..	31	

5.1.1	 Calculations	of	congestion,	clear	congestion,	and	predicted	congestion	situations	32	

5.1.2	 Calculation	of	density	...	33	

5.1.3	 Weather	API	...	33	

5.1.4	 Event	types	...	33	

5.1.5	 Event	processing	agents	...	34	

5.2	 Implementation	and	evaluation	of	second	EPN	for	the	traffic	management	use	case	43	

5.2.1	 Implemented	EPN	...	44	

5.2.2	 Evaluation	results	...	47	

6	 Performance	evaluation	...	56	

6.1	 Performance	testing	configuration	..	57	

vi	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

6.2	 Performance	test	results	..	57	

6.3	 Analysis	of	results	...	58	

6.3.1	 EPAs	latency	...	58	

6.3.2	 Bottlenecks	during	execution	...	59	

6.4	 Corrective	actions	...	61	

6.5	 Performance	improvements	..	62	

6.6	 Summary	and	future	steps	...	63	

7	 Semantic	translation	from	event	calculus	to	PROTON’s	programming	model	64	

7.1	 Event	Calculus	examples	..	64	

7.1.1	 Previous	Transactions	...	64	

7.1.2	 Amount	...	64	

7.1.3	 First	TRX	in	country	high	...	65	

7.2	 Conclusions	...	65	

7.2.1	 EPA1:	amount_level	...	65	

7.2.2	 EPA2:	prev_trx	..	66	

7.2.3	 EPA3:	first_trx_high	..	67	

7.2.4	 Event	processing	network	..	68	

8	 Summary	and	future	steps	...	69	

9	 References	..	70	

	

List	of	tables	
Table	1:	Event	types	for	the	credit	card	fraud	detection	use	case	...	9	
Table	2:	Coefficients	calculation	for	Sigmoid	function	in	the	uncertain	CP	case	22	
Table	3:	Patterns	operand	value	for	the	certain		CP	case	..	22	
Table	4:	Number	of	transactions	per	detected	pattern	in	the	uncertain	CP	credit	card	use	case	30	
Table	5:	Event	types	for	the	traffic	management	use	case	..	34	
Table	6:	Variable	values	calculation	for	Sigmoid	function	for	the	PredictedTrend	EPA	44	
Table	7:	Sequencing	of	derived	events	(situations)	for	incident	#10	...	50	
Table	8:	Summary	of	recall	and	precision	results	...	55	
Table	9:	Latency	performance	before	and	after	corrective	actions	...	63	
	

	 	

vii	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

List	of	figures	
Figure	1:	Illustration	of	an	event	processing	network	..	3	
Figure	2:	Event	recognition	process	in	an	EPA	...	3	
Figure	3:	Credit	card	fraud	detection	use	case	CP-EPN	..	7	
Figure	4:	Credit	card	fraud	detection	use	case	CNP-EPN	...	8	
Figure	5:	Event	recognition	process	for	IncreasingAmounts	EPA	..	11	
Figure	6:	Context	for	DecreasingAmounts	EPA	..	11	
Figure	7:	Event	recognition	process	for	DecreasingAmounts	EPA	...	12	
Figure	8:	Context	for	DecreasingAmounts	EPA	..	13	
Figure	9:	Event	recognition	process	for	FlashAttack	EPA	...	13	
Figure	10:	Context	for	FlashAttack	EPA	..	14	
Figure	11:	Event	recognition	process	for	MultipleMaxATMWithdrawals	EPA	...	14	
Figure	12:	Context	for	MultipleATMWithdrawals	EPA	...	15	
Figure	13:	Event	recognition	process	for	SuddenCardUseNearEexpirationDate	EPA	15	
Figure	14:	Context	for	SuddenCardUseNearEexpirationDate	EPA	...	16	
Figure	15:	Event	recognition	process	for	TransactionsInFarAwayPlaces			EPA	..	16	
Figure	16:	TransactionsInFarAwayPlaces	EPA	..	17	
Figure	17:	Event	recognition	process	for	SmallAmountFollowedByBigAmount			EPA	17	
Figure	18:	SmallAmountFollowedByBigAmount	EPA	...	18	
Figure	19:	Event	recognition	process	for	FlashAttackAfterSmallFollowedByBigAmounts	EPA	18	
Figure	20:	Context	for	FlashAttackAfterSmallFollowedByBigAmounts	EPA	...	19	
Figure	21:	Event	recognition	process	for	CVVAttack	EPA	..	20	
Figure	22:	Context	for	CVVAttack	EPA	...	20	
Figure	23:	Traffic	management	use	case	EPN	..	32	
Figure	24:	Event	recognition	process	for	AvgDensityAndSpeedPerLocation	EPA	35	
Figure	25:	Context	for	AvgDensityAndSpeedPerLocation	EPA	...	36	
Figure	26:	Event	recognition	process	for	Congestion	EPA	...	36	
Figure	27:	Event	recognition	process	for	Congestion	EPA	...	37	
Figure	28:	Event	recognition	process	for	ClearCongestion	EPA	...	37	
Figure	29:	Context	for	ClearCongestion	EPA	..	38	
Figure	30:	Event	recognition	process	for	PredictedTrend	EPA	...	39	
Figure	31:	Context	for	PredictedTrend	EPA	...	39	
Figure	32:	Event	recognition	process	for	PredictedCongestion	EPA	..	40	
Figure	33:	Context	for	PredictedCongestion	EPA	...	41	
Figure	34:	Event	recognition	process	for	AvgOnRamp	EPA	...	41	
Figure	35:	Event	recognition	process	for	AvgOnRamp	EPA	...	42	
Figure	36:	Event	recognition	process	for	AvgAggregationOverTime	EPA	..	42	
Figure	37:	Event	recognition	process	for	AvgAggregationOverTime	EPA	..	43	
Figure	38:	Implemented	EPN	for	the	traffic	management	use	case	..	44	
Figure	39:	Mapping	of	the	oid	(Detector	ID)	to	the	location_id	of	the	physical	sensors	in	the	highway	...	49	

viii	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Figure	40:	Zoom	into	simulation	#10	...	49	
Figure	41:	PROTON	performance	testing	conceptual	overview	...	56	
Figure	42:	End-to-end	latency	in	milliseconds	...	58	
Figure	43:	Thread	monitoring	of	the	application	during	run	..	59	
Figure	44:	The	blocking	monitor	..	60	
Figure	45:	Evaluation	of	context	segmentation	expressions	steps	in	PROTON’s	run-time	60	
Figure	46:	End-to-end	latency	in	milliseconds	after	changes	in	PROTON’s	code	base	63	
Figure	47:	Event	recognition	process	for	amount_level	EPA	...	66	
Figure	48:	Event	recognition	process	for	prev_trx	EPA	..	66	
Figure	49:	Event	recognition	process	for	prev_trx	EPA	..	67	
Figure	50:	Event	recognition	process	for	first_trx_high	EPA	..	67	
Figure	51:	Event	recognition	process	for	first_trx_high	EPA	..	68	
Figure	52:	first_trx_high	EPN	...	68	
	 	

ix	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Acronyms		
	
API	 Application	Programming	Interface	
CEP	 Complex	Event	Processing	
CNP	 Card	Not	Present	
CP	 Card	Present	
CVV	 Card	Verification	Value	
EPA	 Event	Processing	Agent	
EPN	 Event	Processing	Network	
JSON	 JavaScript	Object	Notation	
PETITE				 Proton	EvenT	Injection	&	Time	comprEssion	
PROTON	 PROactive	Technology	ONline	
SPEEDD	 Scalable	ProactivE	Event-Driven	Decision	making	
WP	 Work	Package	
	

	

1	
	

	

1 Introduction	
	 	 	 	

1.1 Purpose	and	scope	of	the	document	
Work	Package	3	(WP3)	“Real-Time	Event	Recognition	and	Forecasting	under	Uncertainty”	deals	with	all	
the	 developments	 around	 event	processing	 technologies	 under	 uncertainty.	 This	 report	 is	 the	 second	
version	 of	 SPEEDD	 (Scalable	 ProactivE	 Event-Driven	 Decision)	 event	 recognition	 and	 forecasting	
technology	and	it	includes	intermediate	results	for	T3.2	(event	recognition	under	uncertainty)	and	T3.3	
(event	forecasting	under	uncertainty),	and	the	second	version	of	the	event	recognition	and	forecasting	
component	 (software).	 This	 report	 presents	 new	 advanced	 implementations	 to	 the	 project	 two	 use	
cases:	the	traffic	management	use	case	and	the	credit	card	fraud	use	case.	Basically,	this	report	covers	
the	 extensions	 made	 to	 the	 PROactive	 Technology	 ONline	 (PROTON)	 CEP	 tool	 and	 the	 new	
implementations	for	the	two	use	cases.		

As	 the	 main	 goal	 of	 the	 CEP	 component	 is	 to	 demonstrate	 the	 usefulness	 of	 taking	 into	 account	
uncertainty	aspects	 in	event-driven	applications,	we	demonstrate	 the	applicability	and	benefits	of	 the	
inclusion	of	uncertainty	aspects	by	comparing	two	identical	applications	for	each	of	the	use	cases,	one	
applying	uncertainty	and	the	other	without	taking	uncertainty	aspects	into	account.		

This	 report	 also	 describes	 our	 preliminary	 results	 for	 integration	 of	 the	 rules	 learnt	 by	 the	 machine	
learning	 component	 in	 WP3	 by	 a	 semantic	 translation	 of	 a	 sample	 rule	 set	 from	 event	 calculus	 to	
PROTON’s	semantic	language.		

This	 report	 is	 structured	 as	 follows:	 Section	 2	 provides	 some	 essential	 concepts	 and	 terms	 used	
throughout	this	report.	Section	3	describes	extensions	made	to	the	PROTON	CEP	tool	during	year	2	of	
the	 project.	 Sections	 4	 and	 5	 constitute	 the	 core	 part	 of	 this	 report	 and	 describe	 the	 developments	
concerning	 the	 credit	 card	 fraud	 and	 traffic	 management	 use	 cases	 respectively.	 We	 present	 new	
patterns	and	evaluation	 tests	 for	each	of	 the	use	 cases.	 In	Section	7	we	present	our	 initial	 findings	 in	
translating	event	calculus	semantics	(event	rules	learnt	by	the	machine	module	in	SPEEDD)	to	PROTON’s	
programming	model.	We	conclude	the	report	with	summary	and	future	steps.	

1.2 Relationship	with	other	documents	
At	the	heart	of	the	SPEEDD	prototype	resides	the	complex	event	processing	component,	therefore,	this	
report	 is	strongly	related	to	D6.3	“First	 Integrated	prototype”	and	D6.4	“Second	Integrated	Prototype”	
(under	preparation	to	be	submitted	by	the	end	of	the	second	year	of	the	project).	The	requirements	for	
the	CEP	engine	are	dictated	from	the	use	cases	in	the	project,	thus,	this	report	is	also	strongly	related	to	
system	 requirements	 for	 the	 Proactive	 Traffic	 Management	 use	 case	 described	 in	 D8.1	 and	 for	 the	
Proactive	Credit	 Card	 Fraud	Management	described	 in	D7.1.	With	 relation	 to	 the	 traffic	management	
use	case,	this	report	is	also	related	to	the	developments	in	the	micro	simulator,	and	therefore	related	to	

2	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

D8.2	and	D8.4,	First	(submitted	at	month	12)	and	Final	(to	be	submitted	at	month	24)	Version	of	Micro-
Simulator	respectively.	

The	 main	 goal	 of	 the	 CEP	 component	 is	 to	 derive	 forecasted	 events	 that	 feed	 the	 decision	 making	
component	 so	 actions	 can	be	 taken	before	 an	undesired	 event	 (such	 as	 a	 congestion	 situation	 in	 the	
high	way)	takes	place.	Therefore	our	work	is	also	related	to	D4.2	“Second	version	of	real-time	decision-
making	technology”.		

1.3 Updates	since	the	first	version	
This	second	revision	of	the	document	contains	two	main	additions	with	regards	to	its	first	version:	

First,	a	performance	analysis	of	throughput	and	latency	that	drove	a	further	investigation	on	possible	
bottlenecks	has	been	performed	and	described	in	Section	6.	Furthermore,	improvements	to	the	run-
time	engine	have	been	introduced	as	a	result	of	this	analysis.	

Second,	to	better	assess	the	quality	of	our	patterns,	especially,	the	inclusion	of	uncertainty	aspects	in	
the	application;	we	performed	a	recall	and	precision	analysis	on	the	traffic	use	case	(Section5.2.2.3).	

2 Preliminaries	
Each	 complex	 event	 processing	 engine	 uses	 its	 own	 terminology	 and	 semantics.	 We	 follow	 the	
semantics	presented	in	Etzion’s	and	Niblet’s	book	[1].	In	our	previous	deliverable	(D6.1	–	First	version	of	
event	recognition	and	forecasting	technology1)	we	covered	the	main	constructs	of	the	CEP	component	
in	both	 the	design	and	 run-time	and	described	 the	main	extensions	 incorporated	 to	PROTON	 to	 cope	
with	uncertainty.	For	 the	sake	of	clarity	of	 this	 report,	we	only	briefly	mention	below	again	 two	main	
concepts:	 Event	 processing	 Network	 (EPN)	 and	 pattern	 matching	 process.	 For	 further	 concepts	 and	
details	on	PROTON	refer	to2	

2.1 Event	Processing	Network	(EPN)	
An	 Event	 Processing	 Network	 (EPN)	 is	 a	 conceptual	 model,	 describing	 the	 event	 processing	 flow	
execution.	An	 EPN	 comprises	 a	 collection	of	 Event	 processing	Agents	 (EPAs),	 event	 producers,	 events	
and	consumers	(Figure	1).	The	network	describes	the	flow	of	events	originating	at	event	producers	and	
flowing	through	various	event	processing	agents	to	eventually	reach	event	consumers.	For	example,	in	
Figure	1,	 events	 from	Producer	 1	 are	processed	by	 EPA	1.	 Events	 derived	by	 EPA	1	 are	of	 interest	 to	
Consumer	1	but	are	also	processed	by	EPA	3	together	with	events	derived	from	EPA	2.		

																																																													
1	Available	at	http://speedd-project.eu/press_room	
2	https://github.com/ishkin/Proton/tree/master/documentation	

3	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	1:	Illustration	of	an	event	processing	network	

2.2 Pattern	matching	process	
An	EPA	performs	three	logical	steps,	a.k.a	pattern	matching	process	or	event	recognition	(see	Figure	2).	
Please	note	that	all	three	steps	are	optional	but	at	least	one	must	be	done	inside	an	EPA.	

• The	 filtering	 step,	 in	which	 relevant	 events	 from	 the	 input	 events	 are	 selected	 for	processing	
according	to	the	filter	conditions.	The	output	of	this	step	is	a	set	of	participant	events.	

• The	matching	step	that	takes	all	events	that	passed	the	filtering	and	looks	for	matches	between	
these	events,	using	an	event	processing	pattern	or	some	other	kind	of	matching	criterion.	The	
output	of	this	step	is	the	matching	set.		

• The	 derivation	 step	 that	 takes	 the	 output	 from	 the	matching	 step	 and	 uses	 it	 to	 derive	 the	
output	events	by	applying	derivation	formulae.		

	

Figure	2:	Event	recognition	process	in	an	EPA	

An	event	pattern	 is	a	template	specifying	one	or	more	combinations	of	events.	Given	any	collection	of	
events,	if	it’s	possible	to	find	one	or	more	subsets	of	those	events	that	match	a	particular	pattern,	it	can	
be	 said	 that	 such	 a	 subset	 satisfies	 the	 pattern.	 Some	 common	 examples	 of	 patterns	 applied	 in	 our	
scenarios:		

• Sequence,	 means	 that	 at	 least	 one	 instance	 of	 all	 participating	 event	 types	 must	 arrive	 in	 a	
specified	order	for	the	pattern	to	be	matched.	

• Count,	means	 that	 the	number	of	 instances	 in	 the	participant	event	set	 satisfies	 the	pattern’s	
number	assertion.	

Event	
Producer	1

Event	
Producer	2

Event	
Consumer	1

Event	
Consumer	2

EPA	1

EPA	3EPA	2

Event	Processing	Agent

Incoming/input	
events

Derived/output	
events

within	
context

filtering

matching

deriving

participant	events

matching	set

4	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

• All,	means	that	at	least	one	instance	of	all	participating	event	types	must	arrive	for	the	pattern	
to	be	matched;	the	arrival	order	in	this	case	is	immaterial.	

• Trend,	 events	 need	 to	 satisfy	 a	 specific	 change	 (increasing	 or	 decreasing)	 over	 time	 of	 some	
observed	value;	this	refers	to	the	value	of	a	specific	attribute	or	attributes.		

• Sum,	 means	 that	 the	 value	 of	 a	 specific	 attribute,	 summed	 up	 over	 all	 participant	 events,	
satisfies	the	sum	threshold	assertion.	

• Average	(AVG),	means	that	the	value	of	a	specific	attribute,	averaged	over	all	participant	events,	
satisfies	the	average	threshold	assertion.	

In	addition,	PROTON	also	supports	“extended	EPAs”.	The	idea	is	to	embed	a	certain	functionality	(e.g.,	
formula	or	model)	to	be	then	used	in	the	EPN.	An	example	of	such	extended	EPA	is	EPA0	in	the	traffic	
management	use	case	(see	Section	5.1).	

3 Extensions	made	to	PROTON		
During	the	second	year	of	the	project,	three	extensions	main	were	made	related	to	the	CEP	component:		

1. Possibility	of	deriving	attributes	of	the	matching	set	in	the	derived	event.	In	previous	versions	of	
PROTON	the	derived	event	didn’t	include	attributes	from	the	matching	set	events	in	its	payload.	
We	needed	this	capability	in	order	to:	

a. Access	 information	 of	 the	 transactions	 that	 caused	 a	 credit	 card	 fraud	 derived	 event	
(e.g.,	 transaction	 number,	 ATM,	 and	 location)	 in	 the	 credit	 card	 fraud	 use	 case.	 This	
information	is	used	by	fraud	operators	in	their	analysis	of	the	results.		

b. Access	 information	 of	 the	 sensor	 readings	 (e.g.,	 density	 and	 speed)	 that	 caused	 the	
predicted	 congestion	 derived	 event	 in	 the	 traffic	 management	 use	 case.	 This	
information	is	used	by	the	traffic	operator	while	making	an	operational	decision	in	the	
control	room	at	Grenoble.	

2. Adding	 “gradient”	 to	 the	 TREND	 operator.	 In	 certain	 situations,	 such	 as	 when	 predicted	 a	
congestion,	 it	 is	 not	 enough	 to	 look	 for	 a	 decreasing	 or	 increasing	 pattern,	 but	 also	 for	 the	
gradient	formed	by	consecutive	events	in	the	TREND	pattern.	In	our	example,	a	higher	gradient	
can	indicate	a	faster	build-up	of	congestion.	i.e.,	a	higher	probability	of	congestion.	

3. PETITE	(Proton	EvenT	Injection	&	Time	compression)	utility:	One	of	the	challenges	in	SPEEDD	is	
to	 demonstrate	 the	 capability	 of	 processing	 and	 running	 vast	 amounts	 of	 input	 events.	
Therefore,	 we	 needed	 a	mechanism	 that	 can	 take	 the	 input	 events	 and	 inject	 them	 into	 the	
engine	at	very	high	rates	(much	higher	than	in	reality	imposed	by	their	timestamps)	and	process	
them	very	fast	without	altering	the	logic	of	the	application.	The	PETITE	(Proton	EvenT	Injection	
&	Time	compression)	script,	is	an	external	utility	to	PROTON	that	given	an	ordered	input	file	and	
a	total	elapsed	time	for	processing	all	the	events	in	the	input	file		(a	compression	“ratio”)	it:		

a. Checks	for	feasibility	of	the	requested	ratio.	This	means	that	events	are	injected	in	a	way	
that	can	be	processed	by	 the	engine	without	being	out	of	order,	 contexts	are	not	 too	
small,	 and	 there	 is	 a	minimal	 interval	 between	 input	 events.	 For	 example,	 having	 an	

5	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

input	file	that	starts	with	the	first	input	event	occurrence	time	at	Dec.1	2014	and	ends	
with	 the	 last	 input	 event	 occurrence	 time	 at	 Dec.	 7	 2014,	 we	 target	 to	 run	 all	 these	
events	in	only	one	hour	then	our	ratio	is	168	(we	need	to	“compress”	or	reduce	all	times	
by	168,	as	we	are	moving	from	one	week	or	168	hours	to	one	hour).	

b. Alters	the	temporal	contexts	 in	the	JSON	definition	file	for	PROTON	in	such	a	way	that	
the	ratio	is	met	and	the	application	logic	is	maintained.	

c. Alters	 the	 time	 intervals	 between	 input	 events	 so	 that	 they	 are	 compressed	 to	 the	
required	 injection	 rate.	 The	 original	 date	 and	 time	 remains	 intact	 for	 the	 purposes	 of	
date	comparisons	and	manipulation,	however,	an	additional	column	of	timestamps	are	
added	 to	 the	 input	 file,	 so	 that	 they	 can	be	used	as	 "OccurenceTime"	attribute	 in	 the	
Timed	File	Input	adapter	of	PROTON	for	injection	of	events	based	on	those	intervals.	

The	first	two	extensions	are	related	to	the	CEP	run-time	engine	and	UI	and	are	reflected	in	the	updated	
EPNs	 of	 the	 use	 cases,	 whilst	 the	 third	 one	 is	 related	 to	 a	 utility	 that	 can	 be	 applied	 once	 the	 JSON	
(JavaScript	Object	Notation)	of	the	application	is	created	for	testing	purposes	before	the	application	 is	
deployed.	The	details	of	the	extensions	to	the	engine	can	be	found	under	the	documentation	folder	in	
PROTON’s	open	source	repository3	 .	The	PETITE	utility	along	with	a	README	file	are	also	stored	 in	the	
open	source	repository	of	PROTON	at3.	

4 Event	processing	application	for	the	
credit	card	fraud	detection	use	case	

In	this	section	we	describe	the	work	carried	out	in	the	fraud	detection	use	case	including	the	design	of	
the	event	processing	network,	the	implementation	of	the	application,	and	its	evaluation	using	real-data.	

4.1 Design	of	second	EPN	for	the	credit	card	fraud	detection	use	case	
As	in	the	previous	deliverable	in	the	fraud	use	case,	we	distinguish	between	two	types	of	transactions:	
CP	(Card	Present)	and	CNP	(Card	Not	Present).	Most	of	 the	event	patterns	are	common	to	both	cases	
(see	 below).	What	 differs	 is	 the	 temporal	 time	windows	 length	 (CNP	 is	much	 faster	 so	 the	 temporal	
windows	are	shorter).		

A	second	version	of	the	EPN	for	the	fraud	detection	use	case	that	 includes	 improvements	and	insights	
gained	during	year	one	was	devised	during	the	second	year	of	the	project.	The	resulting	EPN	consists	of	
18	EPAs.	For	the	sake	of	clarity,	we	treat	the	CP	and	CNP	case	as	two	separate	EPNs	(CP-EPN	and	CNP-
EPN)	as	shown	in	Figure	3	and	Figure	4	respectively	and	detailed	in	the	following	sections.	For	the	sake	
of	 simplicity	we	only	show	the	EPAs	and	the	events	 flow	 in	 the	network	 in	 the	Figures.	Yellow	dotted	
lines	 represent	 events,	 other	 than	 input	 events,	 that	 are	 initiators	 of	 a	 context.	 	 The	 PROTON	 JSON	
definitions	 file	 that	 comprises	 the	 application	 is	 provided	 as	 part	 of	 the	 software	 deliverable	 that	
accompanies	this	report.		
																																																													
3	https://github.com/ishkin/Proton/	

6	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Note	 EPAs	 numbered	 8,	 10-12.	 These	 are	 combination	 of	 patterns,	 that	 is,	 a	 derived	 event	 of	 one	
pattern	 is	 the	temporal	context	 initiator	of	another	EPA.	 In	other	words,	 two	patterns	occur	one	after	
the	other,	and	derive	a	new	event	with	higher	probability	of	fraud	than	the	original	derived	event	(of	the	
single	EPA).	The	assumption	 is	 that	when	 two	patterns	occur	one	after	 the	other,	 the	probability	of	a	
fraud	 is	 higher	 than	 in	 the	 separate	 EPAs.	 The	 sequencing	 between	 patterns	 is	 done	 by	 causing	 one	
derived	event	to	open	the	temporal	context	of	another	EPA.	The	new	derived	event	(of	the	latter	new	
EPA),	has	the	same	probability	of	the	original	EPA	+	0.1	or	1	depending	on	the	pattern.	In	other	words,	
the	 new	 EPA	 looks	 the	 same	 as	 the	 original	 EPA	 except	 for	 two	 differences:	 the	 probability	 of	 the	
derived	 event	 is	 higher,	 and	 the	 context	 initiator	 is	 the	 derived	 event	 of	 the	 first	 EPA.	Other	 policies	
remain	the	same.	The	addition	of	0.1	was	selected	to	reflect	a	 larger	certainty	value	of	a	fraud	as	two	
patterns	need	 to	occur	 in	a	 row	compared	 to	each	pattern	 separately.	However,	other	 “small	 values”	
can	be	selected	and	tested	as	well.		

In	the	CP-EPN,	situations	marked	as	potential	(uncertain)	frauds	are	fired	in	the	following	cases	Figure	3:		

• Consecutive	 withdrawals	 of	 increasing	 or	 decreasing	 amounts	 for	 a	 single	 card	 (EPA1,	
IncreasingAmounts	and	EPA2,	DecreasingAmounts).	

• A	high	number	of	transactions	in	a	short	time	window	for	a	single	card	(EPA3,	FlashAttack).	
• Many	large	withdrawals	from	a	single	ATM	(EPA4,	MultipleMaxATMWithdrawals).		
• Sudden	card	use	near	the	expiration	date	(EPA5,	SuddenCardUseNearTheExpirationDate).	
• Consecutive	 attempts	 to	 use	 the	 same	 card	 in	 different	 physical	 locations	 (EPA6,	

TransactionsInFarAwayPlaces).		
• Small	 amount	 followed	 by	 big	 purchase	 for	 a	 single	 card	 (EPA7,	

SmallAmountFollowedByBigPurchase).		
• A	 FlashAttack	 occurs	 after	 having	 the	 sequence	 of	 a	 big	 purchase	 after	 a	 small	 one.	 (EPA8,	

FlashAttackAfterSmallFollowedByBigAmounts)	

7	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	3:	Credit	card	fraud	detection	use	case	CP-EPN	

In	the	CNP-EPN,	in	addition	to	the	situations	marked	as	potential	(uncertain)	frauds	in	the	CP	case,	the	
following	situations	are	fired	(EPA9-EPA12	in	Figure	4):	

• Several	 attempts	 of	 using	 a	wrong	 CVV	 (Card	Verification	Value)	 for	 the	 same	 card	 are	made	
(EPA9,	CVVatack).	

• Increasing	amounts	of	withdrawals/payments	are	carried	out	after	several	attempts	of	using	a	
wrong	CVV	(EPA10,	IncreasingAmountsAfterCVVAttack).	

• A	 high	 number	 of	 transactions	 for	 a	 single	 card	 after	 several	 attempts	 of	 using	 a	wrong	 CVV	
(EPA11,	FlashAttackAfterCVVAttack)	

• Sudden	card	use	near	the	expiration	date	after	several	attempts	of	using	a	wrong	CVV	(EPA12,	
SuddenCardUseNearExpirationDateAfterCVVAttack)	

• Multiple	occurrences	of	a	suspicious	fraudulent	card	happen	at	the	same	ATM	(EPA3	and	EPA4)	
• There	 are	 two	 consecutive	 attempts	 of	 using	 the	 same	 card	 in	 different	 locations	 (EPA7	 or	

ClonedCard).	

Note	 that	 EPA4	 (MultipleMaxATMWithdrawals)	 and	 EPA6	 (TransactionsInFarAwayPlaces)	 are	 only	
applicable	to	the	CP	case	and	therefore	greyed	out	in	Figure	4.	

Tr
an

sa
ct
io
n

EPA1
IncreasingAmounts

Si
tu
at
io
ns

DecreasingAmounts
EPA2

EPA6

EPA5

EPA4

EPA7

EPA3
FlashAttack

SmallFollowedByBigAmounts

MultipleATMWithdrawals

SuddenUseNearExpirationDate

TransactionsinFarAwayPlaces

EPA8
FlashAttackAfterSmallFollowedByBigAmounts

8	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

	

Figure	4:	Credit	card	fraud	detection	use	case	CNP-EPN	

4.1.1 Event	types	
Thirteen	event	types	have	been	defined	that	comprise	the	event	inputs,	outputs/derived,	and	situations	
as	 shown	 in	Table	1.	For	 the	sake	of	 simplicity	we	only	 show	the	user-defined	attributes	or	 the	event	
payload	and	not	the	metadata.	

Although	the	names	of	concepts	can	be	determined	freely	by	the	application	designer	 in	PROTON,	we	
use	some	naming	conventions	for	the	sake	of	clarity.	We	denote	event	types	with	capital	letters.	Built-
in/metadata	attributes	start	with	a	capital	letter,	as	well	as	payload	attributes	that	hold	operators	values,	
while	payload	attributes	start	with	a	lower	letter.	Table	1	shows	the	event	definitions	for	the	fraud	EPN,	
where:	

Tr
an

sa
ct
io
n

EPA1
IncreasingAmounts

Si
tu
at
io
ns

DecreasingAmounts
EPA2

EPA6

EPA5

EPA4

EPA7

EPA3
FlashAttack

SmallFollowedByBigAmounts

MultipleATMWithdrawals

SuddenUseNearExpirationDate

TransactionsinFarAwayPlaces

EPA8
FlashAttackAfterSmallFollowedByBigAmounts

EPA9
CVVAttack

IncreasingAmountsAfterCVVAttack
EPA10

EPA12

EPA11
FlashAttackAfterCVVAttack

SuddenCardUseNearExpirationDateAfterCVVAttack

9	
		

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

card_pan	(type:	String)	-	The	number	that	identifies	the	card.	The	card	BIN,	which	corresponds	to	the	
first	six	digits	of	the	PAN,	can	give	information	such	as	the	issuer	of	the	card.	

terminal_id	(Type:	Long)	-	The	internal	identification	of	the	terminal.	

cvv_validation	(Type:	Int)	-	Variable	indicating	whether	the	CVV	(Card	Verification	Value)	was	used	or	
not.	In	the	positive	case,	it	indicates	whether	it	was	valid	or	not.	This	three	digit	number	printed	on	the	
signature	panel	on	the	back	of	the	card	helps	to	verify	authorized	possession	of	a	credit	card.	For	testing	
purposes	we	use	validation_code	==	16	as	we	don’t	have	the	real	code	number	from	the	real	data.	

amount_eur	(Type:	Double)	-	The	amount	in	euros	of	the	transaction.	

acquirer_country		(type:	Int)	-		The	country	of	the	acquiring	bank.	

is_cnp	(Type:	Bit)	-	Flag	that	states	whether	the	transaction	happened	in	the	CP	or	CNP	context.	

card_exp_date	(type:	Date	(YYYYMM))	-	The	expiration	date	of	the	card.	

Note	 that	 the	 Transaction	 raw	 event	 includes	 more	 fields	 or	 attributes.	 We	 defined	 only	 the	 ones	
required	 for	 pattern	 detection	 in	 the	 current	 EPN	 implementation.	 When	 running	 in	 SPEEDD	
architecture,	PROTON	ignores	event	attributes	not	specified	 in	 its	 JSON.	Also	note	that	[matching_set]	
indicates	the	set	(array)	of	events	that	constitute	the	matching	set	of	the	specific	pattern.	For	example,	
[matching_set]	in	IncreasingAmounts	indicates	the	events	that	satisfy	the	TREN	pattern.	

Table	1:	Event	types	for	the	credit	card	fraud	detection	use	case	

Event	name	 Transaction	
Payload	 card_pan;	 terminal_id;	 cvv_validation;	 amount_eur;	 acquirer_country;	 is	 cnp;	

card_exp_date	
Event	name	 IncreasingAmounts	
Payload	 card_pan;	TrendCount;	is_cnp;	[matching_set]	
Event	name	 DecreasingAmounts	
Payload	 card_pan;	TrendCount;	is_cnp;	[matching_set]	
Event	name	 CVVAttack	
Payload	 card_pan;	TransactionsCount;	is_cnp;	[matching_set]	
Event	name	 FlashAttack	
Payload	 card_pan;	TransactionsCount;	is_cnp;	[matching_set]	
Event	name	 SmallFollowedByBigAmounts	
Payload	 card_pan;	is_cnp;	[matching_set]	
Event	name	 MultipleATMWithdrawals	
Payload	 terminal_id;	TransactionsCount;	[matching_set]	
Event	name	 SuddenUseNearExpirationDate	
Payload	 card_pan;	TransactionsCount;	is_cnp;	card_exp_date;	[matching_set]	
Event	name	 TransactionsinFarAwayPlaces	
Payload	 card_pan;	[matching_set]	
Event	name	 FlashAttackAfterSmallFollowedByBigAmounts	

10	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Payload	 card_pan;	TransactionsCount;	is_cnp;	[matching_set]	
Event	name	 IncreasingAmountsAfterCVVAttack	
Payload	 card_pan;	TrendCount;	is_cnp;	[matching_set]	
Event	name	 FlashAttackAfterCVVAttack	
Payload	 card_pan;	TransactionsCount;	is_cnp;	[matching_set]	
Event	name	 SuddenCardUseNearExpirationDateAfterCVVAttack	
Payload	 card_pan;	TransactionsCount;	is_cnp;	card_exp_date;	[matching_set]	

4.1.2 Event	processing	agents		
Henceforth,	we	 describe	 the	 EPAs	 in	 the	 following	 order:	 Event	 name;	motivation;	 event	 recognition	
process	(following	Figure	2);	contexts	along	with	temporal	context	policy;	and	pattern	policies.	

In	the	event	recognition	process	we	only	show	the	steps	that	take	place	 in	the	specific	EPA,	while	the	
others	 are	 greyed.	 For	 the	 filtering	 step	 we	 show	 the	 filtering	 expression;	 for	 the	matching	 step	 we	
denote	 the	 pattern	 variables;	 and	 for	 the	 derivation	 step	 we	 denote	 the	 values	 assignment	 and	
calculations.	Please	note	that	for	the	sake	of	simplicity	we	only	show	the	assignments	that	are	not	copy	
of	values	(all	other	derived	event	attributes	values	are	copied	from	the	input	events).	For	attributes,	we	
just	denote	their	names	without	the	prefix	of	‘attribute_name.’	

As	 during	 the	 first	 year,	 we	 apply	 the	 Sigmoid	 or	 Logistic	 probabilistic	 function	 in	 our	 pattern	
derivations.	.	A	Sigmoid	function4	receives	three	inputs	(a,b,x)	and	returns		

1
1 + #$(&'())	

The	x	 is	 the	pattern	parameter	value	 such	as	count	 for	 the	COUNT	pattern.	The	values	 for	a	 and	b	 in	
each	pattern	were	calculated	based	on	the	targeted	probability.	For	example,	assuming	that	we	would	
like	to	derive	a	probability	of	0.6	for	x=4	and	0.7	for	x=5,	what	are	then	the	values	for	a	and	b?	As	in	the	
patterns,	the	targeted	probabilities	were	given	to	us	by	the	domain	expert	from	Feedzai.	The	selected	
values	shown	 in	 the	EPAs	 for	 the	pattern	aggregators	and	the	coefficients	 in	 the	Sigmoid	 function	are	
given	in	Table	2.	

4.1.3 CP-EPAs	

4.1.3.1 EPA1:	IncreasingAmounts	
Motivation:	EPA1	is	a	pattern	that	can	be	used	to	test	the	system	detection	limits.	It	checks	for	at	least	
four	consecutive	valid	transactions	(i.e.,	trendN	>	3)	with	increasing	amounts.		

	

	

	

																																																													
4	See	for	example:	http://www.stat.ubc.ca/~rollin/teach/643w04/lec/node46.html	

11	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Event	recognition	process:	

	

Figure	5:	Event	recognition	process	for	IncreasingAmounts	EPA	

trendNumber	 and	 trend.count	 are	 built-in	 TREND	 variables	 that	 denote	 the	minimal	 number	 of	 input	
events	required	in	order	to	satisfy	the	pattern	and	the	actual	number	correspondingly.	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan	

Initiator	policy:	IGNORE	

Meaning:	A	temporal	window	of	15	minutes	opens	with	the	arrival	of	a	first	Transaction	event.	 In	this	
elapsed	time	we	check	for	a	Trend	pattern	over	the	amounts	in	the	transactions	per	card.	According	to	
the	policies	selected,	we	will	derive	a	new	event	every	 time	the	 (increasing)	Trend	pattern	 is	 satisfied	
(having	higher	probabilities	 values	 in	 the	Certainty	 attribute).	 In	 the	derived	event	we	also	 report	 the	
actual	number	of	transactions	that	satisfy	the	Trend	pattern	(by	the	built-in	trendCount	attribute).	

	

Figure	6:	Context	for	DecreasingAmounts	EPA	

is_cnp ==	0	AND	cvv_validation =	=16

(amount_eur,
trendN>3)

Event	Processing	Agent

Transaction

within	
context

filtering

(increasing)	
TREND

deriving Certainty:Sigmoid(0.693,	2.367,
trend.count)

TrendCount:trendCount

IncreasingAmounts

+	15	min

Transaction

IncreasingAmounts

IncreasingAmounts

12	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

4.1.3.2 EPA2:	DecreasingAmounts	
Motivation:	This	pattern	is	similar	to	EPA1,	as	it	aims	to	test	system	detection	limits.	EPA2	checks	for	at	
least	four	consecutive	valid	transactions;	that	is,	correct	CVV,	with	decreasing	amounts	that	passed	the	
card	limit.	The	idea	is	that	by	passing	the	card	limit,	the	fraudster	is	obliged	to	decrease	the	amount	of	
money	in	the	following	transaction.	The	derived	event	is	DecreasingAmounts.	The	contexts	and	policies	
are	 the	 same	 as	 in	 EPA1.	 For	 the	 current	 implementation	we	 apply	 a	 standard	 average	 card	 limit	 in	
Europe	(400	euros).	

Event	recognition	process:	

	

Figure	7:	Event	recognition	process	for	DecreasingAmounts	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan		

Initiator	policy:	IGNORE	

Meaning:	A	temporal	window	of	15	minutes	opens	with	the	arrival	of	a	first	Transaction	event.	 In	this	
elapsed	time	we	check	for	a	Trend	pattern	over	the	amounts	in	the	transactions	per	card.	According	to	
the	policies	selected,	we	will	derive	a	new	event	every	time	the	(decraesing)	Trend	pattern	 is	satisfied	
(having	higher	probabilities	 values	 in	 the	Certainty	 attribute).	 In	 the	derived	event	we	also	 report	 the	
actual	number	of	transactions	that	satisfy	the	Trend	pattern	(by	the	built-in	trendCount	attribute).	

(amount_eur,
trendN>3)

Event	Processing	Agent

Transaction

within	
context

filtering

(decreasing)	
TREND

deriving

DecreasingAmounts

is_cnp ==	0	AND	CVV_validation ==	16	AND	
amount_eur >	card_limit

Certainty:Sigmoid(0.693,	2.367,
trend.count)

TrendCount:trendCount

13	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	8:	Context	for	DecreasingAmounts	EPA	

4.1.3.3 EPA3:	FlashAttack	
Motivation:	In	EPA3	we	look	for	a	high	number	of	transactions	in	a	short	period	of	time.		

Event	recognition	process:	

	

Figure	9:	Event	recognition	process	for	FlashAttack	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan		

Initiator	policy:	IGNORE	

Meaning:	A	 temporal	window	of	 7	min	 is	 opened	with	 the	 arrival	 of	 a	 first	Transaction	 event.	 In	 this	
elapsed	time	we	COUNT	the	transactions	per	a	single	card.	If	the	number	of	events	is	higher	than	3,	then	
we	derive	a	single	event	at	the	end	of	the	window	with	the	number	of	events	(count)	at	the	moment	of	
derivation	

+	15	min

Transaction

DecreasingAmounts

DecreasingAmounts

countN>2

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

Transaction FlashAttack

is_cnp ==	0	AND	CVV_validation ==	16	

Certainty:Sigmoid(0.558,	1.054,
count)

TransactionsCount:count

14	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	10:	Context	for	FlashAttack	EPA	

4.1.3.4 EPA4:	MultipleMaxATMWithdrawals	
Motivation:	Given	that	ATMs	have	an	upper	limit	for	withdrawals,	in	this	kind	of	attack,	fraudsters	are	
simply	 trying	 to	 take	 as	much	money	 as	 they	 can	 in	 the	 fewest	 possible	 transactions.	 A	 typical	 large	
value	 in	an	ATM	in	Europe	 is	200	euros.	We	 look	for	at	 least	 three	 large	withdrawals	 in	a	single	ATM.	
This	EPA	holds	only	for	the	CP	case.	

Event	recognition	process:	

	

Figure	11:	Event	recognition	process	for	MultipleMaxATMWithdrawals	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	terminal_id	

Initiator	policy:	IGNORE	

Meaning:	We	derive	a	new	event	whenever	the	count	pattern	is	satisfied	within	a	ten	minute	window.	

+	7	min

Transaction

FlashAttack

is_cnp ==	0	AND	CVV_validation ==	16	 AND	
0.9*large	<	amount_eur <	large

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

countN>2

MultipleATMWithdrawalsTransaction

Certainty:Sigmoid(1.35,	3.202,
count)

TransactionsCount:count

15	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	12:	Context	for	MultipleATMWithdrawals	EPA	

4.1.3.5 EPA5:	SuddenCardUseNearEexpirationDate	
Motivation:	 Fraudsters	may	obtain	credit	 card	credentials,	and	 then	sell	 them	to	other	people.	When	
the	expiration	date	approaches,	and	they	cannot	sell	those	cards,	they	will	try	to	make	as	much	profit	as	
they	can	from	those	cards	before	they	lose	control	over	them.	We	look	for	frequent	transactions	within	
a	 relatively	 short	period	of	 time	 (20	min)	 for	 a	 single	 card	on	 the	day	of,	 or	 the	day	before,	 the	 card	
expiration	date.	

Event	recognition	process:	

	

Figure	13:	Event	recognition	process	for	SuddenCardUseNearEexpirationDate	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan	

Initiator	policy:	IGNORE	

Meaning:	A	temporal	window	of	20	min	is	opened	with	the	arrival	of	a	first	Transaction	event	per	card.	
During	the	time	window,	we	 look	 for	 transactions	at	 the	day	or	one	day	earlier	 to	the	card	expiration	
date.	

+	10	min

Transaction

MultipleATMWithdrawalsMultipleATMWithdrawals

is_cnp ==	0	AND	CVV_validation ==	16	 AND	(today	-1	==	
card_exp_date OR	today	==	card_exp_date)

countN>2

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

Transaction SuddenUseNearExpirationDate

Certainty:Sigmoid(0.693,	1.674,
count)

TransactionsCount:count

16	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	14:	Context	for	SuddenCardUseNearEexpirationDate	EPA	

4.1.3.6 EPA6:	TransactionsInFarAwayPlaces					
Motivation:	 Due	 to	 speed	 limitations	 in	 traveling,	 it	 is	 impossible	 for	 the	 same	 card	 to	 be	 used	 in	
faraway	 places.	 This	 means	 that	 the	 card	 has	 been	 cloned.	 In	 this	 pattern,	 we	 check	 that	 two	
consecutive	transactions	for	a	specific	card	cannot	be	at	different	physical	places	within	a	short	period	
of	time.	Note	that	we	do	not	check	for	CVV	validity,	as	we	are	only	interested	in	checking	for	use	of	the	
same	card	in	different	places.	In	addition,	the	derived	event	has	a	certainty	of	1	(in	this	case	the	fraud	
indication	is	100%)	and	therefore	the	Certainty	attribute	is	not	shown	in	the	deriving	step	(the	default	is	
“1”).	T1	and	T2	are	aliases	of	the	event	type	Transaction.	This	EPA	holds	only	for	the	CP	case.	

Event	recognition	process:	

	

Figure	15:	Event	recognition	process	for	TransactionsInFarAwayPlaces			EPA	

Note	that	 the	SequenceFraud	derived	event	has	a	certainty	of	1	 (in	 this	case	the	 fraud	 indication	 is	of	
100%)	and	therefore	the	Certainty	attribute	is	not	shown	in	the	derivation	step	(the	default	is	“1”).	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 T1=FIRST;	

T2=OVERRIDE	
CONSUME	

	

+	20	min

Transaction

SuddenUseNearExpirationDate

Event	Processing	Agent

within	
context

filtering

SEQUENCE

deriving

Transaction	
(T1,	T2)

T1.acquirer_country	 !=	T2.acquirer.country

Transactionsin
FarAwayPlaces

T1.is_cnp	==	0;	T2.is_cnp==0

17	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Context:	

Segmentation:	by	card_pan	

Initiator	policy:	IGNORE	

Meaning:	 In	a	15	minute	temporal	window	we	detect	and	 immediately	alert	every	attempt	to	use	the	
same	card	for	any	two	consecutive	transactions	in	faraway	places.	

	

Figure	16:	TransactionsInFarAwayPlaces	EPA	

4.1.3.7 EPA7:	SmallAmountFollowedByBigAmount					
Motivation:	This	pattern	tests	for	system	thresholds.	Sometimes	the	fraudsters	test	a	small	amount,	and	
once	the	transaction	succeeds,	they	attempt	a	big	purchase.	We	look	for	a	sequence	pattern	where	the	
first	transaction	is	related	to	a	very	small	amount	(cents)	and	the	second	one	in	the	sequence	is	related	
to	 a	 big	 amount	 (>200).	 Note	 that	 T1	 and	 T2	 are	 aliases	 of	 the	 event	 type	 Transaction.	 The	
SmallAmountFollowedByBigAmount	derived	event	has	a	0.8	probability	of	being	a	fraudulent	transaction	
to	reflect	the	fact	that	once	it	is	detected	it	is	almost		certain	that	the	transaction	is	fraudulent.	

Event	recognition	process:	

	

Figure	17:	Event	recognition	process	for	SmallAmountFollowedByBigAmount			EPA	

	

	

+	15	min

Transaction

SequenceFraud

is_cnp ==	0	AND	CVV_validation ==	16

Event	Processing	Agent

within	
context

filtering

deriving Certainty:	0.8

SmallFollowedByBig
AmountsSEQUENCE

T1.amount_eur	 <	1	;	T2.amount_eur	 >	200	

Transaction	
(T1,	T2)

18	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 SINGLE	 T1=FIRST;	

T2=OVERRIDE	
CONSUME	

Context:	

Segmentation:	by	card_pan	

Initiator	policy:	IGNORE	

Meaning:	A	short	temporal	window	of	7	min	opens	with	the	arrival	of	a	 first	Transaction	event	with	a	
small	amount	per	card.	The	pattern	detects	a	small	purchase,	and	if	the	consecutive	transaction	is	a	big	
purchase	it	immediately	emits	the	situation.	

	

Figure	18:	SmallAmountFollowedByBigAmount	EPA	

4.1.3.8 EPA8:	FlashAttackAfterSmallFollowedByBigAmounts	
Motivation:	The	FlashAttackAfterSmallFollowedByBigAmounts	situation	with	uncertainty	of	0.9	(0.8+0.1)	
is	derived	when	there	is	a	Flash	attack	after	having	the	sequence	of	a	big	purchase	after	a	small	one.	The	
context	is	opened	with	the	SmallFollowedByBigAmounts	derived	event.		

Event	recognition	process:	

	

Figure	19:	Event	recognition	process	for	FlashAttackAfterSmallFollowedByBigAmounts	EPA	

+7min

Transaction.amount <	1

SmallFollowedByBig Amounts

countN>	2

is_cnp ==	0	AND	CVV_validation ==	16

Event	Processing	Agent

Transaction

within	
context

filtering

deriving TransactionsCount:count
Certainty:	0.9

COUNT
FlashAttackAfter

SmallFollowedByBig
Amounts

19	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan		

Initiator	policy:	IGNORE	

Meaning:	A	 temporal	window	of	 7	min	 is	 opened	with	 the	 arrival	 of	 the	SmallFollowedByBigAmounts	
event	event.	In	this	elapsed	time	we	COUNT	the	transactions	per	a	single	card.	If	the	number	of	events	is	
higher	than	2,	then	we	derive	a	single	event	at	the	end	of	the	window	with	the	number	of	events	(count)	
at	the	moment	of	derivation.	

	

Figure	20:	Context	for	FlashAttackAfterSmallFollowedByBigAmounts	EPA	

4.1.4 CNP-EPAs	
The	CNP-EPN	includes	the	counterpart	EPAs	for	1-3,	5,	and	7-8	where:	

• The	temporal	windows	are	shorter	(only	a	couple	of	minutes),	as	on-line	transactions	are	much	
faster	

• Filter	condition	is_cnp	==1	(instead	of	is_cnp	==0).	

In	addition,	it	includes	EPA9	and	combined	EPAs	10-12	as	detailed	below.	

4.1.4.1 EPA9:	CVVAttack	
Motivation:	 The	 fraudsters	may	only	have	access	 to	partial	 information	about	 the	 card.	 Therefore,	 to	
obtain	the	rest	of	the	information,	such	as	CVV,	they	can	do	a	scan	over	possible	CVV	values.	In	this	EPA,	
we	look	for	cases	in	which	at	least	four	attempts	with	incorrect	CVV	are	made	in	a	very	short	period	of	
time	(two	minutes).	

	

	

	

SmallFollowedByBig Amounts +	7	min

Transaction

FlashAttackAfter
SmallFollowedByBig Amounts

20	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Event	recognition	process:	

	

Figure	21:	Event	recognition	process	for	CVVAttack	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	card_pan	

Initiator	policy:	IGNORE	

Meaning:	A	short	temporal	window	of	2	min	is	opened	with	the	arrival	of	a	first	Transaction	event	per	
card.	At	 the	 end	of	 the	window	 the	COUNT	evaluation	 is	made	 and	 a	 derived	 event	 is	 emitted	 if	 the	
pattern	is	satisfied.	

	

Figure	22:	Context	for	CVVAttack	EPA	

4.1.4.2 EPA10-EPA12:	Combined	Patterns	
As	 already	 mentioned,	 the	 assumption	 is	 that	 when	 two	 patterns	 occur	 one	 after	 the	 other,	 the	
probability	of	a	fraud	is	higher	than	in	the	separate	EPAs.	The	sequencing	between	patterns	is	done	by	
causing	one	derived	event	to	open	the	temporal	context	of	another	EPA.	The	new	derived	event	(of	the	

countN>3

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

is_cnp ==	1	AND	cvv_validation !=	16

Transaction

Certainty:	Sigmoid(a,b,count)
TransactionsCount:count

CVVAttack

+	2	min

Transaction

CVVAttack

cvv_validation !=	16

21	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

latter	new	EPA),	has	the	same	probability	of	the	original	EPA	+	0.1.	 In	other	words,	the	new	EPA	looks	
the	same	as	the	original	EPA	except	for	two	differences:	the	probability	of	the	derived	event	is	higher	by	
0.1,	and	 the	context	 initiator	 is	 the	derived	event	of	 the	 first	EPA.	Other	policies	 remain	 the	 same.	 In	
EPAs	 10-12,	 we	 assume	 that	 after	 several	 “unsuccessful”	 attempts	 with	 wrong	 CVV,	 a	 “successful”	
attempt	is	made	(CVV	is	correct)	so	the	second	pattern	can	be	detected.		

In	 EPA10,	 the	 IncreasingAmountsAfterCVVAttack	 situation	 is	 derived	 when	 an	 Increasing	 Amount	
pattern	occurs	after	 several	attempts	with	 the	wrong	CVV.	The	context	 is	opened	with	 the	CVVAttack	
derived	event.	

In	EPA11,	 the	FlashAttackAfterCVVAttack	situation	 is	derived	when	a	Flash	Attack	occurs	after	 several	
attempts	with	the	wrong	CVV.	The	context	is	opened	with	the	CVVAttack	derived	event.	

In	 EPA12,	 the	 SuddenCardUseNearExpirationDateAfterCVVAttack	 situation	 is	 derived	 when	 a	 Sudden	
Card	Use	Near	Expiration	Date	pattern	occurs	after	several	attempts	with	the	wrong	CVV.	The	context	is	
opened	with	the	CVVAttack	derived	event.	

4.2 Implementation	and	evaluation	of	second	EPN	for	the	fraud	detection	use	
case	

The	main	goal	of	the	CEP	component	with	regards	to	the	credit	card	fraud	detection	use	case	is	to	assess	
whether	 the	 event	 patterns	 can	 indeed	 detect	 fraudulent	 situations.	 Eventually,	 we	 are	 looking	 to	
answer	two	fundamental	questions:		

• Can	we	detect	fraudulent	situations	based	on	the	implemented	event	patterns?	
• Moreover,	can	we	get	better	results	when	including	uncertainty	aspects?	

The	main	challenge	with	respect	to	the	implementation	and	evaluation	of	the	event-driven	application	
for	 the	 fraud	 use	 case	 is	 the	 use	 of	 real	 data	 due	 to	 privacy	 issues.	 We	 first	 tested	 our	 EPN	 with	
anonymized	data	provided	by	Feedzai.	However,	we	realized	that	due	to	the	heavy	anonymization	that	
the	data	went	through	the	data	didn’t	preserve	the	business	logic	coherence	and	therefore	we	cannot	
rely	on	the	recall	and	precision	of	our	findings.	The	only	way	to	overcome	this	limitation	and	address	the	
first	question	was	to	run	the	application	using	real-data	at	Feedzai’s	premises.		

The	way	to	address	the	second	question	is	to	have	two	applications	or	EPNs,	once	including	uncertainty	
aspects	and	the	other	one	without	uncertainty,	 i.e.	deterministic,	and	compare	between	the	results	of	
these	two	EPNs.	This	is	a	common	approach	in	CEP	engines	dealing	with	uncertainty	(see	for	example	in	
[5]).		

4.2.1 Implemented	EPN	
As	explained	above	we	needed	to	test	our	application	by	Feedzai’s	people	at	their	premises	twice:	once	
including	uncertainty	(the	“uncertain	case”)	and	once	without	the	inclusion	of	uncertainty	aspects	(the	
“certain	case”)	as	detailed	below.	

22	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

As	this	process	included	several	iterations	over	learning	how	to	deploy	PROTON	and	run	it	differently	in	
each	case,	without	the	loss	of	generality,	we	decided	to	focus	first	only	on	the	CP	case.	

Two	“installation	packages”	of	PROTON	(stand-alone	version)	were	provided	to	our	partner	in	Feedzai:	

• The	“uncertain	case”	or	package	-	The	EPN	as	depicted	in	Figure	3,	that	is,	the	JSON	definition.	
• The	“certain	EPN”	or	package	-	The	same	EPN	but	without	the	inclusion	of	uncertainty	aspects,	

that	 is,	 all	 derived	 events	 have	 a	 probability	 of	 1.	 The	 contexts	 remain	 the	 same	 but	 the	
aggregators	operand	values	are	calculated	as	shown	in	Table	3.	

Along	with	these	two	packages,	the	following	has	also	been	provided:	

• Detailed	steps	how	to	install	PROTON	and	run	it	
• The	PETITE	script	(see	Section	33)	along	with	explanations	
• Sample	data	(for	tooling	testing	only	purposes)	
• Example	of	an	output	file	along	with	explanation	on	how	to	interpret	it	

4.2.1.1 Values	of	operator	operands	and	coefficients	of	the	Sigmoid	function	
As	aforementioned,	two	types	of	tests	on	the	CP	case	have	been	conducted:	the	“uncertain	case”	and	
the	“certain	case”.	For	 the	“uncertain	case”,	 the	 following	values	 for	 the	Sigmoid	variables	have	been	
chosen	(Table	2).	Note	that	we	need	two	values	for	x	(x1	and	x2)	in	order	to	determine	the	coefficients	a	
and	b,	where	x	denotes	the	pattern	operand	(countN	for	COUNT	and	trendN	for	TREND).	

Table	2:	Coefficients	calculation	for	Sigmoid	function	in	the	uncertain	CP	case	

EPA	name	 x1	 prob1	 x2	 Prob2	 a	 b	
IncreasingAmounts	 4	 0.6	 5	 0.75	 -2.367	 0.693	
DecreasingAmounts	 4	 0.6	 5	 0.75	 -2.367	 0.693	
FlashAttack	 3	 0.65	 4	 0.85	 -2.728	 1.116	
MultipleATMWithdrawals	 3	 0.7	 4	 0.9	 -3.202	 1.350	
SuddenCardUseNearExpirationDate	 3	 0.6	 4	 0.75	 -1.674	 0.693	

	

For	 the	 “certain	 case”,	 the	 first	 x	 that	 gave	 a	 probability	 higher	 than	 0.9	 has	 been	 selected	 for	 the	
counterparts	EPAs.	The	resulting	EPAs	operand	values	are	shown	in	Table	3.	Note	that	these	values	are	
required	 for	 patterns	 of	 type	 aggregators	 (x>=	 the	 value	 in	 the	 table).	 Therefore,	 for	 the	
TransactionsInFarAwayPlaces,	 SmallAmountFollowedByBigAmount,	 and	
FlashAttackAfterSmallFollowedByBigAmounts	EPAs,	the	EPAs	remain	the	same	as	 in	the	uncertain	case	
(SEQUENCE	patterns)	with	probability	of	1.			

Table	3:	Patterns	operand	value	for	the	certain		CP	case	

EPA	name	 x	
IncreasingAmounts	 7	
DecreasingAmounts	 7	

23	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

FlashAttack	 6	
MultipleATMWithdrawals	 5	
SuddenCardUseNearExpirationDate	 6	
FlashAttackAfterSmallFollowedByBigAmounts	 4	

	

4.2.1.2 Input	and	output	adapters/Producers	and	consumers	
One	of	 the	main	characteristics	of	CEP	engines	 is	 the	asynchronous	way	 in	which	events	are	 received	
and	emitted	to	and	out	of	the	system.	This	is	usually	done	through	a	publish/subscribe	mechanism,	with	
no	Application	Programming	Interface	(API)	definition	per-se.	

PROTON’s	 JSON	 file	 that	 is	 created	 at	 build-time	 contains	 all	 EPN	definitions,	 including	definitions	 for	
event	 types,	 EPAs,	 contexts,	 producers,	 and	 consumers.	 The	 physical	 entities	 representing	 the	 logical	
entities	 of	 producers	 and	 consumers	 in	 PROTON	 are	 adapter	 instances.	 	 For	 each	 producer	 an	 input	
adapter	is	defined,	which	defines	how	to	pull	the	data	from	the	source	resource	and	how	to	format	the	
data	 into	 PROTON's	 object	 format	 before	 delivering	 it	 to	 the	 run-time	 engine.	 The	 adapter	 is	
environment-agnostic,	 but	 uses	 the	 environment-specific	 connector	 object,	 injected	 into	 the	 adapter	
during	its	creation,	to	connect	to	PROTON	run-time.	

At	run-time,	the	standalone	CEP	engine	receives	incoming	events	through	the	input	adapters,	processes	
these	 incoming	 events	 according	 to	 the	 definitions,	 and	 sends	 derived	 events	 through	 the	 output	
adapters.	At	execution,	the	standalone	run-time	engine	accesses	the	metadata	file,	loads	and	parses	all	
the	 definitions,	 creates	 a	 thread	 per	 each	 input	 and	 output	 adapter,	 and	 starts	 listening	 for	 events	
incoming	from	the	input	adapters	(producers)	and	forwards	events	to	output	adapters	(consumers).	

Note	that	for	the	distributed	implementation	on	top	of	STORM,	an	input	Bolt	serves	the	same	function	
as	 input	adapter,	and	the	derived	events	are	passed	as	STORM	tuples	to	the	next	stage	in	the	SPEEDD	
topology	 processing	 (see	 D6.1	 in1).	 The	 distributed	 environment	 is	 part	 of	 the	 work	 in	 the	 SPEEDD	
prototype	in	WP6	and	out	of	the	scope	of	this	report.	

4.2.1.2.1 Producers	definition	
A	 producer	 introduces	 events	 from	 the	 outside	 world	 to	 the	 event-processing	 network.	 A	 producer	
definition	includes	the	following:	

§ Type	–	the	adapter	type	this	producer	 is	using	to	push	or	pull	events	 into	the	EPN.	The	supported	
types	are	File,	JMS,	Rest,	and	custom	adapter.	Each	adapter	type	has	built-in	parameters	and	other	
parameters	 can	 be	 added.	 Each	 parameter	 has	 a	 name	 and	 value.	 The	 adapter	 types	 and	 their	
parameters	include	the	following:		

o File	–	using	 this	adapter	 type,	 the	producer's	events	would	be	 read	 from	a	given	 file.	A	 file	
producer	has	the	following	additional	built-in	parameters:	

• filename	–	full	path	file	name.	

o Timed	–	timed	file	adapter.	The	events	 from	the	file	will	be	 injected	not	at	a	constant	rate,	
but	 based	 on	 the	 relative	 difference	 of	 OccurenceTime	 attribute	 value	 of	 the	 event	 as	

24	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

specified	in	the	event	row	in	the	file	from	start	of	injection.	The	timed	adapter	has	the	same	
properties	as	file	adapter	

o Rest	 –this	 adapter	 type	 is	 a	 REST	 client	 that	 GETs	 events	 from	 an	 external	 REST	 service	
periodically.	A	Rest	type	producer	has	the	following	additional	built-in	parameters:	

• URL	–	 the	 fully	qualified	URL	of	 the	REST	service	 for	event	pull	operation	using	a	GET	
method.	

• ContentType	 –	 can	 be	 "text/plain",	 "application/xml",	 or	 "application/json".	 This	 is	
defined	by	the	REST	service.		

• PollingMode	 –	 whether	 the	 web	 service	 returns	 a	 single	 instance	 or	 batch	 of	 event	
instances.	

Note:	PROTON	 includes	a	REST	service	 that	provides	 the	ability	 to	push	 (notify)	events	 to	
the	engine,	see	CEP	open	specification	document	

o Custom	 –	 using	 this	 adapter	 type,	 the	 producer's	 event	 would	 be	 read	 using	 a	 custom	
mechanism	defined	by	the	user.	In	this	case,	a	new	type	of	adapter	needs	to	be	added	to	the	
adapter	framework,	as	described	in	the	PROTON	programmer's	guide.	

Additional	parameters	common	to	all	producer	types	are:	
o pollingInterval	 –	 the	 time	 to	wait	 between	 two	 consecutive	 accesses	 to	 the	 source	 to	 pull	

events.	

o sendingDelay	–	a	delay	between	sending	events	into	the	EPN	(mainly	for	demo	purposes).		

o formatter	–	the	format	of	the	input	events	(the	supported	formatters	are	tag,	csv,	and	json).		

o delimiter	–	the	delimiter	used	to	separate	between	different	event	attributes.	

• ‘tag’	 type	 formatter	 –	 the	 delimiter	 defines	 the	 separator	 between	 key-value	 pairs.	
Default	is	“;”.	

• ‘csv’	type	formatter	–	the	delimiter	defines	the	separator	between	values.	Default	is	“,”.	

o tagDataSeparator	 –	 for	 a	 tag	 type	 formatter,	 the	 separator	 between	 event	 attribute	 name	
and	its	value.	Default	is	“=”.	

o csvEventType	 –	 for	 csv	 type	 formatter,	 the	 name	 of	 the	 event	 that	 is	 received	 from	 the	
producer.	

o csvAttributeNames	–	for	csv	type	formatter,	since	CSV	files	only	 list	values,	and	not	keys,	of	
event’s	 attributes,	 csvAttributeNames	 are	 used	 as	 keys.	 csvAttributeNames	 is	 a	 comma-
separated	 string	 of	 the	 attributes	 in	 the	 order	 they	 appear	 in	 the	 CSV	 file	 (e.g	 Attribute1,	
Attribute2,	 Attribute3…).	 When	 the	 CSV	 file	 is	 read,	 it	 will	 link	 the	 first	 value	 to	 the	 first	
attribute	in	csvAttributeNames,	and	so	on.	

o dateFormatter	-	the	default	date	format	is	dd/MM/YYYY-HH:mm:ss.	If	you	would	like	to	use	a	
different	 format	 for	 your	 input	 events,	 you	 have	 to	 specify	 a	 date	 formatter	 (e.g.,	
dd.MM.yyyy	G	'at'	HH:mm:ss	z).	

For	custom	adapters,	additional	 required	parameters	can	be	added.	Each	such	parameter	has	a	name	
and	a	value.	

25	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

4.2.1.2.2 Consumers	definition	
A	consumer	consumes	events	generated	by	the	EPN	and	sends	them	to	the	outside	world.	A	consumer	
definition	includes	the	following:	

§ Type	–	the	adapter	type	that	is	used	to	push	or	pull	events	from	the	EPN.	The	supported	types	are	
File,	 JMS,	 Rest,	 and	 custom	 adapter.	 Each	 adapter	 type	 has	 built-in	 parameters	 and	 other	
parameters	 can	 be	 added.	 Each	 parameter	 has	 a	 name	 and	 value.	 The	 adapter	 types	 and	 their	
parameters:	

o File	–	using	this	adapter	type,	the	consumer's	events	would	be	written	to	a	given	file.	A	file	
consumer	has	the	following	additional	built-in	parameters:	

• filename	–	full	path	file	name.	

o Rest	–this	adapter	type	 is	a	REST	client	 that	POSTs	events	to	an	external	REST	service	upon	
detection	 of	 derived	 events.	 A	 Rest	 type	 consumer	 has	 the	 following	 additional	 built-in	
parameters:	

• URL	 –	 the	 fully	 qualified	 URL	 of	 the	 REST	 service	 for	 event	 push	 operation	 using	 the	
POST	method.	

• ContentType	 –	 can	 be	 "text/plain",	 "application/xml",	 or	 "application/json".	 This	 is	
defined	by	the	REST	service.		

• AuthToken	–	an	optional	parameter,	that	when	set,	is	added	as	an	X-Auth-Token	HTTP	
header	of	the	request.		

o Custom	–	using	 this	 adapter	 type,	 the	 consumer's	 events	would	be	written	using	 a	 custom	
mechanism	defined	by	the	user.	In	this	case,	a	new	type	of	adapter	needs	to	be	added	to	the	
adapter	framework,	as	described	in	the	PROTON	programmer's	guide.	

Additional	parameters	common	to	all	producer	types	are:	
o formatter	–	the	format	of	the	input	events	(the	supported	formatters	are	tag,	csv,	and	json).		

o delimiter	–	the	delimiter	used	to	separate	between	different	event	attributes.	

• ‘tag’	 type	 formatter	 –	 the	 delimiter	 defines	 the	 separator	 between	 key-value	 pairs.	
Default	is	“;”.	

• ‘csv’	type	formatter	–	the	delimiter	defines	the	separator	between	values.	Default	is	“,”.	

o tagDataSeparator	 –	 for	 a	 tag	 type	 formatter,	 the	 separator	 between	 event	 attribute	 name	
and	its	value.	Default	is	“=”.	

o csvEventType	 –	 for	 csv	 type	 formatter,	 the	 name	 of	 the	 event	 that	 is	 received	 from	 the	
producer.	

o csvAttributeNames	–	for	csv	type	formatter,	since	CSV	files	only	 list	values,	and	not	keys,	of	
event’s	 attributes,	 csvAttributeNames	 are	 used	 as	 keys.	 csvAttributeNames	 is	 a	 comma-
separated	 string	 of	 the	 attributes	 in	 the	 order	 they	 appear	 in	 the	 CSV	 file	 (e.g	 Attribute1,	
Attribute2,	 Attribute3…).	 When	 the	 CSV	 file	 is	 read,	 it	 will	 link	 the	 first	 value	 to	 the	 first	
attribute	in	csvAttributeNames,	and	so	on.	

26	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

o dateFormatter	-	the	default	date	format	is	dd/MM/YYYY-HH:mm:ss.	If	you	would	like	to	use	a	
different	 format	 for	 your	 output	 events,	 you	 have	 to	 specify	 a	 date	 formatter	 (e.g.,	
dd.MM.yyyy	G	'at'	HH:mm:ss	z).	

For	custom	adapters,	additional	 required	parameters	can	be	added.	Each	such	parameter	has	a	name	
and	a	value.	
In	the	credit	card	CEP	application	we	run	PROTON	stand-alone	version	and	used	a	CSV	file	for	input	and	
a	 text	 file	 for	 output	 (as	 per	 Feedzai’s	 request).	 For	 producer	 and	 consumer	 definitions	 and	 types	 of	
adapters	refer	to	PROTON’s	User	Guide5.	Below	is	a	snippet	from	the	JSON	definition	file	related	to	the	
consumers	and	producers	for	the	credit	card	fraud	detection	application.		

"consumers":	[
						{	
								"name":	"FeedzaiConsumer",	
								"createdDate":	"Wed	Aug	06	2014",	
								"type":	"File",	
								"properties":	[
										{	
												"name":	"filename",	
												"value":	"D:\\EP\\Projects\\EU\\SPEEDD\\usecases\\Feedzai\\exampleOutput.txt"	
										},	
										{	
												"name":	"formatter",	
												"value":	"tag"	
										},	
										{	
												"name":	"delimiter",	
												"value":	";"	
										},	
										{	
												"name":	"tagDataSeparator",	
												"value":	"="	
										},	
										{	
												"name":	"SendingDelay",	
												"value":	"1000"	
										},	
										{	
												"name":	"dateFormat",	
												"value":	"dd/MM/yyyy-HH:mm:ss"	
										}	
],	
								"events":	[
										{	
												"name":	"Transaction"	

																																																													
5	https://github.com/ishkin/Proton/tree/master/documentation	

27	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

										},	
										{	
												"name":	"TrendAfterCount"	
										},	
										{	
												"name":	"CountFraud"	
										},	
										{	
												"name":	"Fraud"	
										},	
										{	
												"name":	"SequenceFraud"	
										},	
											{	
												"name":	"IncreasingAmounts"	
										},	
											{	
												"name":	"IncreasingAmountsCardIndication"	
										},	
											{	
												"name":	"FraudAtATM"	
										}	
]	
						}	
],	
				"producers":	[
						{	
								"name":	"FeedzaiProducer",	
								"createdDate":	"Wed	Aug	06	2014",	
								"type":	"File",	
								"properties":	[
										{	
												"name":	"filename",	
												"value":	"D:\\EP\\Projects\\EU\\SPEEDD\\usecases\\Feedzai\\exampleInputUncertain.txt"	
										},	
										{	
												"name":	"pollingInterval",	
												"value":	"1000"	
										},	
										{	
												"name":	"sendingDelay",	
												"value":	"1000"	
										},	
										{	
												"name":	"formatter",	
												"value":	"tag"	
										},	

28	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

										{	
												"name":	"delimiter",	
												"value":	";"	
										},	
										{	
												"name":	"tagDataSeparator",	
												"value":	"="	
										},	
										{	
												"name":	"dateFormat",	
												"value":	"dd/MM/yyyy-HH:mm:ss"	
										}	
],	
								"events":	[]	
						}	
]	

4.2.2 Evaluation	results	
As	explained	above	we	needed	to	test	our	application	by	Feedzai’s	people	at	their	premises	twice:	once	
including	uncertainty	(the	“uncertain	case”)	and	once	without	the	inclusion	of	uncertainty	aspects	(the	
“certain	case”)	as	detailed	below.	

As	a	first	step	in	order	to	validate	the	implemented	EPN	and	before	running	the	application	with	large	
amounts	of	historical	data,	we	tested	the	application	using	generated	data	and	run	the	input	data	twice:	
with	uncertainty	and	without.	

4.2.2.1 Sample	data	
For	the	first	step,	i.e.	generated	data	by	us,	we	used	several	tens	of	input	events.	The	amount	enabled	
us	to	test	the	different	patterns	and	the	effectiveness	of	using	uncertainty	in	the	derived	events	for	the	
CP	case.		

The	real	data	stored	~1	million	transactions,	with	122	transactions	flagged	as	fraudulent.	Most	of	these	
122	transactions	were	result	of	strikes	that	covered	only	two	transactions,	and	therefore,	could	not	be	
detected	by	our	FlashAttack	pattern.		

4.2.2.2 Results		
In	the	first	step,	we	compared	the	derived	events	for	the	two	cases	(certain	and	uncertain)	for	each	of	
the	patterns.	We	show	below	two	examples:	

IncreasingAmounts	 –	 In	 this	pattern	we	start	 firing	 situations	after	4	 times,	with	an	 increase	certainty	
value	as	can	be	seen	by	the	small	snippet	below	taken	from	the	output	file.	

{"Name":"IncreasingAmounts","TrendCount":"4","transaction_ids":"[f13b2a6b0fdc64a7391882bc0ee4
0660,	ert564b0fdc64a7391882bc0ee456t33,	345a6b0fdc64a73913452bc0ee40345,	
345a6b0fdc64a73346y82bc0345y3455]","Certainty":"0.5998883688639982","card_pan":"8896141"}	

29	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

{"Name":"IncreasingAmounts",TrendCount":"5","transaction_ids":"[f13b2a6b0fdc64a7391882bc0ee40
660,	ert564b0fdc64a7391882bc0ee456t33,	345a6b0fdc64a73913452bc0ee40345,	
345a6b0fdc64a73346y82bc0345y3455,456rtyr564a7391882bc0ee45648563dg]","Certainty":"0.7498851
783023105","card_pan":"8896141"}	

"Name":"IncreasingAmounts","TrendCount":"6","transaction_ids":"[f13b2a6b0fdc64a7391882bc0ee40
660,	ert564b0fdc64a7391882bc0ee456t33,	345a6b0fdc64a73913452bc0ee40345,	
345a6b0fdc64a73346y82bc0345y3455,	456rtyr564a7391882bc0ee45648563dg,	
tyrtyhdc64a7391882bc0eertyndertssh]","Cost":"0.0","Certainty":"0.8570498356842731","card_pan":"8
896141"}	

{"Name":"IncreasingAmounts","TrendCount":"7","transaction_ids":"[f13b2a6b0fdc64a7391882bc0ee4
0660,	ert564b0fdc64a7391882bc0ee456t33,	345a6b0fdc64a73913452bc0ee40345,	
345a6b0fdc64a73346y82bc0345y3455,	456rtyr564a7391882bc0ee45648563dg,	
tyrtyhdc64a7391882bc0eertyndertssh,	
rtyhrtymme5c64a7391882bc0etybwe5]","Certainty":"0.923012520878032","card_pan":"8896141"}	

In	the	certainty	version	we	derive	a	single	situation	only	after	the	seventh	time	(see	Table	3).	As	can	be	
seen,	even	in	this	simple	case,	if	we	had	flagged	the	forth	transaction	already	as	in	the	uncertain	case,	
then	we	 could	 have	 “saved”	 3	 fraudulent	 transactions	 from	 taking	 place.	 Based	 on	 the	 fact	 that	 this	
pattern	indicates	increasing	amounts,	the	later	the	transactions	are	in	time,	the	more	expensive.	

MultipleATMWithdrawals	-	 In	this	pattern	we	start	firing	situations	after	3	times	(see	Table	3),	with	an	
increase	certainty	value	as	can	be	seen	by	the	small	snippet	below	taken	from	the	output	file.	

{"Name":"MultipleATMWithdrawals","Certainty":"0.7001474286095372","terminal_id":"1948456145"
,"transaction_ids":"[rtyhrtymme5c64a7391882bc0etybwe5,	456hs7ds0fdc64a7391882bc0ee34sg35,	
frtykj56b0fdc64a7391882bc0ee457srs4]",,"TransactionsCount":"3.0"}	

{"Name":"MultipleATMWithdrawals","Certainty":"0.9000697663968664","terminal_id":"1948456145",
"transaction_ids":"[rtyhrtymme5c64a7391882bc0etybwe5,	456hs7ds0fdc64a7391882bc0ee34sg35,	
frtykj56b0fdc64a7391882bc0ee457srs4,	
2e526cef7eb66823c1ccadd69135d9d2]","TransactionsCount":"4.0"}	

{"Name":"MultipleATMWithdrawals","Certainty":"0.9720230891240956","terminal_id":"1948456145",
"transaction_ids":"[rtyhrtymme5c64a7391882bc0etybwe5,	456hs7ds0fdc64a7391882bc0ee34sg35,	
frtykj56b0fdc64a7391882bc0ee457srs4,	2e526cef7eb66823c1ccadd69135d9d2,	
2e526cef7eb66823c1ccadd69134567]","TransactionsCount":"5.0"}	

While	in	the	certain	version	we	fire	a	situation	only	at	the	fifth	time,	when	we	could	potentially	flag	the	
third	transaction	for	the	same	credit	card	and	prevent	for	two	transactions	from	taking	place.	

This	first	step	enabled	us	to	validate	the	patterns	and	already	indicated	the	large	potential	latent	in	the	
inclusion	of	uncertainty	aspects	in	the	credit	card	fraud	detection	use	case.	Naturally,	the	sooner	we	flag	

30	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

a	 fraudulent	transaction	as	such,	 the	 largest	the	savings	are.	On	the	other	hand,	tagging	too	soon	can	
cause	to	false	positive	results.	

After	 achieving	 these	 first	 results	 we	 were	 confident	 in	 moving	 to	 the	 next	 step	 and	 testing	 the	
application	with	large	amounts	of	real	data.	

When	 running	 the	 “uncertain”	 application	 on	 the	 same	 real	 data	 sample,	 the	 application	 fired	 308	
situations	 (uncertain	 fraud	 events)	 belonging	 to	 284	 different	 cards	 for	 the	 two	 patterns:	
IncreasingAmounts	and	FlashAttack,	and		one	terminal	for	MultipleMaxATMWithdrawals	distributed	as	
follows	(Table	4):	

Table	4:	Number	of	transactions	per	detected	pattern	in	the	uncertain	CP	credit	card	use	case	

#transactions	in	
the	matching	set	

FlashAttack	 IncreasingAmounts	 MultipleMaxATMWithdrawals	

3	 157	 	 1	
4	 69	 12	 1	
5	 31	 2	 1	
6	 10	 	 	
7	 11	 	 	
8	 7	 	 	
9	 5	 	 	
10	 1	 	 	
total	 291	 14	 3	

	

Note	that	all	 the	cards	belonging	to	 IncreasingAmount	also	were	detected	by	FlashAttack.	That	means	
that	the	transactions	were	made	in	a	relatively	short	period	of	time	and	at	the	same	time	their	amounts	
were	in	an	increasing	order.	In	addition	we	fire	an	IncreasingAmount	derived	event	in	an	immediate	and	
reuse	modes,	meaning	that	the	derivations	with	5	transactions	also	are	derivations	with	4	transactions.	
Furthermore,	7	out	of	 the	FlashAttack	detections	were	fired	twice	for	the	same	card_pan.	This	means	
that	 the	 same	 credit	 card	 caused	 the	 pattern	 to	 be	 matched	 two	 times	 in	 two	 different	 temporal	
windows.	This	gives	a	total	of	284	different	credit	card	numbers	(291-7=284).	

Some	of	the	more	“interesting”	situations	 in	which	more	than	one	patterns	was	satisfied	along	with	a	
relatively	number	of	transactions	are	(X,	Y,	Z,	and	U	denote	credit	card	numbers	as	we	don’t	have	the	
real	values)	:	

• For	 credit	 card	X:	 FlashAttack	 :	 count	=	3;	 IncreasingAmounts:	 	 count	=	4;	 IncreasingAmounts:		
count	=		5	

• For	credit	card	Y:	IncreasingAmounts	:count	=	4;		FlashAttack	:	count	=	8	
• For	credit	card	Z:	FlashAttack:	count	=	5;	FlashAttack:count	=	9		(two	different	time	windows)	
• For	 credit	 card	 U:	 FlaskAttack:	 count	 =	 8;	 IncreasingAmounts:	 count	 =	 4;	 IncreasingAmounts:	

count	=		5	

31	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

When	running	the	“certain”	application	on	real	data	in	Feedzai,	the	application	detected	35	situations	as	
(certain)	fraud,	34	for	FlashAttack	and	1	for	MultipleMaxATMWithdrawals.	This	can	be	also	be	checked	
by	 the	 uncertain	 case	 (Table	 4)	 as	 FlashAttack	 is	 fired	 for	 the	 certain	 case	 only	 after	 6	 transactions	
(34=10+11+7+5+1),	 for	 IncreasingAmounts	 after	 7	 transactions	 (none)	 and	
MultipleMaxATMWithdrawals	after	5	(only	1	transaction).		

A	comparison	between	our	findings	and	the	annotated	data	reveals	no	overlapping,	that	is	we	detected	
situations	not	flagged	in	the	data	and	vice	versa.	Several	reasons	to	this:	

• Our	patterns	detect	situations	with	more	than	three	transactions	in	the	pattern,	while	many	of	
the	transactions	flagged	belong	to	one	or	two	transactions	only.	

• We	 only	 detect	 some	 of	 the	 possible	 patterns	 while	 there	 are	 others	 that	 we	 haven’t	
implemented	 yet.	 On	 the	 other	 hand,	 from	 those	 implemented	 we	 can	 wonder	 why	 the	
transactions	 are	 not	 flagged	 as	 fraud.	 Possible	 reasons:	 the	 temporal	 windows	 and	 the	
thresholds	 are	 not	 fined	 tuned	 enough.	 It	 might	 also	 be	 that	 we	 were	 able	 to	 detect	 a	 few	
transactions	 that	 slipped	 away	 from	 Feedzai’s	 system.	 As	 we	 don’t	 have	 the	 data	 our	
conclusions	are	inconclusive.	

• Another	important	factor	is	that	we	don’t	perform	enrichment	of	the	data.	Adding	information	
such	as	history	of	customer	provides	additional	and	valuable	information	at	Feedzai.		

4.2.2.2.1 Summary	of	results	
Our	results	show	the	potential	 latent	 in	 including	uncertainty	aspects	 in	an	event	driven	application	 in	
the	 domain	 of	 credit	 card	 fraud.	 	 The	 fact	 that	we	 can	 alert	 ahead	 of	 time	 has	 a	 significant	 financial	
impact	as	we	can	avoid	performing	“future	 fraud	 transactions”.	Although	we	were	able	 to	detect	284	
different	credit	cards	as	potential	fraud	at	different	levels	of	confidence,	these	were	not	validated	in	the	
annotated	data.	Our	results	are	not	conclusive	and	further	analysis	need	to	be	performed.	This	will	be	
our	main	focus	during	year	three	of	the	project.	

5 Event	processing	application	for	the	
traffic	management	use	case	

In	this	section	we	describe	the	work	carried	out	in	the	fraud	detection	use	case	including	the	design	of	
the	event	processing	network,	the	implementation	of	the	application,	and	its	evaluation	using	real-data.	

5.1 Design	of	second	EPN	for	the	traffic	management	use	case	
A	 second	 version	 of	 the	 EPN	 for	 the	 traffic	 management	 use	 case	 that	 includes	 improvements	 and	
insights	gained	was	devised	during	 the	second	year	of	 the	project.	The	 resulting	EPN	consists	of	eight	
EPAs	is	shown	in	Figure	23	and	detailed	in	the	following	Sections.	For	the	sake	of	simplicity	we	only	show	
the	EPAs	and	 the	events	 flow	 in	 the	network.	Dotted	 lines	 represent	events,	other	 than	 input	events,	
that	are	either	initiators	(in	yellow)	or	terminators	(in	red)	of	a	context.	 	The	PROTON	JSON	definitions	

32	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

file	that	comprises	this	EPN	is	provided	as	part	of	the	software	deliverable	that	accompanies	this	report.	
In	the	current	EPN	we	fire	situations	in	the	following	cases:	

• A	Congestion	(EPA2)	in	a	specific	location	is	building-up.	
• A	ClearCongestion	(EPA3)	at	a	specific	location	is	identified.	
• A	PredictedCongestion,	that	is,	a	forecasted	congestion	is	identified	at	a	specific	location	(EPA4	

and	EPA5).	
• Calculations	 on	 sensor	 readings	 are	 emitted	 to	 be	 consumed	 by	 the	 decision	making	module	

(EPA6	and	EPA7)	

	

Figure	23:	Traffic	management	use	case	EPN	

Note	 that	 EPA0	 is	 an	 extended	 EPA	 (see	 Section	 2.2)	 whose	 role	 is	 to	 correct	 errors	 in	 raw	 sensor	
readings	by	embedding	the	imputation	algorithm	developed	by	the	CNRS	team.	In	addition,	note	that	for	
all	the	detections	apart	of	EPA0	and	EPA6,	average	measurements	are	taken	(provided	by	EPA1).	

5.1.1 Calculations	of	congestion,	clear	congestion,	and	predicted	congestion	situations	
As	 in	 our	 previous	 report,	 we	 differentiate	 among	 three	 situations	 at	 a	 specific	 location	 using	 two	
parameters:	density	and	speed.	A	Congestion	exists	if	the	density	in	a	specific	location	is	above	a	certain	
given	 value	 (density_threshold1)	 and	 the	 speed	 is	 below	a	 certain	 given	 value	 (speed_threshold1).	On	
the	other	hand,	a	congestion	 is	over	 (ClearCongestion),	whenever	 the	density	 is	below	a	certain	given	
value	(density_threshold2)	and	the	speed	is	above	a	certain	given	value	(speed_threshold2).	We	emit	a	
PredictedCongestion	situation	in	between	the	Congestion	and	the	ClearCongestion	thresholds.	Note	that	
for	 the	 speed	 we	 added	 a	 new	 threshold	 (speed_threshold3)	 in	 order	 to	 narrow	 the	 limits	 for	 a	
PredictedCongestion,	but	of	course,	any	value	between	speed_threshold1	and	speed_threshold2,	can	be	
selected.	

CongestionEPA2
(Congestion)

Ra
w
Ag

gr
eg
at
ed

Se
ns
or
Re

ad

OnRampFlow

Si
tu
at
io
nsEPA1

(AvgDensityAndSpeed
PerLocation)

EPA6
(AvgOnRamp)

EPA7
(AvgAggregatio
nOverTime

2minsAverageDensityAndSpeedPerLocation

AverageDensityAnd
SpeedPerLocation

EPA3	
(Clear	

Congestion)

Predicted
Congestion

ClearCongestion

EPA0
(ImputationA
lgorithm)

AggregatedSensorRead

Weather	
API

EPA5	
(Predicted	
Congestion)

EPA4
(Predicted	
Trend)

WeatherCondition

33	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

5.1.2 Calculation	of	density	
For	 the	density	 values	we	 follow	 the	 formula	 given	by	CNRS	and	based	on	 [2]	 and	 [3]	 that	 correlates	
density	between	 two	adjacent	 locations	 and	 the	occupancy	 values	 at	 these	 locations.	 That	 is,	 for	 any	
two	consecutive	locations	ld	and	lu	forming	a	section	p	given	the	occupancy	measurements	od(t)	and	ou(t)	
at	 time	 t,	 the	 density	 can	 be	 computed	 according	 to	 the	 following	 formula	 (1)	 where	Γ	 is	 a	 known	
coefficient.	At	this	stage,	since	we	do	all	our	processing	at	sensor	locations	we	approximate	the	formula	
to	density	at	a	location	and	not	between	two	locations.	The	coefficients	are	given	by	the	CNRS	team.		

(1)		

5.1.3 Weather	API	
One	 of	 the	 advantages	 of	 applying	 complex	 event	 processing	 is	 the	 capability	 of	 analyzing	 and	
processing	 events	 coming	 from	 heterogeneous	 sources.	 In	 order	 to	 test	 this,	 we	 “combined”	 the	
PredictedCongestion	 event	 with	 weather	 conditions.	 The	 rationale	 is	 as	 follows:	 a	 forecasted	 event	
probability/certainty	 is	higher	knowing	bad	weather	conditions	are	present.	To	 this	end,	we	apply	 the	
open	API	given	by	Weather	Underground	to	receive	alerts	on	current	conditions	such	as	fog,	rain,	snow,	
and	temperature	by	invoking:		

http://api.wunderground.com/api/82f05a9f463df021/alerts/q/FR/grenoble.json

The	Weather	API	is	synchronously	called	by	the	PredictedCongestion	EPA	(see	Figure	23)	to	calculate	the	
certainty	of	the	PredictedCongestion	situation.	See	Section	5.1.5.5	below.	

5.1.4 Event	types	
Ten	 event	 types	 have	 been	 defined	 that	 comprise	 the	 event	 inputs,	 outputs/derived,	 and	 situations	
(Table	5).	For	the	sake	of	simplicity	we	only	show	the	user-defined	attributes	or	the	event	payload	and	
not	the	metadata.	

Although	the	names	of	concepts	can	be	determined	freely	by	the	application	designer	 in	PROTON,	we	
use	some	naming	conventions	for	the	sake	of	clarity.	We	denote	event	types	with	capital	letters.	Built-
in/metadata	attributes	start	with	a	capital	letter,	as	well	as	payload	attributes	that	hold	operators	values,	
while	 payload	 attributes	 start	 with	 a	 lower	 letter.	 Table	 5	 shows	 the	 event	 definitions	 for	 the	 traffic	
management	 EPN.	 Note	 that	 the	 problem_id	 attribute	 is	 not	 part	 of	 the	 raw	 event	 payload	 and	 is	
intended	for	monitoring	reasons	by	the	decision	and	frontend	modules	of	the	SPEEDD	prototype.	At	this	
stage,	 we	 assign	 the	 location_id	 value	 to	 the	 problem_id	 at	 the	 derivation	 step,	 but	 more	 complex	
expressions	can	be	applied.	

Note	that	the	RawAggregatedSensorRead	raw	event	includes	more	fields	or	attributes.	We	defined	only	
the	ones	required	for	pattern	detection	in	the	EPN	implementation.	When	running	PROTON	will	ignore	
event	attributes	not	specified	in	its	JSON	definition	file.		

	

34	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Table	5:	Event	types	for	the	traffic	management	use	case	

Event	name	 RawAggregatedSensorRead	
Payload	 location,	lane,	occupancy,	vehicles,	average_speed	
Event	name	 AggregatedSensorRead	
Payload	 location,	lane,	occupancy,	vehicles,	average_speed	
Event	name	 Congestion	
Payload	 location,	average_density,	problem_id	
Event	name	 PredictedCongestion	
Payload	 location,	average_density,	problem_id	
Event	name	 ClearCongestion	
Payload	 location,	problem_id	
Event	name	 OnRampFlow	
Payload	 location,	average_flow,	average_speed,	average_density	
Event	name	 AverageDensityAndSpeedPerLocation	
Payload	 location,	average_flow,	average_density,	average_	speed	
Event	name	 2minsAverageDensityAndSpeedPerLocation	
Payload	 location,	average_flow,	average_speed,	average_density	
Event	name	 PredictedTrend	
Payload	 location,	average_density,	problem_id	
Event	name	 WeatherCondition	
Payload	 Current	weather	conditions,	e.g.,	temperature,	humidity	and	wind,	as	provided	bythe	

API	
http://api.wunderground.com/api/82f05a9f463df021/conditions/q/FR/grenoble.json	

5.1.5 Event	processing	agents	
Henceforth,	we	 describe	 the	 EPAs	 in	 the	 following	 order:	 Event	 name;	motivation;	 event	 recognition	
process	(following	Figure	2);	contexts	along	with	temporal	context	policy;	and	pattern	policies.	

In	the	event	recognition	process	we	only	show	the	steps	that	take	place	 in	the	specific	EPA,	while	the	
others	 are	 greyed.	 For	 the	 filtering	 step	 we	 show	 the	 filtering	 expression;	 for	 the	matching	 step	 we	
denote	 the	 pattern	 variables;	 and	 for	 the	 derivation	 step	 we	 denote	 the	 values	 assignment	 and	
calculations.	Please	note	that	for	the	sake	of	simplicity	we	only	show	the	assignments	that	are	not	copy	
of	values	(all	other	derived	event	attributes	values	are	copied	from	the	input	events).	For	attributes,	we	
just	denote	their	names	without	the	prefix	of	‘attribute_name.’	

EPA0:	ImputationAlgorithm	is	an	extended	EPA	in	PROTON	in	the	sense	that	it	is	not	one	of	the	built-in	
EPAs	or	operators	existing	 in	 the	 tool	but	 it	was	written	 to	perform	 the	calculation	of	 the	 imputation	
algorithm	 given	 by	 the	 CNRS	 team.	 PROTON	 enables	 extending	 the	 list	 of	 its	 operators	 by	 providing	
specific	 hooks	 in	 the	 run-time	 and	metadata	 for	 that	 purpose.	 The	 aim	 of	 this	 EPA	 is	 to	 convert	 the	
errors	in	inputs	(the	“-1”	in	the	event	input	data)	to	meaningful	values.	For	details	on	the	algorithm	refer	
to	[4].	

35	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Note	that	EPAs	6,	and	7	remained	the	same	as	in	our	previous	version,	as	these	EPAs	compute	averages	
consumed	by	external	modules	to	PROTON.	We	provide	their	description	below	for	the	sake	of	clarity	
and	completeness.	

5.1.5.1 EPA1:	AvgDensityAndSpeedPerLocation	
Motivation:	This	EPA	calculates	averages	of	speed	and	occupancy	to	derive	an	average	density	over	all	
the	lanes	in	a	certain	location	except	for	on-ramp	lanes,	which	are	treated	differently.	

Event	recognition	process:	

	

Figure	24:	Event	recognition	process	for	AvgDensityAndSpeedPerLocation	EPA	

AverageOccupancy	and	AverageFlow	are	computed	variables	of	the	AVG	pattern.		

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 SINGLE	 FIRST	 CONSUME	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	IGNORE	

Meaning:	 For	 each	AggregatedSensorRead	 at	 each	 location,	 there	 is	 a	 derived	 event	 for	 the	 average	
density	and	speed.	As	there	is	one	event	every	15	sec,	the	initiator	policy	doesn’t	play	a	role	in	this	case.	

Event	Processing	Agent

within	
context

filtering

AVG

deriving

AggregatedSensor
Read

AverageSpeed:average_speed
Average	Occupancy

AverageDensityAnd
SpeedPerLocation

average_speed:AverageSpeed
Average_occupancy:AverageOc
cupancy
average_density:	
AverageOccupancy*coefficient

36	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	25:	Context	for	AvgDensityAndSpeedPerLocation	EPA	

5.1.5.2 EPA2:	Congestion	
Motivation:	To	derive	a	congestion	alert	whenever	the	average	density	and	speed	are	above	and	under	
specific	given	thresholds	(labeled	by	1)	by	at	 least	15	events	(in	order	to	reduce	fluctuations	we	check	
that	the	situation	remains	constant	for	at	least	15	times).		In	this	case	the	derived	event	has	a	certainty	
value	 of	 1,	 since	 the	 congestion	 detected	 is	 already	 taking	 place.	 We	 apply	 the	 values	 of	
density_threshold1:0.6	and	speed_threshold1:30,	given	by	the	simulator	expert	in	CNRS.	

Event	recognition	process:	

	

Figure	26:	Event	recognition	process	for	Congestion	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 SINGLE	 FIRST	 CONSUME	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	IGNORE	

Meaning:	 We	 open	 a	 single	 context	 for	 location	 in	 order	 to	 detect	 an	 actual	 congestion	 which	 is	
immediate	fired	once	the	pattern	is	matched.	The	context	is	closed	with	the	ClearCongestion	event,	i.e.,	
the	congestion	passed,	or	after	5	min.		

+	14	sec

AggregatedSensorRead

AverageDensityAndSpeedPerLocation

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

AverageDensityAnd
SpeedPerLocation

Congestion

problem_id:location_id

density	>	density_threshold1	 AND	
speed	<	speed_threshold1

countN>14

37	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	27:	Event	recognition	process	for	Congestion	EPA	

5.1.5.3 EPA3:	ClearCongestion	
Motivation:	 A	 derived	 event	 is	 emitted	 whenever	 the	 flow	 is	 perceived	 as	 “normal”,	 meaning	 the	
density	 and	 speed	 thresholds	 are	 in	 the	 “normal	 range”	 by	 at	 least	 15	 events	 (in	 order	 to	 reduce	
fluctuations	we	check	that	the	situation	remains	constant	for	at	least	15	times).		In	this	case	the	derived	
event	 has	 a	 certainty	 value	 of	 1.	 We	 apply	 the	 values	 of	 density_threshold2:0.50	 and	
speed_threshold2:80,	given	by	the	simulator	expert	in	CNRS.	

Event	recognition	process:	

	

Figure	28:	Event	recognition	process	for	ClearCongestion	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 SINGLE	 FIRST	 CONSUME	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	IGNORE	

Meaning:	We	open	a	single	context	 for	a	 location	 in	order	 to	detect	when	an	occurring	congestion	or	
predicted	 congestion	 goes	 away.	 To	 this	 end,	 the	 context	 is	 opened	 with	 either	 the	 Congestion	 or	
PredictedCongestion	events	(the	first	that	comes)	and	is	closed	after	5	minutes.	

AverageDensityAndSpeedPerLocation

ClearCongestion;
5	minCongestion

Event	Processing	Agent

within	
context

filtering

COUNT

deriving

density	< density_threshold2	 AND	
speed	>	speed_threshold2

ClearCongestionAverageDensityAnd
SpeedPerLocation

problem_id:location_id

countN>14

38	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	29:	Context	for	ClearCongestion	EPA	

5.1.5.4 EPA4:	PredictedTrend		
Motivation:	 The	 CEP	 run-time	 engine	 will	 derive	 a	 PredictedTrend	 event	 (input	 to	 the	
PredictedCongestion	EPA)	whenever	it	detects	an	increase	in	the	density	values	of	at	least	5	consecutive	
input	events.	In	other	words,	we	perceive	that	a	build-up	is	taking	place	possible	indicating	a	congestion	
in	 the	 near	 future.	 	 The	 idea	 is	 that	we	 only	 derive	 an	 event	 if	 the	 build-up	 hasn’t	 reached	 either	 a	
congested	or	a	clear	congested	state	and	therefore	we	added	this	condition	in	the	derivation	step.	We	
check	whether	both	density	and	speed	are	still	in	the	normal	range	for	the	last	event	in	the	matching	set.	
In	 the	 case	of	 speed	we	used	 the	value	of	40	 for	our	 tests	 for	 speed_threshold3,	 to	avoid	 reaching	a	
congested	state.		

We	use	the	Sigmoid	function	for	the	probability	of	the	derived	that	receives	three	parameters	and	four	
coefficients	and	returns	1/	(1	+	e^-(a	+	b1x1+b2x2+b3x3)),	where:	

• X1	–	denotes	the	gradient	between	the	difference	of	density	of	the	 last	and	first	events	 in	the	
matching	set	and	the	elapsed	time	between	the	two.		

• X2	–	denotes	the	difference	between	the	density	threshold	for	congestion	(0.95)	and	the	density	
of	the	last	event	in	the	matching	set.	

• X3	–	trend.count	(number	of	events	in	the	matching	set)	

The	 rationale	 is	 that	we	would	 like	 to	 give	more	probability	 to	a	derived	event	which	 is	 closer	 to	 the	
congestion	 density_threshold,	 the	 ratio	 is	 higher	 (the	 build-up	 of	 congestion	 occurs	 faster),	 and	 the	
number	 of	 events	 is	 larger.	 As	 in	 the	 fraud	 detection	 use	 case,	 the	 values	 for	 the	 coefficients	were	
calculated	using	different	combinations	for	targeted	probabilities	and	X,	and	solving	the	equations	(see	
Section	5.2.1.1).		

In	addition,	we	also	increase	by	0.1	the	probability	of	a	predicted	congestion	when	the	temporal	window	
occurs	during	rush	hours	but	not	weekends	as	a	further	fine	tuning.	

	

	

	

AverageDensityAndSpeedPerLocation

5	min

ClearCongestion

PredictedCongestion

Congestion

39	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Event	recognition	process:	

	

Figure	30:	Event	recognition	process	for	PredictedTrend	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	IGNORE	

Meaning:	We	open	a	single	context	for	a	location	in	order	to	detect	an	increasing	TREND	pattern.	To	this	
end,	the	context	is	opened	with	the	first	input	event	that	comes	and	is	closed	when	either	a	Congestion	
or	ClearCongestion	 is	 detected	 for	 the	 same	 location.	 As	we	 use	 the	 IMMEDIATE	 and	UNRESTRICTED	
policies,	we	derive	a	PredictedTrend	event	for	each	TREND	encountered;	with	increasing	Certainty	value	
if	the	buildup	continues	(density	continues	to	rise	and	speed	continues	to	decrease).	

	

Figure	31:	Context	for	PredictedTrend	EPA	

average_density

trendNumber>4	

within	

context

filtering

deriving

PredictedTrend
AverageDensityAnd

SpeedPerLocation

problem_id:location_id

Certainty:	

IF	rush_hour and	not_weekend then	

Sigmoid(a,	b1,	b2,	b3,x1,x2,x3)+0.1	

ELSE

Sigmoid(a,	b1,	b2,	b3,x1,x2,x3)

(increasing)	

TREND

Condition	in	derivation:

density	[last_event]>=	 density_threshold2

speed[last_event]<=	 speed_threshold3

AverageDensityAndSpeedPerLocation

PredictedTrend

ClearCongestion
Congestion

PredictedTrend

40	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

5.1.5.5 EPA5:	PredictedCongestion	
Motivation:	 We	 combine	 the	 PredictedTrend	 event	 with	 the	WeatherCondition	 event.	 If	 the	 latter	
denotes	 a	 bad	 condition	 (i.e.	 fog,	 rain,	 or	 snow)	 then,	 we	 increase	 a	 little	 bit	 the	 probability	 of	 the	
PredictedCongestion	event	(+0.1).	

Event	recognition	process:	

	

Figure	32:	Event	recognition	process	for	PredictedCongestion	EPA	

Pattern	policies:	

We	denote	WeatherCondition	as	e1	and	PredictedTrend	as	e2.	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 e1:	FIRST		

e2:	OVERRIDE	
e1:	REUSE	

e2:	CONSUME	
	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	IGNORE	

Meaning:	 The	 context	 is	 opened	with	 the	 first	PredictedTrend	 event	 that	 is	 emitted	 from	EPA4	which	
causes	the	synchronous	call	of	the	WeatherCondition	event.	As	in	the	case	of	WP4,	the	temporal	context	
is	closed	when	either	Congestion	or	ClearCongestion	is	detected	for	the	same	location.	

As	we	apply	the	IMMEDIATE	and	UNRESTRICTED	policies,	we	can	derive	more	than	one	event.	We	apply	
the	FIRST	and	REUSE	policies	 for	WeatherCondition,	meaning,	we	 re-use	 the	event	 that	 is	 invoked	 for	
each	of	the	ALL	combinations	with	the	PredictedTrend	input	event.	In	the	latter,	we	apply	the	OVERRIDE	
and	CONSUME	policies;	therefore	we	use	a	new	input	event	for	each	combination	of	the	ALL	pattern.		

within	
context

filtering

deriving

PredictedCongestionPredictedTrend;
WeatherCondition

problem_id:location_id
Certainty:	
IF	(WeatherCondition ==	fog,	OR	
rain OR		snow)	then	
Certainty:	PredictedTrend.certainty
+0.1	ELSE	
Certainty:	PredictdTrend.certainty

ALL

41	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	33:	Context	for	PredictedCongestion	EPA	

5.1.5.6 EPA6:	AvgOnRamp	
Motivation:	To	derive	average	values	of	on-ramp	lanes	every	two	minutes	for	the	decision	module.	

Event	recognition	process:	

	

Figure	34:	Event	recognition	process	for	AvgOnRamp	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 SINGLE	 FIRST	 CONSUME	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	ADD	

Meaning:	 In	 each	 location,	 for	 each	 input	 event	 (sliding/overlapping	 temporal	 windows)	 we	 open	 a	
temporal	context	and	perform	average	calculations.	The	temporal	contexts	are	closed	after	two	minutes.	

PredictedCongestion

ClearCongestion
Congestion

PredictedTrendWeatherCondition

Event	Processing	Agent

within	
context

filtering

deriving

lane==“on_ramp”

RawAggregatedSensor
Read

AverageSpeed:average_speed
AverageFlow:vehicles

average_flow:AverageFlow
average_speed:	 AverageSpeed
average_density:	 AverageFlow/AverageSpeed

OnRampFlowAVG

42	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	35:	Event	recognition	process	for	AvgOnRamp	EPA	

5.1.5.7 EPA7:	AvgAggregationOverTime	
Motivation:	To	derive	average	values	for	all	lanes	every	two	minutes	for	the	decision	module.	

Event	recognition	process:	

	

Figure	36:	Event	recognition	process	for	AvgAggregationOverTime	EPA	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
DEFERRED	 SINGLE	 FIRST	 CONSUME	

Context:	

Segmentation:	by	location_id	

Initiator	policy:	ADD	

Meaning:	 In	 each	 location,	 for	 each	 input	 event	 (sliding/overlapping	 temporal	 windows)	 we	 open	 a	
temporal	context	and	perform	average	calculations.	The	temporal	contexts	are	closed	after	two	minutes.	

AggregatedSensorRead

+	2	min

OnRampFlow OnRampFlow

+	2	min
OnRampFlow

+	2	min

Event	Processing	Agent

within	
context

filtering

AVG

deriving
average_speed:	 AverageSpeed
average_density:	 AverageDensity

AverageDensityAnd
SpeedPerLocation

2minsAverageDensi
tyAndSpeedPerLoca

tion

AverageSpeed:average_speed
AverageDensity:average_density

43	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	37:	Event	recognition	process	for	AvgAggregationOverTime	EPA	

5.2 Implementation	and	evaluation	of	second	EPN	for	the	traffic	management	
use	case	

During	the	second	year	of	the	project	we	had	two	main	goals	with	regards	to	the	traffic	use	case:		

• First,	to	compare	the	situations	emitted	from	the	CEP	application	with	actual	real	congestions.	In	
order	 to	 do	 so,	we	 needed	 annotated	 data,	 that	 is,	 timestamps	 for	 events	 during	 an	 elapsed	
time	window	that	caused	a	sudden	decrease	in	flow/sudden	increase	in	density.	The	evaluation	
should	answer	the	question:	Can	we	forecast	a	congestion	before	it	actually	happens?	In	other	
words,	is	the	inclusion	of	uncertainty	aspects	and	the	ability	to	predict	a	future	event	effective?	

• Second,	we	wanted	 to	have	one	version	of	 the	CEP	application	 that	 can	be	 tested	 in	a	 stand-
alone	mode	and	also	integrated	into	the	SPEEDD	prototype	in	closed-loop.		

In	 order	 to	 meet	 these	 two	 requirements,	 we	 decided	 to	 perform	 our	 tests	 using	 synthetic	 data	
generated	 by	 the	 Aimsun	 simulator	 at	 Grenoble	 and	 provided	 by	 the	 NCRS	 team.	 For	 details	 on	 the	
simulator	refer	to	D8.2	“First	Version	of	Micro-Simulator”6.			

Pros	

• Compatible	with	the	rest	of	the	project	that	uses	the	Aimsun	data	sample	for	testing	purposes.	
• Aimsun	can	provide	annotated	data	of	incidents	we	can	compare	our	results	against.	
• The	 same	 sample	 data	 can	 be	 used	 for	 evaluation	 of	 the	 component	 alone	 and	 for	 the	

integrated	prototype.	
• Simplification	 of	 calculations	 –	 The	 synthetic	 data	 doesn’t	 produce	 erroneous	 inputs	 and	

therefore	there	is	no	need	to	apply	the	imputation	algorithm	of	NCSR	at	this	stage.	In	addition,	
we	don’t	need	to	approximate	density	values,	as	these	are	provided	by	the	synthetic	data	(input	
to	the	CEP	component)	

	

																																																													
6	Available	at:	file:///D:/SPEEDD/WP3%20event%20processing%20under%20uncertainty/D3.2/SPEEDD-D8-2.pdf	

AverageDensityAndSpeedPerLocation

+	2	min

2minsAverageDensityAndSpeed
PerLocation

+	2	min +	2	min

2minsAverageDensityAndSpeed
PerLocation

2minsAverageDensityAndSpeed
PerLocation

44	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Cons	

• We	can	only	run	event	patterns	that	apply	to	the	highway	route,	as	the	simulator	at	this	stage	
generates	events	for	the	high	way	and	only	a	small	portion	of	the	downtown	(the	full	mapping	
of	the	downtown	will	be	accomplished	in	D8.4	due	at	M24).	

• The	Aimsun	simulator	cannot	connect	to	an	external	API;	therefore	we	cannot	connect	to	the	
weather	API.	

5.2.1 Implemented	EPN	
Utilizing	 data	 generated	 by	 Aimsun	 results	 in	 a	 simplified	 EPN	 shown	 in	 Figure	 38.	 EPA0	 (imputation	
algorithm),	 EPA1	 (AvgDensityAndSpeedPerLocation),	 and	 EPA5	 (combining	 predicted	 events	 with	
weather	conditions)	are	excluded	as	they	are	not	required	when	using	simulated	data.		

	

Figure	38:	Implemented	EPN	for	the	traffic	management	use	case	

5.2.1.1 Values	of	operator	operands	and	coefficients	of	the	Sigmoid	function	
As	 aforementioned,	 two	 types	 of	 tests	 have	 been	 conducted:	 the	 “uncertain	 case”	 and	 the	 “certain	
case”.	 For	 the	 “uncertain	 case”,	 the	 following	 values	 for	 the	Sigmoid	 variables	 for	 the	PredictedTrend	
EPA	have	been	chosen	 (Table	6).	The	values	have	been	selected	by	assigning	probabilities	 for	 the	two	
extreme	conditions	of	“congestion”	 (close	 to	1)	and	“clear	congestion”	 (close	 to	0)	and	 looking	at	 the	
simulated	data.		

Table	6:	Variable	values	calculation	for	Sigmoid	function	for	the	PredictedTrend	EPA	

x1	 X2	 X3	 probability	
0.0046	 0.6576	 5	 0.269	
0.0040	 0.697	 6	 0.5	

CongestionEPA2
(Congestion)

Av
er
ag
eD

en
sit
yA

nd
Sp
ee
dP

er
Lo
ca
tio

n

OnRampFlow
Si
tu
at
io
ns

EPA6
(AvgOnRamp)

EPA7
(AvgAggregatio
nOverTime

2minsAverageDensityAndSpeedPerLocation

EPA3	
(Clear	

Congestion)

PredictedTrend

ClearCongestion

EPA4
(Predicted	
Trend)

45	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

0.00386	 0.727	 7	 0.731	
0.0024	 0.787	 9	 0.95	

	

The	coefficients	that	match	are:	

a:	-6.667;	b1:	70.086;	b2:	0.447;	and	b3:	1.010	

In	the	certain	case,	PredictedTrend	EPA	degenerates	into	EPA2	(Congestion)	and	is	no	longer	part	of	the	
EPN.	

5.2.1.2 Input	and	output	adapters/Producers	and	consumers	
As	in	the	credit	card	fraud	detection	application	(see	Section	4.2.1.2),	we	also	used	a	CSV	file	for	input	
and	a	text	file	for	output	in	the	traffic	use	case	as	defined	in	the	snippet	of	the	JSON	file	below:	

"consumers":		
				[
					 {	
								"name":	"TrafficConsumer",	
								"createdDate":	"Sun	Aug	31	2014",	
								"type":	"File",	
								"properties":	[
										{	
												"name":	"filename",	
												"value":	"D:\\EP\\Projects\\EU\\SPEEDD\\usecases\\CNRS\\exampleOutput.txt"	
										},	
									{	
												"name":	"formatter",	
												"value":	"tag"	
										},	
										{	
												"name":	"delimiter",	
												"value":	";"	
										},	
										{	
												"name":	"tagDataSeparator",	
												"value":	"="	
										},	
										{	
												"name":	"SendingDelay",	
												"value":	"1000"	
										},	
										{	
												"name":	"dateFormat",	
												"value":	"dd/MM/yyyy-HH:mm:ss"	
										}	
],	

46	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

								"events":	[
										{	
												"name":	"PredictedTrend"	
										},	
										{	
												"name":	"AverageDensityAndSpeedPerLocation"	
										},	
										{								
												"name":	"Congestion"	
										},	
										{	
												"name":	"ClearCongestion"	
										}															
],	
								"actions":	[]	
						}	
],	
				"producers":		
				[
					 						{	
								"name":	"TrafficProducer",	
								"createdDate":	"Sun	Aug	31	2014",	
								"type":	"File",	
								"properties":	[
										{	
												"name":	"filename",	
												"value":	"D:\\EP\\Projects\\EU\\SPEEDD\\usecases\\CNRS\\simulatorData.csv"	
										},	
										{	
												"name":	"pollingInterval",	
												"value":	"500"	
										},	
										{	
												"name":	"sendingDelay",	
												"value":	"1000"	
										},	
	{	
												"name":	"formatter",	
												"value":	"csv"	
										},	
										{	
												"name":	"delimiter",	
												"value":	","	
										},	
										{	
												"name":	"tagDataSeparator",	
												"value":	"="	

47	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

										},	
										{	
												"name":	"csvEventType",	
												"value":	"AverageDensityAndSpeedPerLocation"	
										},	
										{	
												"name":	"csvAttributeNames",	
												"value":	
"did,location,sid,ent,average_flow,average_speed,average_occupancy,average_density,timestamp,lane
"	
										},	
										{	
												"name":	"dateFormat",	
												"value":	"dd/MM/yyyy-HH:mm:ss"	
										}	
],	
								"events":	[]	
						}	
]	

5.2.2 Evaluation	results	
As	aforementioned,	we	aim	at	answering	the	question:	 is	 the	 inclusion	of	uncertainty	aspects	and	the	
ability	to	predict	an	event	effective?	The	way	to	address	this	is	to	have	two	applications	or	EPNs,	once	
including	uncertainty	aspects	and	the	other	one	without	uncertainty,	i.e.	deterministic.	This	is	a	common	
approach	in	CEP	engines	dealing	with	uncertainty	(see	for	example	in	[5]).	Therefore,	we	run	our	tests	
twice:	once	using	the	EPN	as	depicted	in	Figure	38	and	once	using	the	same	EPN	in	a	deterministic	way	
or	without	the	inclusion	of	uncertainty.	In	the	latter	case	the	PredictedTrend	EPA	degenerates	into	EPA2	
(Congestion)	and	 is	no	 longer	part	of	 the	EPN.	 In	other	words,	 in	 the	deterministic	 case	we	have	 two	
relevant	EPAs:	EPA2	(Congestion)	and	EPA3	(ClearCongestion).		

5.2.2.1 Sample	data	
Data	encompassing	3	hours	(from	4PM-7PM)	has	been	simulated	in	Aimsun.	A	stream	is	received	every	
15	seconds	as	in	the	real	physical	sensors.	The	data	from	the	Aimsun	includes	the	following	attributes:	

did	-	Replication	ID	for	random	seed	

oid	-	Detector	ID	

sid	-	Vehicle	type(0	=	for	all	vehicles,	1	=	Car	,	2	=	Truck)	

ent	-	Time	interval,	from	1	to	N,	where	N	is	the	number	of	time	intervals,	and	0	with	the	aggregation	of	
all	 the	 intervals.	As	 the	data	covers	3	hours,	we	have	a	 total	of	10,800	sec.	Having	 intervals	of	15	sec	
gives	720	intervals	for	each	simulation	(10800/15=720).		

countveh	-	Vehicle	count	

48	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

speed	-	Speed	[km/h]	

occupancy	-	Occupancy	

density	-	Density	at	the	specific	location	[#of	vehicles/km]	

A	total	of	10	simulations	have	been	created	with	random	seeds	for	all	the	simulations.	For	each	of	the	
simulations	a	csv	 file	was	produced.	 In	addition,	another	annotated	file	has	been	produced	containing	
information	about	incidents	that	had	been	created	during	the	simulations.	For	each	simulation	(csv	file)	
an	intended	incident	was	created	and	annotated.	An	incident	causes	a	rapid	build-up	of	congestion	and	
helps	us	evaluating	our	application.	Only	two	out	of	the	10	incidents	occur	in	the	main	road,	namely	in	
simulation	#6	and	#10.	All	other	incidents	appear	in	off	or	on	ramps.		

The	annotated	file	includes	the	following	fields:	

Aimsun	Section	ID	-	Where	incident	occurred	

Duration	of	incident	–	the	time	window	for	the	incident	[hh:mm:ss:]	 	

Start	Time	–	of	the	incident	[hh:mm:ss:]		

Length	of	Effected	Area	–	in	[meters]		

In	all	 the	 ten	 simulations	 there	 is	 a	 congestion	building	up	 in	all	 sensors	 close	 to	 the	end	of	 the	 road	
around	18:40	that	lasts	until	the	simulation	end,	with	no	clearing	up	of	the	congestion.	

5.2.2.1.1 Data	preprocessing	

Before	injecting	the	sample	data	into	PROTON,	the	following	steps	were	carried	out	to	conform	to	our	
pattern	definitions:	

• Filtering	out	duplicated	information	-	In	the	input	file	there	were	3	rows	to	express	the	number	
of	cars	of	each	type	that	were	simulated	for	the	same	interval	at	the	same	location.	We	filtered	
out	the	rows	in	which	the	number	of	vehicles	for	a	certain	vehicle	type	was	0	and	calculated	the	
distribution	between	cars	and	trucks	based	on	the	number	of	cars	and	trucks	values.	

• Normalizing	the	density	values	–	In	our	pattern	and	Sigmoid	function	we	used	normalized	values	
(a	 bounded	 value	 is	 desirable	 to	 know	 “how	 far”	 we	 are	 from	 upper	 and	 lower	 values,	 i.e.	
congestion	and	clear	congestion).	Therefore,	 the	simulated	values	were	transformed	based	on	
the	number	of	cars	and	trucks	and	the	length	of	each	type:	car	(4	meters)	and	truck	(7.5)	as	used	
in	the	simulator.	

• Mapping	of	the	oid	(Detector	ID)	to	the	 location_id	of	the	physical	sensors	in	the	highway	(see	
Figure	39)	and	filtering	out	other	locations.	

• Calculation	 of	 timestamps	 of	 events	 –	 based	 on	 the	 intervals	 given.	We	 also	 filtered	 out	 the	
“interval	0”	which	the	simulator	gave	as	a	summary	across	all	intervals	for	each	detector.	

49	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

• Replacing	 values	 of	 “-1”	 in	 the	 speed	 attribute.	 The	 simulator	 detects	 “-1”	 in	 speed	 in	 two	
(opposite)	situations:	no	car	is	detected	or	a	car	is	standing	or	blocking.	In	both	cases	the	“-1”	is	
replaced	by	the	previous	speed	value	for	the	same	detector.	

Once	the	sample	data	was	ready,	we	applied	the	PETITE	utility	(see	Section	3)	and	“shrinked”	the	data	
and	the	JSON	metadata	so	that	we	were	able	to	run	3	hours	in	20	minutes.		

	

Figure	39:	Mapping	of	the	oid	(Detector	ID)	to	the	location_id	of	the	physical	sensors	in	the	highway	

5.2.2.2 Results		
Out	of	the	10	simulations,	only	2	incidents	(simulation	#6	and	#10)	occurred	in	the	highway,	while	the	
other	 eight	 occurred	 in	 off/on	 ramps	 roads.	 In	 order	 to	 understand	 the	 cascading	 influence	 of	 the	
occurrence	of	a	congestion	and	the	potential	of	predicted	congestions,	we	show	a	drill	down	analysis	of	
the	detected	events	in	simulation	#10	as	a	function	of	time	and	vicinity	locations.	A	short	description	of	
the	results	is	given	for	the	other	simulations.		

5.2.2.2.1 Detailed	analysis	of	simulation	number	10	
An	 incident	 happens	 at	 18:12	 and	 lasts	 for	 21.5	 minutes	 [18:12-	 18:33]	 nearby	 location	 4052.	 See	
specific	part	in	the	Rocade	highway	in	Figure	40	below.	

	

Figure	40:	Zoom	into	simulation	#10	

The	following	congestions	and	trends	situations	result	from	the	incident	as	detailed	in	Table	7	and	are	
analyzed	as	follows.	Note	that	the	PredictedTrend	derived	event	is	shown	as	Trend(certainty	value).	

50	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

• A	first	Congestion	situation/derived	event	 is	emitted	at	18:20:15	at	 location	4052.	A	second	at	
18:25:15	and	a	third	at	18:30:15.	Note	that	according	to	our	design,	we	emit	one	derived	event	
every	 5	 minutes	 (if	 a	 clear	 congestion	 doesn’t	 take	 place	 before)	 once	 we	 have	 at	 least	 15	
readings	over	the	threshold.		

• Thereafter,	the	congestion	at	4052	starts	to	decrease	(still	not	cleared)	but	it	causes	a	build-up	
and	a	PredictedTrend	situation	downstream	in	location	1629	at	18:37:45.	Intuitively,	the	vehicles	
that	started	to	leave	4052	produce	a	new	build-up	in	1629.	

• From	18:39:00	until	18:41:45	we	derive	six	PredictedTrend	events	with	different	certainty	values	
in	 4052	 as	 a	 new	 build-up	 starts	 to	 form	 at	 this	 location.	 Note	 that	 the	 policy	 for	 the	
PredictedTrend	event	states	that	we	emit	a	new	PredictedTrend	event	each	time	the	pattern	is	
satisfied	 until	 either	 a	Congestion	 or	 a	ClearCongestion	 takes	 place.	 In	 our	 case	 a	Congestion	
actually	happens	(as	predicted)	at	18:45:15	that	closes	the	PredictedTrend	temporal	window.	

• At	 18:45:15	 the	 buil-up	 at	 4052	 starts	 to	 influence	 the	 downstream	 location	 1630	 and	 a	
PredictedTrend	event	with	relatively	low	certainty	is	detected	at	that	location.	

• The	 Congestion	 at	 4052	 at	 18:45:15	 causes	 a	 PredictedCongestion	 detection	 at	 18:50:30	 at	
location	4055	(upstream)	and	a	Congestion	at	4054	at	18:51:00	(also	upstream).		

• At	4055	three	PredictedTrend	derived	events	with	increasing	certainty	values	(0.326,	0.550,	and	
0.763)	indicate	a	high	probability	of	a	Congestion	which	actually	takes	place	at	18:56:30.	

• The	incident	reported	indeed	ends	after	21	minutes,	however	a	new	Congestion	situation	for	the	
same	 location	 is	 detected	 at	 18:45:15	 which	 is	 not	 cleared	 up	 until	 the	 simulation	 ends	 (no	
ClearCongestion	event	is	fired).	

Table	7:	Sequencing	of	derived	events	(situations)	for	incident	#10	

Sensor	id	 1629 1630 4052 4053 4054 4055
time	

18:20:15 Congestion
18:25:15 Congestion
18:30:15 Congestion
18:35:00 Trend(0.288)
18:37:45 Trend(0.531)
18:39:00 Trend(0.269)
18:39:15 Trend(0.500)
18:39:30 Trend(0.731)
18:39:45 Trend(0.88)
18:41:30 Trend(0.250)
18:41:45 Trend(0.474)
18:45:15 Trend(0.303) Congestion
18:50:30 Congestion Trend(0.326)
18:50:45 Trend(0.550)
18:51:00 Congestion Trend(0.763)
18:55:00 Congestion Congestion

51	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

18:56:00 Congestion
18:56:30 Congestion
18:59:15 Trend(0.302)

	

5.2.2.2.2 Brief	analysis	of	simulations	2-6	
Without	the	loss	of	generality,	we	show	below	snippets	of	our	results	that	stress	the	findings	described	
above	for	simulation	#10.	For	each	simulation	we	show	the	time,	location,	and	derived	event	around	the	
time	the	 incident	annotated	takes	place.	For	the	PredictedTrend	event	we	also	give	the	corresponding	
certainty	 attribute.	We	 color	 code	 the	 rows	 in	 a	way	 that	 each	 color	 denotes	 a	 different	 seuqnce	 of	
PredictedTrend	events	followed	by	a	Congestion	event.	

Simulation	#1	

18:50:00	 4052		 PredictedTrend	(0.583)	
18:53:30			 4052		 Congestion			
18:54:45		 4052		 PredictedTrend(0.745)	
18:57:45			 4055		 PredictedTrend(0.322)	
18:58:45			 4052		 Congestion	
18:59:15			 4054		 Congestion	
18:59:45		 4138		 PredictedTrend	(0.300)	
	
We	predict	the	impending	Congestion	in	3	cases,	in	two	of	which	it	deteriorates	to	an	actual	congestion	
state	,	and	perhaps,	could	be	avoided	if	taken	action	beforehand.	

Simulation	#	2	

18:49:00		 4052		 PredictedTrend	(0.503)	
18:49:15		 4052		 PredictedTrend	(0.64)	
18:53:00		 4053			 PredictedTrend		(0.319)	
18:53:45		 4052		 Congestion	
18:55:00		 4052		 PredictedTrend	(0.244)	
18:58:00			 4055		 PredictedTrend	(0.365)	
18:58:45		 4052		 Congestion	
18:59:00		 4053		 Congestion	
18:59:00		 4054		 Congestion	

Again,	PredictedTrend	events	are	able	to	accurately	forecast	actual	congestions	a	few	minutes	in	
advance	(at	4052	and	4053).	

Simulation	#3

18:47:45		 4052		 PredictedTrend(0.326)	
18:48:00	 4052		 PredictedTrend	(0.549)		

52	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

18:48:15		 4052		 PredictedTrend	(0.758)	
18:48:30		 4052		 PredictedTrend	(0.895)	
18:51:00		 4053		 PredictedTrend	(0.334)	
18:53:30		 1630		 PredictedTrend	(0.304)	
18:53:45		 4052		 Congestion	
18:53:45		 1630		 PredictedTrend	(0.553)	
18:57:00		 4055		 PredictedTrend	(0.291)	
18:57:15		 4055		 PredictedTrend	(0.510)				
18:57:30		 4055		 PredictedTrend	(0.767)	
18:58:45		 4054		 Congestion	
18:59:00		 4052		 Congestion	
18:59:15		 4053		 Congestion	
18:59:15		 4166		 PredictedTrend	(0.230)	
18:59:30		 4166		 PredictedTrend	(0.478)	
	
It	can	nicely	be	seen	that	in	location	4052	there	is	four	forecasted	events	that	end	up	with	a	congestion	
at	18:59.	Another	sequence	appears	for	location	4053	as	a	result	of	the	propagation	from	4052.	

Simulation	#4

18:53:45		 4052		 Congestion	
18:53:45		 4054		 PredictedTrend	(0.371)	
18:57:00		 4055		 PredictedTrend	(0.351)	
18:57:15		 4055		 PredictedTrend	(0.583)	
18:58:30		 4052		 Congestion	
18:59:00		 4054		 Congestion	
18:59:00		 4166		 PredictedTrend	(0.694)	
18:59:15		 4166		 PredictedTrend	(0.874)	
As	 before,	 the	 congestion	 identified	 in	 4054	 impacts	 a	 upstream	 location	 in	 which	 a	 build-up	 starts	
(location	4055).	

Simulation	#5

18:44:30		 1630		 PredictedTrend(0.523)	
18:44:45		 1630		 PredictedTrend	(0.747)	
18:48:30		 4052		 PredictedTrend	(0.743)	
18:48:45		 4052		 PredictedTrend	(0.886)	
18:53:50		 4052		 Congestion	
18:57:39		 4055		 PredictedTrend	(0.367)	
18:58:30		 4052		 Congestion	
18:58:30		 4054		 Congestion	
18:58:30		 4138		 PredictedTrend	(0.294)	

53	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

18:58:45		 4053		 Congestion	
Again,	a	congestion	is	identified	after	a	forecasted	event	which	impacts	the	flow	in	nearby	sensors.		

Simulation	#6

18:09:30			 4054		 Congestion	
18:13:30			 4054		 Congestion	
18:18:30			 4054		 Congestion	
18:25:00		 4054		 PredictedTrend	(0.234)	
18:27:00		 1629		 PredictedTrend	(0.357)	
18:30:30		 1629		 PredictedTrend	(0.345)	
18:39:30		 1629		 PredictedTrend	(0.356)	
18:49:00		 4052		 Congestion	
18:50:15		 4053		 PredictedTrend	(0.306)	
18:50:30		 4053		 PredictedTrend	(0.554)	
18:53:00		 4054		 PredictedTrend	(0.348)	
18:53:30		 4052		 Congestion	
18:54:15		 4053		 Congestion	
18:54:45		 3810		 PredictedTrend	(0.368)	
18:55:00		 3810		 PredictedTrend	(0.588)	
18:58:45		 4052		 Congestion	
18:58:45		 4054		 Congestion	
18:59:00		 4053		 Congestion	
18:59:00		 1629		 PredictedTrend	(0.354)	
18:59:15		 1629		 PredictedTrend	(0.574)	
18:59:15		 4166		 PredictedTrend	(0.278)
In	this	simulation,	an	incident	happens	at	18:03	and	lasts	17:20	minutes	(until	~18:30).	

As	a	result	of	the	incident,	an	immediate	congestion	is	built	up	at	location	4054.	Once	the	vehicles	start	
moving	after	a	while,	a	new	congestion	is	identified	upstream	and	we	identify	a	new	build-up	at	1629.	
Later	on	there	is	the	regular	wave	of	congestion	reflected	in	the	PredictedTrend	events	at	sensors	3810	
and	4166.	

5.2.2.2.3 Summary	of	results	
Our	 findings	 are	 consistent	 among	 all	 the	 simulations.	 First,	 we	 were	 able	 to	 detect	 all	 congestions	
resulting	 from	 the	 simulated	 (annotated)	 incidents.	 Furthermore,	 we	 were	 able	 to	 detect	 more	
congestions	as	they	happened	in	the	simulations	and	indicated	by	the	sudden	drops	of	speed	and	high	
increase	in	density	values.	Moreover,	PredictedTrend	situations	were	detected	and	emitted	which	even	
caused	Congestion	situations	a	few	minutes	later.		Note	that	we	are	running	the	CEP	module	in	isolation	
so	we	don’t	have	any	feedback	from	the	decision	making	module	or	any	action	taken	that	can	help	 in	
alleviating	the	potential	congestion.	

54	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Congestions	 or	 even	 predicted	 congestions	 have	 an	 impact	 upstream,	 and	 therefore	 forecasting	 a	
congestion	 in	upstream	locations	when	a	congestion	 is	detected	 in	a	downstream	location	can	help	 in	
clearing	up	the	whole	area.	

However,	we	still	need	to	refine	and	validate	the	level	of	certainty	that	actually	indicates	a	congestion,	
i.e.	from	which	certainty	value	we	should	take	an	action	(a	congestion	is	very	likely	to	happen).	One	time	
we	 get	 a	 congestion	 after	 certainty	 value	 of	 0.763	 and	 one	 time	 after	 0.474	 while	 we	 didn’t	 get	 a	
congestion	after	certainty	value	of	0.88.	There	are	some	fluctuations	in	the	numbers	(see	Table	7)	which	
should	 be	 further	 analyzed	 and	 comprehended.	 To	 this	 end,	 we	 ran	 and	 analyzed	 a	 second	 set	 of	
simulations	as	detailed	in	the	next	section.	

5.2.2.3 Recall	and	precision	
In	order	to	explore	the	quality	of	our	results	we	ran	a	second	set	of	simulations	which	comprised	of:		

• 20	simulations	with	annotations	of	congestions.	All	simulations	last	an	hour.	
• The	annotations	of	congestions	include	the	location	and	the	time	the	congestion	is	detected.	
• Other	characteristics	as	file	format	and	pre-processing	of	data	remained	the	same,	apart	of	the	

additional	field	for	annotation	of	congestion	(a	Boolean	field,	having	1	for	a	congestions	and	0	
otherwise).	

First,	we	checked	 the	quality	of	our	Congestion	pattern	against	 the	annotated	data.	First,	we	checked	
the	proportion	of	detections	by	our	EPA	that	were	annotated	in	the	data	as	congestions	(precision)	and	
second,	 the	 proportion	 of	 congestions	 we	 were	 able	 to	 detect	 out	 of	 all	 the	 annotated	 congestions	
(recall).	 In	all	our	simulations	our	precision	was	100%,	while	the	average	recall	over	all	the	simulations	
was	72%.	This	can	be	easily	explained:	the	rule	implemented	has	been	given	to	us	by	the	domain	expert,	
who	is	the	one	to	identify	the	congestions	in	the	simulations,	thus	giving	a	perfect	precision.	However,	
when	implementing	the	pattern	we	applied	a	“stricter”	criterion	for	the	rule:	we	took	into	account	not	
just	the	average	speed	critical	thresholds	 ,	as	was	done	in	the	simulations,	but	also	density	thresholds,	
therefore	 we	 have	 a	 less	 success	 rate	 in	 the	 recall	 of	 the	 results,	 i.e.,	 there	 were	 annotations	 of	
congestion	in	the	data	that	we	“missed”.	When	we	“relaxed”	the	pattern	and	run	the	same	rule	as	in	the	
simulations	we	were	able	to	detect	all	congestions	with	a	perfect	score	in	both	precision	and	recall.		

As	a	second	step	(as	in	our	previous	series	of	tests),	we	aimed	at	checking	a	more	interesting	question,	
that	is,	whether	the	inclusion	of	uncertainty	aspects	enables	us	to	predict	a	congestion	in	the	high	way	
before	it	reaches	critical	thresholds,	as	opposed	to	detecting	it	once	it	happens.	As	before,	we	addressed	
this	 question	 by	 having	 two	 EPNs,	 once	 including	 uncertainty	 aspects	 and	 the	 other	 one	 without	
uncertainty,	 i.e.	 deterministic;	 and	 running	 the	 tests	 twice,	 one	 time	 for	 each	 EPN	 (with	 and	without	
uncertainty).	The	deterministic	case	served	as	the	“ground	truth”,	as	we	knew	at	this	stage	that	all	our	
congestions	 have	 been	 detected	 correctly.	 The	 precision	 of	 our	 results	 indicates	 the	 proportion	 of	
congestions	 we	 were	 able	 to	 predict	 (in	 other	 words,	 PredictedTrend	 pointed	 out	 correctly	 to	 a	
congestion),	whereas	the	recall	indicates	the	proportion	of	congestions	we	were	able	to	detect	out	of	all	
the	annotated	congestions	(in	other	words,	PredictedTrend	pointed	out	correctly	out	of	all	congestions).	
Important	 to	note	 that	we	used	a	 threshold	of	0.6	 in	 the	certainty	 attribute	 to	determine	whether	 to	

55	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

consider	 PredictedTrend	 as	 a	 congestion.	 In	 other	 words,	 only	 PredictedTrend	 alerts	 with	 a	 certainty	
value	larger	than	0.6	were	considered	in	our	calculations	of	precision	and	recall.	

Table	8	summarizes	our	findings.	As	can	be	seen	the	average	precision	is	90.75%	and	the	average	recall	
is	 75.05%.	 In	 addition	we	 can	 see	 that	 sometimes	 a	 very	 high	 score	 in	 precision	 comes	 along	with	 a	
lower	score	in	recall	(e.g.,	simulation	#17,	precision	=	96.15	and	recall	=	51.85).		

In	general,	the	results	indicate	that	the	PredictedTrend	pattern	is	a	very	good	estimator	of	congestions	
to	occur	a	 few	minutes	ahead	 in	 time,	 thus	enabling	 the	 system	 to	 take	proactive	actions	 in	order	 to	
alleviate	these	congestions.	However,	lower	scores	in	recall	indicate	that	there	are	other	situations	that	
cause	congestions	which	are	not	detected	by	our	pattern.	Further	analysis	on	both	real	and	generated	
data	of	these	congestions	that	have	not	been	“caught”	by	our	pattern	shows	that	these	situations	are	
characterized	 by	 “jumping	 data”,	 meaning,	 the	 values	 of	 speed	 and	 density	 tend	 to	 jump	 thus	 not	
satisfying	the	increasing	build-up	which	is	required	in	our	pattern.	We	are	currently	investigating	these	
“jumping”	cases	to	see	if	we	can	identify	some	common	behavior/pattern.		

Table	8:	Summary	of	recall	and	precision	results	

Simulation	 Precision	 Recall	
1	 97.61	 90.90	
2	 80	 93.15	
3	 81.6	 95.2	
4	 87.88	 85.56	
5	 84.88	 83.62	
6	 83.33	 92.22	
7	 76.12	 81.72	
8	 89.25	 93.22	
9	 88.61	 90.27	
10	 98	 68.99	
11	 96.77	 67.11	
12	 85.42	 89.39	
13	 96	 57.33	
14	 88.46	 56.94	
15	 100	 51.25	
16	 96.43	 61.11	
17	 96.15	 51.85	
18	 96.77	 60.87	
19	 96.67	 58.54	
20	 95	 71.76	

Average	 90.75	 75.05	
	

	

56	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

6 Performance	evaluation	
The	 main	 metric	 of	 the	 system	 that	 we	 are	 interested	 in	 is	 the	 latency,	 as	 in	 the	 credit	 card	 fraud	
detection	use	case,	this	is	the	main	constraint.	We	will	follow	the	same	approach	for	measuring	latency	
as	taken	in	the	prototype	performance	evaluation	analysis	(refer	to	D6.5	Second	Integrated	Prototype7),	
that	 is:	 Latency	 is	 defined	 as	 the	 elapsed	 time	 between	 the	 detection	 time	 of	 the	 last	 input	 event	
required	for	a	pattern	matching	and	the	corresponding	detection	time	of	the	output	event.	For	example:	
assuming	that	the	(derived)	event	D	is	defined	as	a	sequence	of	events	(E1,	E2,	E3)	then	the	latency	is	
measured	 as	 the	 time	period	 since	 an	 instance	 of	 E3	 arrives	 into	 the	 system	 	 till	 the	 emission	 of	 the	
corresponding	instance	of	D.	Of	course,	this	definition	does	not	work	for	all	event	patterns.	For	instance,	
it	is	not	applicable	for	‘absence’	event	patterns,	or	any	other	event	patterns	triggered	by	expiration	of	a	
time	window.	Therefore,	in	order	for	this	definition	to	hold	we	will	analyze	the	performance	of	PROTON	
on	a	set	of	“applicable”	patterns	with	IMMEDIATE	evaluation	policy.		

The	 conceptual	 view	of	 the	performance	 testing	approach	 is	presented	 in	 Figure	41.	 Input	events	are	
injected	 into	PROTON	run-time	engine	 from	an	 input	events	 file.	A	module	called	Analyzer	 records	all	
the	events	–	both	 input	and	derived	ones.	For	every	event,	the	analyzer	registers	the	detection	times.	
The	output	of	 the	analyzer	 is	 a	 test	 log	which	 is	processed	 later	by	 the	Stats	 utility.	 For	every	output	
event	 the	 Stats	 utility	 computes	 the	 processing	 latency	 (i.e.;	 the	 time	 between	 the	 last	 event	 in	 the	
matching	set	arriving	to	PROTON	till	the	derivation).	

Figure	41:	PROTON	performance	testing	conceptual	overview	

In	 order	 to	 correlate	 the	 derived	 event	 with	 the	 latest	 input	 event	 that	 triggered	 the	 derivation,	 we	
leverage	the	new	feature	of	PROTON	that	enables	the	derivation	of	the	matching	set	events	along	with	
their	 attributes	 as	 part	 of	 the	 derived	 event	 payload	 (see	 Section	 3).	 Thus,	 given	 an	 instance	 of	 the	
derived	event,	it	is	straightforward	to	compute	the	latency	as	defined	above.	

																																																													
7	Available	at:	http://speedd-project.eu/sites/default/files/D6.1_amended_and_D6.5_-
_Architecture_Design_of_SPEEDD_Prototype_-_v2.1.pdf	

PROTON	runtime

Input	
events

Test	log

Analyzer

Stats

57	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

6.1 Performance	testing	configuration	
As	aforementioned,	the	performance	testing	has	been	carried	out	in	a	set	of	“applicable”	patterns	in	the	
credit	 card	 fraud	 detection	 use	 case,	 as	 it	 possesses	 the	 main	 latency	 constraint.	 The	 CP-EPN	 (see	
Section	4.1)	is	composed	of	8	EPAs	that	perform	the	following	operations:	TREND	(EPA1-	EPA2);	COUNT	
(EPA3-EPA5	 +	 EPA8);	 and	 SEQ	 (EPA6-EPA7).	 Therefore,	without	 the	 loss	 of	 generality,	 the	 application	
test	is	composed	of	three	EPAs:	EPA1	(IncreasingAmounts),	EPA3	(FlashAttack	with	IMMEDIATE	policy),	
and	EPA4	(MultipleMaxATMWithdrawals)	that	are	the	same	patterns	found	in	the	real	data	set.	That	is,	
we	have	a	representative	EPA	of	each	type	except	the	SEQ.	The	reasons	are	twofold:	First,	as	it	has	been	
mentioned,	 these	 are	 the	 patterns	 that	 were	 found	 in	 the	 real	 data	 set.	 Second,	 the	 SEQ	 operator	
performance	is	heavily	affected	by	the	policies	applied	(as	sometimes,	we	need	all	permutations	of	the	
events	that	can	trigger	a	derivation).	Therefore	in	order	to	decouple	potential	problems	we	decided	to	
focus	first	on	aggregators	and	trend	operators.		

The	 dataset	 consisted	 of	 30K	 events	 injected	 at	 a	 non-uniform	 rate	 with	 peak	 of	 100events/sec,	
randomly	distributed	over	the	context	of	credit	card	pan.		

The	performance	testing	was	executed	on	a	machine	with	the	following	configuration:		

• CPU:	Intel®	Core	™	i7-4800MQ	@	2.70GHz	--	Cores	:	Dual	Core	
• RAM:		16.0	GB	
• OS:	Windows	7	(64-bit)	

6.2 Performance	test	results	
Figure	 42	 shows	 PROTON’s	 performance	 behavior,	 while	 the	 initial	 processing	 latency	 is	 low;	 it	
constantly	 increases	 over	 time	 until	 it	 reaches	 the	 values	 of	 140,000	 milliseconds	 with	 an	 average	
latency	of	11,186.4	milliseconds.	

58	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	42:	End-to-end	latency	in	milliseconds	

6.3 Analysis	of	results	
The	poor	latency	performance,	in	particular	latency	increasing	over	time,	can	be	a	result	of	gathering	of	
large	state	in	artifacts	where	state	is	relevant	(such	as	EPAs)	or	possible	delays/bottlenecks	in	execution.	
Obviously,	 we	 can	 also	 have	 these	 two	 in	 combination.	 We	 have	 investigated	 these	 two	 factors	 as	
explained	below	

6.3.1 EPAs	latency		
It	is	worthwhile	to	note	that	implementation	in	PROTON	of	almost	all	EPA	operators	is	incremental:	for	
aggregators	 only	 the	 intermediate	 calculations	 are	 kept	 (e.g.,	 intermediate	 SUM,	 MAX,	 MIN	
values).Therefore,	 adding	 an	 additional	 event	 to	 the	 state	 is	 O(1)	 –	 adding	 its	 own	 value	 to	 the	
intermediate	calculation.	For	TREND,	the	approach	 is	 the	same	–	 intermediate	min/max	trend	value	 is	
stored	in	the	EPA	state,	and	therefore	adding	a	new	event	only	requires	update	of	this	single	value.	The	
exceptions	 to	 this	 rule	 are	 SEQ	and	ALL,	 since	depending	on	 the	policies	 they	might	 require	 iteration	
over	all	existing	state	of	the	EPA.		

As	our	application	implementation	includes	only	aggregators	and	trend	operators,	it	can	be	easily	seen	
that	 the	 high	 latency	 does	 not	 stem	 from	 the	 event	 processing	 agents	 gathered	 state,	 as	 these	 only	
perform	incremental	calculations.	As	mentioned	earlier,	theoretically,	due	to	their	implementation,	the	
only	two	operators	in	PROTON	that	can	cause	possible	delays	(depending	on	the	applied	policies),	and	
can	 be	 (potentially)	 optimized	 in	 their	 internal	 implementation	 are	 SEQUENCE	 and	 ALL	 (logical	 AND).	
However	these	are	not	part	of	our	EPN.		

Therefore,	we	 can	 conclude	 that	 there	 is	 no	 effect	 of	 the	 accumulated	 state	 in	 the	 EPAs	 on	 the	 high	
latency,	 leaving	 us	with	 searching	 for	 bottlenecks	 at	 execution	 time.	 As	will	 be	 explained	 below,	 this	
conclusion	was	later	verified	in	profiling	tools	where	it	has	been	seen	that	performance	bottlenecks	are	
based	in	resource	contention	between	threads	executing	context	partitioning,	and	not	in	EPAs.	

0

20000

40000

60000

80000

100000

120000

140000

160000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

Latency

Latency

59	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

6.3.2 Bottlenecks	during	execution	
In	order	to	monitor	and	isolate	the	bottlenecks	in	the	execution,	we	have	used	VisualVM8	tool	and	the	
profiling	options	provided	by	the	JProfiler9	tool,	specifically	the	memory	profiling	and	thread	monitoring	
options	to	monitor	potential	resource	contentions	and	locks.	Using	the	locking	graphs	option	in	the	tool	
enabled	 us	 to	 reach	 the	 following	 conclusions	 regarding	 the	 main	 reasons	 for	 the	 poor	 latency	
performance:	

Major	 bottleneck	 stems	 from	 synchronization	 calls	 in	 the	 evaluations	 of	 context	 segmentation	
expressions	 -	As	 can	be	 seen	 from	Figure	43	 (snapshot	 from	VisualVM),	major	bottleneck	 stems	 from	
execution	 threads	blocked	on	access	 to	a	monitor	 (object	under	 contention).	 The	higher	 the	 injection	
rate	(the	injection	rate	of	input	events	increases	over	time	reaching	a	pick	of	100	events/second),	more	
threads	are	created	for	handling	the	input	events,	and	more	blockage	occurs.	We	can	see	that	at	highest	
injection	rates,	the	threads	are	blocked	on	this	monitor	for	96%	of	the	time.		

	

Figure	43:	Thread	monitoring	of	the	application	during	run	

Farther	analyses	of	the	blocked	execution	thread	stacks	allowed	us	to	see	that	the	monitor	the	threads	
were	waiting	on,	is	the	EepExpression	object	used	to	calculate	segmentation	context	value.	Specifically	
this	happens	when	“evaluate”	method	of	this	object	is	invoked	(see	Figure	44).	

																																																													
8	https://visualvm.java.net/	
9	https://www.ej-technologies.com/products/jprofiler/overview.html	

60	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	 	

Figure	44:	The	blocking	monitor	

In	many	applications,	most	of	the	EPAs	use	the	same	segmentation	context	throughout	the	application.		
For	instance,	in	our	case	of	credit	card	fraud	detection,	this	segmentation	context	is	based	on	the	credit	
card	pan	 (i.e.,	credit	card	number).	All	the	three	EPAs	in	this	application	share	the	same	segmentation	
context	 of	 credit_card_pan.	 This	 context’s	 metadata,	 along	 with	 the	 parsed	 expression	 for	 the	
evaluation	of	segmentation	value	are	stored	in	a	single	context	metadata	object.	The	problem	with	this	
approach	is	that	during	the	phase	where	the	context	service	(see	Figure	45)	evaluates	the	value	of	the	
segmentation	 context	 per	 incoming	 event,	 it	 then	 locks	 the	 expression	object	 for	 the	duration	of	 the	
evaluation	 (synchronized	 access	 in	 the	 evaluate	 method).	 This	 caused	 major	 blocking	 of	 all	 threads	
partitioning	the	input	events	into	context	subgroups.	We	have	seen	that	with	time,	all	the	threads	were	
blocked	in	this	particular	lock	96%	of	time.		

Figure	45	depicts	the	order	of	the	steps	in	PROTON	run-time	with	the	arrival	of	new	events.	The	threads	
evaluating	 context	 segmentation	 value	 are	 locked	on	 the	 expression	object,	 resulting	 in	 long	waits	 of	
input	events	for	processing,	and	also	causes	starvation	of	the	thread	pool	for	the	submitting	threads.	

	

Figure	45:	Evaluation	of	context	segmentation	expressions	steps	in	PROTON’s	run-time	

Description	of	the	flow	in	Figure	45:	

Parallel queues
threads

EPA1-C1 queue

Context Service

C1 – Composite:
Segmentation:
CardSegmentation

Context Metadata

CardSegmentation: Expression object

EPA2-C2 queue

EPA3-C1 queue

EPA4-C6 queue

…

Raw events
stream

C2 – Composite:
Segmentation:
CardSegmentation

C6 – Composite:
Segmentation:
CardSegmentation

……

Thread
Pool

1

1

2

3

61	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

There	are	 two	 types	of	 tasks	using	 threads	 from	 the	 same	 thread	pool:	 the	 initial	 evaluation	of	 input	
events	 according	 to	 the	 application’s	 metadata	 and	 determination	 which	 agent/context	 this	 event	 is	
relevant	 for	 and	 submission	 for	 processing,	 and	 the	 evaluation	 of	 events	 by	 context	 service	 and	
partitioning	to	context	instances.	The	order	of	input	event	processing	is:		

First	 flow:	 Input	 event	 is	 partitioned	 among	 agent-context	 queues	 for	 parallel	 processing.	 (1)	 This	
submission	 is	 parallel	 (gathering	 routing	metadata	 in	 order	 to	 determine	which	 agent	 and	 context	 is	
relevant)	and	is	done	by	threads	from	a	common	thread	pool.	

Second	 flow:	 the	 events	 are	 consumed	 from	 the	 queues	 by	 the	 context	 service	 (1),	 (again	 using	 the	
threads	available	from	the	same	thread	pool),	and	partitioned	according	to	their	segementation	value	to	
context	partitions	(2+3).	This	partitioning	process	requires	access	to	the	segmentation	context	metadata	
(2)	 and	 evaluation	which	 is	 performed	 in	 a	 synchronized	 block,	 since	 this	 action	 changes	 the	 object.	
Therefore,	these	steps	(denoted	in	red	lines	in	the	figure)	are	blocking	and	take	a	lot	of	time	on	wait	for	
this	object.	

As	a	consequence	of	the	first	waiting	problem,	a	secondary	problem	of	thread	starvation	has	emerged.	
As	we	have	seen	in	Figure	45,		the	input	submitting	threads	used	the	same	fixed-size	thread	pool	as	the	
processing	threads,	and	this	thread	pool	initial	size	was	rather	small	(50	threads).	As	a	result,	the	input	
submitting	tasks	waited	on	the	pool	until	the	blocking	threads	could	finish	their	work	and	be	returned	to	
the	pool.		This	caused	an	additional	latency	penalty.	

After	corrective	actions	have	been	carried	out	to	solve	these	main	two	problems	(see	next	Section	6.4),	
two	additional	minor	issues	were	detected:	logging	overhead	and	overhead	resulting	from	writing	to	a	
console	as	explained	next.	

Logging	overhead	-	We	used	the	logger.debug(“message”)	statement	to	output	debug	information.	This	
statement	often	requires	to	string	conversion	of	contained	message	consisting	of	deep	objects,	such	as	
Event	 (Event	 objects	 include	 all	 attributes	 and	 their	 values),	 or	 Context	 (Context	 objects	 include,	 for	
example,	 segmentation	 partitions	 values).	 As	 per	 logger	 implementation,	 the	 logger.debug()	 method	
outputs	 the	message	only	when	the	 logging	 level	 is	appropriately	configured	to	DEBUG.	However,	 the	
message	construction	takes	place	in	any	case,	even	if	the	logging	level	is	high.	The	message	construction	
in	case	of	such	complex	objects	can	be	a	costly	operation.		

Overhead	 resulting	 from	writing	 to	a	 console	 -	Additional	blocking	occurred	when	 some	 threads	used	
System.out	PrintStream	to	log	messages	to	the	console.	The	println()	method	is	thread-safe	in	the	used	
JVM	 implementation,	 and	 since	 it	 was	 found	 in	 heavily	 used	 portion	 of	 the	 code	 (context	 partition	
evaluation)	it	has	significant	effect	on	the	latency	of	each	thread.	

6.4 Corrective	actions	
To	 overcome	 the	 issues	 found	 during	 the	 performance	 analysis,	 we	 have	 performed	 the	 following	
changes	in	PROTON’s	code	base:	

62	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Instead	of	performing	expression	evaluation	using	the	same	expression	object	and	synchronizing	on	the	
evaluation	code,	we	now	copy	the	expression	object	to	local	state	of	each	thread	(local	variable	in	the	
point	 of	 expression	 evaluation)	 and	 perform	 the	 evaluation	 on	 this	 local	 object	 instead	 of	 a	 shared	
object,	therefore	eliminating	the	need	of	synchronization	and	increasing	of	thread	pool	size.	

In	 addition,	we	have	 changed	 the	 fixed	 thread	pool	 to	 a	 cached	 thread	pool,	more	 suitable	 for	many	
short-lived	tasks	like	in	our	case.	

To	 deal	 with	 the	 unnecessary	 construction	 of	 String	 messages	 in	 the	 logger.debug	 statements,	 we	
wrapped	the	statement	with	assertion	making	sure	it	 is	only	invoked	if	 logging	levels	are	indeed	set	to	
DEBUG	as	shown	in	the	snippet	below.		

	

In	addition,	we	removed	outputs	to	console,	and	used	the	logger.debug	statements	instead.	

6.5 Performance	improvements	
A	 second	 performance	 evaluation	 analysis	 has	 been	 conducted	 after	 the	 changes	 aforementioned	
running	the	same	application	and	dataset.		

Latency	has	improved	significantly	(see	Figure	46)	–	moving	to	an	average	of	139.8	milliseconds	(with	an	
average	matching	set	size	of		3.2	events)	and	max	peak	latency	of	2,000	milliseconds	at	peak	injection	
time	 (around	 100	 events	 per	 sec).	 This	 shows	 80	 times	 improvement	 in	 the	 average	 latency	 and	 70	
times	 improvement	 in	peak	 latency	comparing	 to	our	previous	version	Moreover,	as	can	be	also	seen	
from	the	diagram,	there	is	no	more	trend	of	increasing	latency	in	the	course	of	time.	

63	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	46:	End-to-end	latency	in	milliseconds	after	changes	in	PROTON’s	code	base	

6.6 Summary	and	future	steps	
Our	 performance	 analysis	 revealed	 a	 number	 of	 issues	 that	 caused	 poor	 latency	 results.	Major	 cause	
was	caused	by	synchronization	calls	 in	the	evaluation	of	context	segmentation	expressions.	Secondary	
causes	are:	thread	starvation	(initial	thread	pool	size	relatively	small	and	using	pool	which	is	more	suited	
for	a	finite	number	of	long	running	tasks	instead	of	extendable	pool	for	many	short-lived	tasks),	logging	
overhead,	and	the	overhead	due	to	writing	to	a	console.	Corrective	actions	have	been	introduced	into	
the	 code	 base	 and	 propagated	 to	 all	 threads	 of	 PROTON	 (including	 the	 ProtonOnStorm	 open	 source	
version).	Table	9	summarizes	the	improvements	achieved	in	the	latency	measurements	in	PROTON	as	a	
result	of	SPEEDD	developments.	

Table	9:	Latency	performance	before	and	after	corrective	actions	

	 Before	(millisecs)	 After	SPEEDD	developments	(millisecs)	
Maximum	latency	 140,000	 2000	
Average	latency	 11,186	 140	

	
Future	 steps	 include	 the	 investigation	 of	 ProtonOnStorm	 version	 when	 replacing	 the	 code	 base	 of	
PROTON	by	this	updated	run-time	version.	

0

100

200

300

400

500

600

700

1 4 7 10131619222528313437404346495255586164677073767982

Latency	(ms)

Latency	(ms)

64	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

7 Semantic	translation	from	event	
calculus	to	PROTON’s	programming	

model	
Events	rules	or	patterns	of	an	event	driven	application	can	be	given	or	defined	by	an	expert,	learnt	by	a	
machine	 learning	 component,	 or	 both.	 In	 SPEEDD	we	 strive	 to	 compose	 a	 set	 of	 event	 rules	 that	 are	
given	by	domain	experts	 in	the	domain	(traffic	management	and	credit	card	fraud	detection)	and	also	
learnt	by	the	machine	learning	component	in	the	project.	At	this	stage,	PROTON	only	processes	patterns	
given	by	domain	experts,	but	we	have	started	to	 look	 into	augmenting	the	existing	set	of	rules	by	the	
work	done	by	machine	learning.	As	a	first	step,	we	analyzed	some	of	the	event	calculus	examples	from	
the	fraud	detection	use	case	and	manually	translated	into	an	EPN	which	can	be	converted	into	a	JSON	
definition	file	for	PROTON	in	a	straightforward	manner.	Some	insights	and	rules	during	this	process	have	
been	 identified.	During	 the	 third	year	of	 the	project	we	aim	at	 continuing	 this	work	and	 investigating	
more	 examples	 in	 order	 to	 compose	 a	 methodology	 on	 how	 to	 perform	 the	 semantic	 translation	
between	the	 two	 languages.	The	output	of	 this	work	will	be	a	unified	set	of	 rules	 incorporated	 in	 the	
JSON	definition	file	of	PROTON.	

7.1 Event	Calculus	examples		
We	have	analyzed	the	principles	of	the	event	calculus	semantics	with	the	NCSR	team	in	the	project	and	
identified	some	patterns	which	we	applied	to	three	different	event	calculus	rules	given	to	us	by	NCSR.	
The	three	examples	are	described	in	the	next	sub-sections.		

7.1.1 Previous	Transactions	
1.2 initiatedAt(prev_trx(Pan, Country)=exists, T) WHEN

happensAt(trx(_TrId, _CNP, _AmountEU, Pan, _ExpDate, Country), T)	

Description: If	transaction	`trx`	happens	for	card	in	country	at	time	`T`,	then	set	that,	from	now	on,	
there	exists	a	previous	transaction	(for	this	specific	card	(Pan)	in	this	specific	`Country`)	

7.1.2 Amount	
happensAt(amount_level(Pan, Country, low), T) WHEN

happensAt(trx(_TrId, _CNP, AmountEU, Pan, _ExpDate, Country), T) AND
AmountEU =< 20.0

happensAt(amount_level(Pan, Country, medium), T) WHEN
happensAt(trx(_TrId, _CNP, AmountEU, Pan, _ExpDate, Country), T) AND
AmountEU > 20.0 AND
AmountEU =< 100.0

happensAt(amount_level(Pan, Country, high), T) WHEN
happensAt(trx(_TrId, _CNP, AmountEU, Pan, _ExpDate, Country), T) AND
AmountEU > 100.0

65	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	
Description:	Simple	filtering	on	amount:		

• If	amount	spent	(AmountEU)	below	20,	then	set	amount_level	as	low	
• If	between	20	and	100,	then	set	as	medium	
• If	above	100,	then	set	as	high

7.1.3 First	TRX	in	country	high	
	
happensAt(first_trx_high(Pan, Country), T) WHEN

happensAt(amount_level(Pan, Country, high), T) AND
NOT holdsAt(prev_trx(Pan, Country)=exists, T)

	
Description:	If	there	is	no	previous	transaction	for	this	card	(NOT	holdsAt(prev_trx(Pan,	Country)=exists,	
T)	and	the	amount_level	of	this	transaction	is	high	(see	above	rule,	where	AmountEU	>	100),	then	we	
recognise	that	this	first	transaction	has	a	high	amount	(first_trx_high).	
	

7.2 Conclusions	
At	this	stage	we	can	deduce	the	following	semantic	rules	in	order	to	translate	from	event	calculus	to	
PROTON’s	language.	

• Fluents	are	derived	events,	and	therefore	we	can	transform	each	fluent	to	an	EPA	
• Events	can	be	transformed	to	Filters	EPAs	(as	there	is	no	context	associated,	just	conditions	on	

the	events)	
• We	don’t	have	negation	per-se.	One	way	to	workaround	this	is	by	using	COUNT	+	policies	as	in	

our	example.	
• AND	between	events	can	be	translated	into	an	ALL	operator	
• initiatedAt	 and	 terminatedAt	 (or	 any	 other	 condition	 for	 termination)	 –	 temporal	 context	 in	

PROTON.	
• Note:	we	disregard	the	confidence	values	for	the	time	being.		
• Note:	EC	doesn’t	address	pattern	policies	per	se,	and	we	decide	upon	them	on	a	case	by	case	

basis	(see	EPAs	below)	
Following	these	rules	we	can	convert	the	three	event	calculus	rules	into	the	following	EPAs	

7.2.1 EPA1:	amount_level	
	

Event	recognition	process:	

66	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

	

Figure	47:	Event	recognition	process	for	amount_level	EPA	

Pattern	policies:	N/A	

Context:	N/A	

Note	that	we	actually	don’t	need	a	specific	EPA	in	this	case	and	can	use	the	“high”	case	in	the	filter	of	
the	pre_trx	EPA	(see	below),	but	for	the	sake	of	clarity	and	in	the	case	we	would	like	to	use	also	the	
“medium”	and	“low”	cases.	

7.2.2 EPA2:	prev_trx	
	
Event	recognition	process:	

	

Figure	48:	Event	recognition	process	for	prev_trx	EPA	

	

Event	Processing	Agent

trx

within	
context

filtering

matching

deriving

amount_level_low;
amount_level_medium;
amount_level_high

TRUE

If	trx._AmountEU<=20	then	
amount_level_low
If	trx. _AmountEU>20	AND	
trx_AmountEU <=100	then	
amount_level_medium
If	trx.	._AmountEU>100	then	
amount_level_high

Event	Processing	Agent

trx

within	
context

filtering

COUNT

deriving

countN>=1

prev_trx

prev_trx.count:countN

67	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 UNRESTRICTED	 FIRST	 REUSE	

Context:	

Segmentation:	by	Pan	&	Country	

Initiator	policy:	ALWAYS	(from	Startup)	

	
Figure	49:	Event	recognition	process	for	prev_trx	EPA	

	

7.2.3 EPA3:	first_trx_high	
	

	
Figure	50:	Event	recognition	process	for	first_trx_high	EPA	

	
Pattern	policies:	

Evaluation	 Cardinality	 Repeated	 Consumption	
IMMEDIATE	 SINGLE	 FIRST	 REUSE	

	
	

Context:	

Segmentation:	by	Pan	&	Country	

Startup

trx

prev_trx prev_trx prev_trx prev_trx prev_trx

Event	Processing	Agent

amount_level_high;
prev_trx

within	
context

filtering

ALL

deriving

first_trx_high

prev_trx.count==1

68	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

Initiator	policy:	IGNORE	

	

	
Figure	51:	Event	recognition	process	for	first_trx_high	EPA	

7.2.4 Event	processing	network	
The	resulting	EPN	for	these	three	EPAs	is	depicted	in	Figure	52.	
	

	
Figure	52:	first_trx_high	EPN	

	

	

	

	

	

	

Startup

amount_level_high

first_trx_high

prev_trx.count==1

first_trx_high

amount_level_medium

tr
x

Si
tu
at
io
ns

amount_level_high

EPA2

EPA3

EPA1

amount_level_low

Prev_trx

69	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

8 Summary	and	future	steps	
In	 this	 document,	 we	 present	 a	 second	 version	 of	 the	 complex	 event	 module	 under	 uncertainty	 in	
SPEEDD.	The	report	mainly	focuses	on	the	two	new	applications	and	the	evaluation	results	for	the	two	
use	 cases	 of	 the	 project:	 the	 credit	 card	 fraud	 detection	 and	 the	 traffic	management.	 In	 addition	we	
describe	developments	made	to	the	PROTON	tool	during	the	second	year	of	the	project	to	address	the	
project	requirements,	and	progress	made	in	the	interaction	between	the	machine	learning	part	and	the	
run-time.		

Regarding	the	evaluation	of	the	two	applications,	as	the	main	objective	is	to	assess	the	potential	impact	
of	the	inclusion	of	uncertainty	aspects	into	event-driven	applications;	we	run	our	experiments	using	an	
“uncertain”	 EPN	 and	 its	 “certain”	 counterpart	 (the	 baseline).	 Our	 results	 show	 that	 both	 use	 cases	
gained	benefits	in	the	uncertain	case:	

• In	the	fraud	detection	use	case	–	we	are	able	to	derive	a	potential	fraud	before	the	certain	case	
and	therefore,	have	the	chance	to	block	the	credit	card	(alternatively,	deny	the	next	transaction)	
before	 further	 transactions	 take	place.	Let’s	 recall	 that	 if	a	 transaction	 is	marked	as	accepted,	
nothing	 can	 be	 done	 afterwards	 if	 the	 transaction	 happens	 to	 be	 fraudulent.	 Therefore,	 the	
main	benefit	of	the	uncertain	application	is	financial,	as	we	prevent	from	further	transactions	to	
take	place.	

• In	 the	 traffic	 use	 case	 -	 we	 are	 able	 to	 forecast	 a	 congestion	 before	 it	 actually	 happens	 and	
therefore	 proactive	 actions	 can	 be	 taken	 to	 alleviate	 the	 congestion.	 We	 showed	 that	 a	
PredictedCongestion	 event	 is	 emitted	 3	 to	 4	 minutes	 before	 a	 Congestion	 is	 detected	 and	
therefore	a	remediation	action	is	possible.	

However,	 performance	 analysis	 showed	poor	 latency.	 In	 this	 second	 version	 of	 the	 document,	 a	 new	
section	on	performance	analysis	and	description	of	refactoring	of	the	code	to	 improve	performance	in	
the	stand-alone	version	of	PROTON	is	included.	As	a	result,	latency	measurements	have	been	marginally	
improved.	Important	to	note	that	these	improvements	hold	only	in	the	stand	alone	version,	and	better	
measurements	are	expected	to	be	achieved	in	the	ProtonOnStorm	version.			

Having	 a	 new	 version	 of	 the	 run-time	 engine,	 further	 recall	 and	 precision	 have	 been	 studied	 for	 the	
traffic	use	case	showing	that	we	can	predict	with	a	high	level	of	success	a	future	congestion.		

However,	 there	 are	 some	 limitations	 in	 our	 applications	 and	 we	 plan	 to	 focus	 on	 overcoming	 these	
limitations	during	year	three	of	the	project.		

In	the	credit	card	use	case:	

• Having	no	access	to	the	sample	data.	The	main	drawback	is	the	fact	that	the	tests	are	made	at	
Feedzai’s	premises.	The	entire	process	required	a	great	deal	of	“logistics”	from	both	sides	that	
made	the	process	more	complex	and	delayed	the	actual	run	of	the	application.		Needless	to	say,	

70	
	

																															D3.2	v3	Second	version	of	event	recognition	and	forecasting	technology	

	

each	 tool	 requires	 a	 certain	 level	 of	 expertise	 when	 working	 with	 it,	 and	 PROTON	 is	 not	 an	
exception	to	this	rule.	

• There	are	inherent	limitations	in	our	application	that	primarily	stem	from	the	fact	that	we	don’t	
rely	 on	 enrichment	 of	 the	 data	 by	 customer	 profiling.	 This	 is	 one	 of	 the	main	 steps	 done	 in	
Feedzai’s	system.	As	long	as	we	cannot	get	this	 information,	will	be	very	difficult	to	marginally	
improve	 our	 results.	 Still,	 we	 plan	 to	 improve	 our	 EPN	 with	 more	 fined	 tuned	 patterns	 and	
thresholds.	

• As	pointed	out,	our	results	are	inconclusive	with	regards	to	their	correctness.	Further	analysis	on	
the	data	with	the	assistance	of	Feedzai	needs	to	be	carried	out.		

In	the	traffic	use	case:		

• Our	results	 indicate	 that	 these	are	significantly	 influenced	by	 the	 thresholds	applied.	We	used	
“rules	of	thumb”	or	thresholds	by	visually	looking	at	the	data.	We	intend	to	learn	the	thresholds	
and	values	 for	 the	Sigmoid	 function	 from	the	historical	data	 to	better	 reflect	 real	situations	 in	
our	 next	 EPN	 version.	 Moreover,	 the	 level	 of	 certainty	 that	 actually	 indicates	 a	 congestion	
should	be	validated,	 i.e.	 from	which	certainty	value	we	should	 take	an	action	 (a	 congestion	 is	
very	likely	to	happen).	

• One	of	 the	main	 advantages	of	 CEP	engines,	 is	 the	 capability	 of	 easily	 include	heterogeneous	
events.	We	started	our	work	in	this	direction	with	the	incorporation	of	the	weather	API.	We	plan	
to	continue	this	direction	in	next	year.	

9 References	

[1]. O.	Etzion	and	P.	Niblet.	Event	processing	in	action.	Manning,	2010	
[2]. Y.	 Kim	 and	 F.	 Hall.	Relationships	 Between	Occupancy	 and	Density	 Reflecting	 Average	 Vehicle	

Lengths.	 Transportation	 Research	 Record:	 Journal	 of	 the	 Transportation	 Research	 Board,	
1883:85–93,	January	2004.		

[3]. M.	Cassidy	and	B.	Coifman.	Relation	Among	Average	Speed,	Flow,	and	Density	and	Analogous	

Relation	Between	Density	and	Occupancy.	Transp.	Res.	Rec.	J.	Transp.	Res.	Board,	vol.	1591,	pp.	
1–6,	Jan.	1997.	

[4]. C.	Canudas	de	Wit,	F.	Morbidi,	L.	L.	Ojeda,	A.	Y.	Kibangou,	I.	Bellicot,	and	P.	Bellemai.	Grenoble	
Traffic	 Lab:	 An	 Experimental	 Platform	 for	 Advanced	 Traffic	 Monitoring	 and	 Forecasting	

[Applications	of	Control].	IEEE	Control	Syst.,	vol.	35,	no.	3,	pp.	23–39,	Jun.	2015.	
[5]. G.	 Cugola,	 A.	Margara,	M.	Matteucci,	 and	 G.	 Tamburrelli.	 Introducing	 uncertainty	 in	 complex	

event	 processing:	model,	 implementation,	 and	 validation.	 Computing,	 pages	 1–42,	 2014.	 ISSN	
0010-485X.	doi:	10.1007/s00607-014-0404-y.	

Scalable Data Analytics Scalable Algo-
rithms, Software Frameworks and Visu-
alisation ICT-2013.4.2a

Project FP7-619435 / SPEEDD
Deliverable D3.2
Distribution Public

http://speedd-project.eu/

Second Version of Event Recognition and
Forecasting Technology – Part II

Evangelos Michelioudakis, Anastasios Skarlatidis,
Elias Alevizos, Alexander Artikis, Georgios Paliouras,
Nikos Katzouris, Christos Vlassopoulos, Ioannis Vet-
sikas

Status: Revised (Version 2.0)

August 2016

page i

Project
Project ref.no. FP7-619435
Project acronym SPEEDD
Project full title Scalable ProactivE Event-Driven Decision making
Porject site http://speedd-project.eu/
Project start February 2014
Project duration 3 years
EC Project Officer Stefano Bertolo

Deliverable
Deliverabe type report
Distribution level Public
Deliverable Number D3.2
Deliverable title Second Version of Event Recognition and Forecasting Tech-

nology – Part II
Contractual date of delivery M22 (November 2015)
Actual date of delivery August 2016
Relevant Task(s) WP3/Task 3.1
Partner Responsible NCSR “D”
Other contributors
Number of pages 74
Author(s) Evangelos Michelioudakis, Anastasios Skarlatidis, Elias Ale-

vizos, Alexander Artikis, Georgios Paliouras, Nikos Kat-
zouris, Christos Vlassopoulos, Ioannis Vetsikas

Internal Reviewers
Status & version Revised
Keywords Uncertainty, event calculus, statistical relational learning

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page ii

Contents

1 Introduction 3
1.1 History of the Document . 3
1.2 Purpose and Scope of the Document . 3
1.3 Relationship with Other Documents . 4

2 Event Recognition under Uncertainty: A Survey 5
2.1 Introduction . 5
2.2 Uncertainty in Event Recognition . 6

2.2.1 Data Uncertainty . 6
2.2.2 Pattern Uncertainty . 7

2.3 Scope of the survey . 7
2.3.1 Probabilistic models . 8
2.3.2 Time representation . 8
2.3.3 Relational models . 8

2.4 Evaluation Dimensions . 9
2.4.1 Representation . 9
2.4.2 Inference . 12
2.4.3 Performance . 13

2.5 Approaches . 13
2.5.1 Automata-based methods . 13
2.5.2 Logic-based methods . 18
2.5.3 Petri Nets . 23
2.5.4 Context-Free Grammars . 23

2.6 Discussion . 27

3 Machine Learning: Approach 30
3.1 Introduction . 30
3.2 Background on Parameter Learning . 31
3.3 Related Work . 33
3.4 OSL↵: Online Structure Learning using background knowledge Axiomatization 38

3.4.1 Extract Templates from Axioms . 39
3.4.2 Hypergraph and Relational Pathfinding . 40

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page iii

3.4.3 Template Guided Search . 43
3.4.4 Clause Creation, Evaluation and Weight Learning 46

4 Machine Learning: Experimental Evaluation 48
4.1 Traffic Management (Real Rocade Data) . 48

4.1.1 Learning Challenges . 48
4.1.2 Experimental Setup . 51
4.1.3 Experimental Results . 51

4.2 Traffic Management (Simulation Rocade Data) . 52
4.3 Activity Recognition . 53

4.3.1 Experimental Setup . 54
4.3.2 The Methods Being Compared . 55
4.3.3 Weight Learning Performance . 55
4.3.4 OSL↵ Performance . 57

5 Conclusions 62

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page iv

List of Tables

2.1 A stream of probabilistic SDEs from the basketball example 15
2.2 Expressive capabilities of CER systems. �: selection, ⇡: production, _: disjunction, ¬:

negation,
;: sequence, *: iteration, W: windowing, H: Hierarchies, T.M.: Temporal Model 24

2.3 Expressive power of CER systems with respect to their probabilistic properties. H.C.:
Hard Constraints . 25

2.4 Inference capabilities of probabilistic CER systems . 26
2.5 Strengths and weaknesses of the reviewed probabilistic CER approaches 28

4.1 Training example for move CE. The first column is composed of a narrative of SDEs,
while the second column contains the CE annotation in the form of ground HoldsAt

predicates. 54
4.2 Variants of CAVIAR, using hard and soft inertia rules. 55
4.3 CAVIAR statistics . 55
4.4 Weight learning accuracy of the meet CE . 56
4.5 Weight learning accuracy of the move CE . 57
4.6 Weight learning running times for meet and move CE 57
4.7 Results for OSL↵ for µ= 4 and µ=1 respectively. 60
4.8 OSL↵ running times for meet and move CE . 60

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

List of Tables page 1 of 74

Executive Summary

This document presents the advancements made in event recognition and forecasting technology of the
SPEEDD project, in order to reason about events and learn event definitions over large amounts of data,
as well as under situations of uncertainty.

SPEEDD implements event recognition methods (also known as event pattern matching or event
pattern detection systems), in order to extract useful information, in the form of events, by processing
time-evolving data that comes from various sources (e.g., various types of sensor, network activity logs,
ATMs, transactions, etc.). The extracted information — recognized and/or forecasted events — can be
exploited by other systems or human experts, in order to monitor an environment and respond to the
occurrence of significant events. Event recognition methods employ rich representation that can natu-
rally and compactly represent events with complex relational structure, e.g., events that are related to
other input/derived events with spatio-temporal constraints. Unfortunately, uncertainty is an unavoid-
able aspect of real-world event recognition applications and it appears to be a consequence of several
factors. Consider for example, noisy or incomplete observations from road sensors, as well as imperfect
definitions fraudulent activity. Under situations of uncertainty, the performance of an event recognition
system may be seriously compromised. Another important characteristic of the SPEEDD project, is
that machine learning algorithms must deal with large amounts of data that continuously evolves. As a
result, the current base of event definitions may need to be refined or new events may appear. There-
fore, the traditional approach of non-incremental batch machine learning algorithms cannot be applied
in SPEEDD.

We begin by reviewing event recognition techniques that handle, to some extent, uncertainty. We
examine automata-based and logic-based techniques, which are the most common ones, and approaches
based on Petri Nets and Context-Free Grammars, which are less frequently used. A number of limi-
tations are identified with respect to the employed languages, their probabilistic models and their per-
formance, as compared to the purely deterministic cases. Based on those limitations, we highlight
promising directions for future work.

We subsequently present a method for scalable incremental learning. In order to address the require-
ments imposed by the presence of uncertainty, we combine probabilistic and logic-based modeling for
representing and reasoning about events and their effects under uncertainty. Specifically, we take advan-
tage of the succinct, structured and declarative representation of the Event Calculus formalism, in order
to formally express events and their effects. To handle the uncertainty, we employ the state-of-the-art
probabilistic and relational framework of Markov Logic Networks. The combination of probabilistic and
logical modeling has also the advantage of expressing event definitions with well defined probabilistic

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

List of Tables page 2 of 74

and logical schematics and thus, we can employ state-of-the-art probabilistic reasoning and machine
learning techniques. Specifically, we present our developed probabilistic structure learning method that
exploits the background knowledge axiomatization to effectively constrain the space of possible struc-
tures by learning clauses subject to specific characteristics defined by these axioms. We employ an
online strategy in order to effectively handle large training sets and incrementally refine the previously
learned structure.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 3 of 74

1

Introduction

1.1 History of the Document

Version Date Author Change Description
0.1 3/11/2015 Anastasios Skarlatidis (NCSR) Set up of the document
0.2 4/11/2015 All Deliverable Authors (NCSR) Structure of the document
0.3 10/11/2015 All Deliverable Authors (NCSR) Content adjusted: Event Recognition Survey
0.4 10/12/2015 All Deliverable Authors (NCSR) Content adjusted: Structure Learning for MLN
0.5 15/1/2016 All Deliverable Authors (NCSR) Content adjusted: Experimental Evaluation
1.0 23/2/2016 All Deliverable Authors (NCSR) Content adjusted: Coclusions
2.0 25/7/2016 All Deliverable Authors (NCSR) Final version after internal review

1.2 Purpose and Scope of the Document
This document presents the progress of the SPEEDD project with respect to event recognition and fore-
casting under uncertainty, as well as the current advancements to probabilistic inference and machine
learning for event definitions. Furthermore, the presented work identifies the research directions that
will be pursued in the second year of the project.

The reader is expected to be familiar with Complex Event Processing, Artificial Intelligence and
Machine Learning techniques, as well as the general intent and concept of the SPEEDD project. The
target relationship is:

• SPEEDD researchers

• SPEEDD audit

SPEEDD emphasises to scalable event recognition, forecasting and machine learning of event def-
initions for Big Data, under situations where uncertainty holds. This document presents the current

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

1.3. Relationship with Other Documents page 4 of 74

advancements and discusses the scientific and technological issues that are being investigated in Work-
Package 3.

1.3 Relationship with Other Documents
This document is related to project deliverable D3.1 “Event Recognition and Forecasting Technology”
that presents previous work on event recognition and machine learning for the SPEEDD prototype. Fur-
thermore, deliverables D6.1 and D6.5 “The Architecture Design of the SPEEDD Prototype and Second
Integrated Prototype ” which present the SPEEDD prototype architecture. Finally, updated versions of
deliverables D7.1 and D8.1 that outline the requirements and the characteristics of the “Proactive Credit
Card Fraud Management” and “Proactive Traffic Management” project use cases, respectively.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 5 of 74

2

Event Recognition under Uncertainty: A Survey

2.1 Introduction
Systems for Complex Event Recognition (CER) accept as input a stream of time-stamped, simple, de-
rived events (SDE)s. A SDE (“low-level event”) is the result of applying a computational derivation
process to some other event, such as an event coming from a sensor. Using SDEs as input, CER sys-
tems identify complex events (CE)s of interest— collections of events that satisfy some pattern. The
“definition” of a CE (“high-level event”) imposes temporal and, possibly, atemporal constraints on its
subevents, i.e. SDEs or other CEs. Consider, for example, the recognition of attacks on computer net-
work nodes given the TCP/IP messages. A CER system attempting to detect a Denial of Service attack
has to identify (as one possible scenario) both a forged IP address that fails to respond and that the rate of
requests is unusually high. Similarly, in the maritime monitoring domain, in order to detect an instance
of illegal fishing, a CER system has to perform both some basic geospatial tasks, such as estimating
whether a vessel is moving inside a protected area, and temporal ones, like determining whether a vessel
spent a significant amount of time in this area.

The SDEs arriving at a CER system almost always carry a certain degree of uncertainty and/or
ambiguity. Information sources might be heterogeneous, with data of different schemas, they might fail
to respond or even send corrupt data. Even if we assume perfectly accurate sensors, the domain under
study might be difficult or impossible to model precisely, thereby leading to another type of uncertainty.
Until recently, most CER systems did not make any effort to handle uncertainty (it is instructive to see
the relevant discussion about uncertainty in Cugola and Margara (2011)). This need is gradually being
acknowledged and it seems that this might constitute a major line of research and development for CER.

The purpose of this survey is to present an overview of existing approaches for CER under uncer-
tainty. Since this field is relatively new, without a substantial number of contributions coming from
researchers directly involved with CER, we have chosen to adopt a broader perspective and include
methods targeting activity recognition and scene understanding on image sequences coming from video
sources. Although activity recognition is a field with its own requirements, it is related closely enough to
CER so that some of the ideas and methods applied there might provide inspiration to CER researchers
as well. However, it is not our intention to present a survey of video recognition methods and we have
selectively chosen those among them that we believe are closer to CER (for a survey of activity recog-
nition methods from video sources, see Vishwakarma and Agrawal (2013)). We have used two basic

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.2. Uncertainty in Event Recognition page 6 of 74

criteria for our choice (applied to the CER methods as well). First, we require that the method employs
some kind of relational formalism to describe activities, since purely propositional approaches are not
sufficient for CER. Second, we require that uncertainty be handled within a probabilistic framework,
since this is a framework that provides clear and formal semantics. In this respect, our work is related
to previously conducted comparisons within the field of statistical relational learning, both theoretical
De Raedt and Kersting (2003); Jaeger (2008); Muggleton and Chen (2008) and practical Bruynooghe
et al. (2009). Note also that the related field of query processing over uncertain data in probabilistic
databases/streams is covered in other surveys (e.g., in Wang et al. (2013a)) and, therefore, we will not
include such papers in our survey.

Running example
Throughout the remainder of the survey, we are going to use a running example in order to assess
the presented approaches against a common domain. Our example comes from the domain of video
recognition. We assume that a CER engine receives as input a set of time-stamped events, derived from
cameras recording a basketball game. However, we need to stress that our input events are not composed
of raw images/frames and that the task of the CER engine is not to perform image processing. We
assume availability of algorithms that can perform the corresponding tasks, such as object recognition
and tracking. Therefore, our SDEs consist of events referring to objects and persons, like walking,
running and dribbling. The purpose is to define patterns for the recognition of some high-level long-
term activities, e.g., that a matchup between two players or a double-teaming is taking place.

Structure of survey
The structure of the survey is as follows: Section 2.2 discusses briefly the types of uncertainty that
may be encountered in a CER application. In Section 2.3 we present certain criteria based on which
we included (or excluded) papers from our survey and in Section 2.4 we discuss the dimensions along
which a proposed solution for handling uncertainty may be evaluated. Section 2.5 presents the reviewed
approaches. Finally, Section 2.6 summarizes them in a tabular form and comments on their limitations.
Some open issues and lines of potential future work are also identified.

2.2 Uncertainty in Event Recognition
Understanding uncertainty in its different types and various sources is crucial for any CER system that
aspires to provide an efficient way of handling it. The ideal CER system would be capable of han-
dling all types of uncertainty within a unified and mathematically rigorous framework. However, this is
not always possible and the current CER systems are still far from achieving such an ideal. Different
domains might be susceptible to different types of uncertainty, while different CER engines employ var-
ious methods for responding to it, ranging from the ones that simply ignore it to those that use highly
complex, fully-fledged, dynamic, probabilistic networks. In this section, we give a brief description and
classification of the various types of uncertainty that may be encountered by a CER system. For further
discussion, see Wasserkrug et al. (2006); Artikis et al. (2012).

2.2.1 Data Uncertainty
The event streams that provide the input data to a CER engine can exhibit various types of uncertainty.
In this section, we present the main types of uncertainty that may be found in incoming event streams.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.3. Scope of the survey page 7 of 74

Incomplete Data Streams

One type of uncertainty is that of incomplete or missing evidence. A sensor may fail to report certain
events, for example due to some hardware malfunction. Even if the hardware infrastructure works as
expected, certain characteristics of the monitored environment could prevent events from being recorded,
e.g. an occluded object in video monitoring or a voice being drowned by stronger acoustic signals.

Corrupt Data

The events of the input stream may have a noise component added to them. In this case, events may
be accompanied by a probability value. There are many factors which can contribute to the corruption
of the input stream, such as the limited accuracy of sensors or distortion along a communication chan-
nel. Another distinction which might be important in certain contexts is that between stochastic and
systematic noise, e.g. the video frames from a camera may exhibit a systematic noise component, due
to different light conditions throughout the day.

When noise corrupts the input event stream, a CER system might find itself in a position where it
receives events asserting contradictory statements. For example, in a computer vision application which
needs to track objects, such as that of our running example, if there are multiple software classifiers, one
of them may assert the presence of an object (e.g., the ball) whereas another may indicate that no such
object has been detected.

Finally, when a CER system needs to learn the structure and the parameters of a probabilistic model
from training data, quite often the data are inconsistently annotated. Therefore, the rules to be learned
have to incorporate this uncertainty and carry a confidence value.

2.2.2 Pattern Uncertainty
Besides the uncertainty present in the input data, a noise-tolerant CER system should also be able to
handle cases where the event patterns are not precise or complete.

Due to lack of knowledge or due to the inherent complexity of a domain, it is sometimes impossible
to capture exactly all the conditions that a pattern should satisfy. It might also be preferable and less
costly to provide a more general definition of a pattern which is easy to implement rather than trying
to exactly determine all of its conditions. A pattern with a wider scope, which does not have to check
multiple conditions, may also be more efficient to compute and, in some cases, this performance gain
could be more critical than accuracy. In both cases, we cannot infer an event with certainty and a
mechanism is required to quantify our confidence.

For example, a rule for determining when a team is attempting an offensive move might be defined as
a pattern in which one of the team’s players has the ball and all other players are located in the opponent
team’s half-court. However, the same pattern could also be satisfied when a player is attempting a free
throw or for an out-of-bounds play. Depending on our requirements, we might or might not want to
include all of these instances as cases of offensive moves. Defining all of these sub-cases would require
more refined conditions, something which is not always possible. Yet, we might be still interested in
capturing this pattern and provide a confidence value.

2.3 Scope of the survey
Before presenting our framework and evaluation dimensions, we explain the rationale behind our choices
and clarify some basic conceptual issues, which we deem important from the point of view of CER.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.3. Scope of the survey page 8 of 74

2.3.1 Probabilistic models
A seemingly simple method to handle uncertainty is to ignore or remove noise through pre-processing
or filtering of the data, thus facilitating the use of a deterministic model. Other methods are available as
well, such as possibilistic reasoning, conflict resolution (accept data according to the trustworthiness of
a source) and fuzzy sets. For example, in Shet et al. (2007) and Shet et al. (2011) a logic-based method
is proposed, which employs logic programming and handles uncertainty using the Bilattice framework
Ginsberg (1988). Another example is the work presented in Ma et al. (2010), where the Dempster-Shafer
theory is used in order to take into account the trustworthiness of heterogeneous event sources. We focus
on probabilistic models because they provide a unified and rigorous framework and the bulk of research
on CER under uncertainty employs such models.

2.3.2 Time representation
Some approaches, especially those employing dynamic graphical models, resort to an implicit represen-
tation of time, whereby time slices depend on (some of) the previous slice(s), without taking into account
time itself as a variable. Useful as this solution might be in domains characterized by sequential patterns,
such as activity recognition in video, there are other cases in CER where time constraints need to be ex-
plicitly stated. Although we include in our survey some approaches with an implicit time representation,
our focus will mostly be on probabilistic relational methods with explicit time representation.

2.3.3 Relational models
A substantial proportion of the existing probabilistic models are propositional by nature, as is the case
with many probabilistic graphical models, such as simple Bayesian networks. Probabilistic graphical
models have been successfully applied to a variety of CER tasks where a significant amount of un-
certainty exists. Especially within the machine vision community, they seem to be one of the most
frequently used approaches. Since CER requires the processing of streams of time-stamped SDEs,
numerous CER methods are based on sequential variants of probabilistic graphical models, such as Hid-
den Markov Models (HMM) Rabiner and Juang (1986) and their extensions (e.g., coupled Brand et al.
(1997), Dynamically Multi-Linked Gong and Xiang (2003) and logical Hidden Markov Models Kerst-
ing et al. (2006)), Dynamic Bayesian Networks Murphy (2002) and Conditional Random Fields Lafferty
et al. (2001).

As far as Hidden Markov Models are concerned, since they are generative models, they require an
elaborate process of extracting the correct independence assumptions and they perform inference on the
complete set of possible worlds. Moreover, their first-order nature imposes independence assumptions
with regard to the temporal sequence of events (with only the current and the immediately previous states
taken into account) that might not be realistic for all domains. On the other hand, Conditional Random
Fields are discriminative models, a feature which allows them to avoid the explicit specification of all
dependencies and, as a consequence, avoid imposing non-realistic independence assumptions Vail et al.
(2007); Wu et al. (2007); Liao et al. (2005). However, both Hidden Markov Models and Conditional
Random Fields assume a static domain of objects (with the exception of logical Hidden Markov Models
Kersting et al. (2006)), whereas a CER engine cannot make the same assumption, since it is not possible
to determine beforehand all the possible objects that might appear in an input stream from a dynamic and
evolving environment. Additionally, the lack of a formal representation language makes the definition of
structured CEs complicated and the use of background knowledge very hard. From a CER perspective,
these issues constitute a severe limitation, since rules for detecting CEs often require relational and

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.4. Evaluation Dimensions page 9 of 74

hierarchical structures, with complex temporal and atemporal relationships. For these reasons, we do
not discuss Hidden Markov Models and Conditional Random Fields in a more detailed manner. Instead,
we focus our investigation on methods with relational models.

2.4 Evaluation Dimensions
In this section, we provide a general framework for the discussion of the different approaches and estab-
lish a number of evaluation dimensions against which the strengths and weaknesses of each method may
be assessed. We follow the customary division between representation and inference. In other words,
we are interested in what kind of knowledge a system can encode (representation) and what kind of
queries it can answer (inference). Although learning in general is a very active research area, we have
decided not to include a detailed discussion about the learning capabilities of the examined approaches
in our survey. The reason is that almost none of the systems touches upon this subject (Sadilek and
Kautz (2012) is one exception). Instead, we will try to draw some conclusions about the performance
of each system, taking into account the difficulties in making performance comparisons, as explained in
the relevant section below.

2.4.1 Representation
A simple unifying event algebra

We begin our discussion of representation by introducing a basic notation for CER. For a more detailed
discussion of the theory behind CER, we refer readers to Luckham (2001), Etzion and Niblett (2010a),
Cugola and Margara (2010). Following the terminology of Luckham (2001), we define an event as an
object in the form of a tuple of data components, signifying an activity and holding certain relationships
to other events by time, causality and aggregation. An event with N attributes can be represented as
EventType(ID,Attr1, . . . , AttrN , T ime), where T ime might be a point, in case of an instantaneous
event, or an interval during which the event happens, if it is durative. Notice, however, that, when
timepoints are used, some unintended semantics might be introduced, as discussed in Paschke (2006).
For our running example, events could be of the form EventType(EventID ,PlayerName,UnixTime)
and one such an event could be the following: Running(987865, Antetokounmpo, 19873294673). In
CER, we are interested in detecting patterns of events among the streams of SDEs. Therefore, we need a
language for expressing such pattern detection rules. For example, by using ’;’ as the sequence operator,
the pattern

EventType1(ID1, A
1
1, . . . , A

1
N , T1);

EventType2(ID2, A
2
1, . . . , A

2
N , T2)

would serve to detect instances where an event of type Type1 is followed by an event of type Type2.
An example would be:

Running(987865, Antetokounmpo, 19873294673);

Jumping(987653, Antetokounmpo, 19873294677);

Dunking(987234, Antetokounmpo, 19873294680)

In the remainder of the survey, for convenience, we omit the ID from events.
Based on the capabilities of existing CER systems and probabilistic CER methods, we adopt here

a simple event algebra. Formalisms for reasoning about events and time have appeared in the past,
such as the Event Calculus Kowalski and Sergot (1986); Cervesato and Montanari (2000) and Allen’s

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.4. Evaluation Dimensions page 10 of 74

Interval Algebra Allen (1983b, 1984), and have already been used for defining event algebras (e.g. in
Paschke and Bichler (2008)). With the help of the theory of descriptive complexity, recent work has
also identified those constructs of an event algebra which strike a balance between expressive power
and complexity Zhang et al. (2014). Our event algebra will be defined in a fashion similar to the above
mentioned efforts, borrowing mostly from Zhang et al. (2014); Cervesato and Montanari (2000).

The following list enumerates those operations that should be supported by a CER engine:

• Sequence: Two events following each other in time.

• Disjunction: Either of two events occurring, regardless of temporal relations. Conjunction (both
events occurring) may be expressed by combining Sequence and Disjunction.

• Iteration: An event occurring N times in sequence, where N � 0.

• Negation: Absence of event occurrence.

• Selection: Select those events whose attributes satisfy a set of predicates/relations, temporal or
otherwise.

• Production: Return an event whose attribute values are a possibly transformed subset of the
attribute values of its sub-events.

• Windowing: Evaluate the conditions of an event pattern within a specified time window.

Below, we present the syntax of the event algebra:

ce ::= sde |
ce1 ; ce2 | Sequence
ce1 _ ce2 | Disjunction

ce⇤ | Iteration
¬ ce | Negation

�✓(ce) | Selection
⇡m(ce) | Production

[ce]T2
T1

Windowing (from T1 to T2)

where �✓(ce(v1, . . . , vn)) selects those ce whose variables vi satisfy the set of predicates ✓ and ⇡m(ce(a1, . . . , an))
returns a ce whose attribute values are a possibly transformed subset of the attribute values of ai
of the initial ce, according to a set of mapping expressions m. Conjunction may be written as
ce ::= ce1 ^ ce2 ::= (ce1; ce2) _ (ce2; ce1).

For example, a traveling violation, occurring when a player who has possession of the ball takes
more than two steps without dribbling, could be defined as follows:

traveling(P
0
, T

0
) ::= ⇡P 0=P,T 0=T3

(�T3�T1<5 seconds(

(hasBall(P, T1) ^ takesStep(P, T1) ^ ¬dribbling(P, T1)) ;

(hasBall(P, T2) ^ takesStep(P, T2) ^ ¬dribbling(P, T2)) ;

(hasBall(P, T3) ^ takesStep(P, T3) ^ ¬dribbling(P, T3))))

where we include the five-second rule and assume that hasBall , takesStep and dribbling are all SDEs.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.4. Evaluation Dimensions page 11 of 74

The above algebra is simple, but expressive, defining temporal constraints between events. E.g., in
the above rule about traveling , the sequence operator (;) implies that T2 > T1 and T3 > T2. Note that
some CER systems (e.g., the Chronicle Recognition System Dousson et al. (1993); Dousson (2002);
Dousson and Le Maigat (2007)) allow the predicates ✓ to be applied directly to the attribute of time, as
in the previous five-second rule. Throughout the remainder of the survey, we also adopt the selection
policy of skip�till�any�match (irrelevant events are ignored and relevant events can satisfy multiple
“instances” of a rule) and the zero� consumption policy (an event can trigger multiple rules).

The above syntax allows for the construction of event hierarchies, a crucial capability for every CER
system. Being able to define events at various levels and reuse those intermediate inferred events in
order to infer other, higher-level events is not trivial. Theoretically, every event language could achieve
this simply by embedding the patterns of lower-level events into those at higher levels, wherever they
are needed. However, this solution would result in long and contrived patterns and would probably
incur heavy performance costs, since intermediate events would need to be computed multiple times.
Moreover, there are multiple ways a system could handle the propagation of probabilities from low-
level to high-level events and these differences can affect both the performance and the accuracy of the
system.

Probabilistic Data

The event algebra defined above is deterministic. We now extend it in order to take uncertainty into ac-
count. As we have already discussed, we can have uncertainty both in the data and the patterns. As far as
data uncertainty is concerned, we might be uncertain about both the occurrence of an event and about the
values of its attributes. E.g., the ProbLog2 system Fierens et al. (2013) employs annotated disjunctions.
Therefore, for a probabilistic event, we could write Prob :: EventType(V alue1, . . . , V alueN , T ime),
which means that this event with these values for its attributes might have occurred with probability
Prob and not have occurred at all with probability 1 � Prob. In order to assigne probabilities to at-
tribute values, e.g. for two different values of Attribute1, we could write

Prob1 :: EventType(V alue11, . . . , V alueN , T ime) ;

Prob2 :: EventType(V alue21, . . . , V alueN , T ime)

In this case, the sum of the two probabilities should not exceed the value of 1 and, if it is below 1, this
means that there is also a probability of no occurrence at all, whose value is 1�

P
s Probs. We assume

that probabilistic events are represented as discrete random variables.
With respect to the probability space, a common assumption is that it is defined over the possible

histories of the probabilistic SDEs. If SDEs are defined as discrete random variables, then one SDE
history corresponds to making a choice about each of the SDEs among mutually exclusive alternative
choices. The probability distribution is then defined over those SDE histories. E.g., if we have the
following probabilistic SDEs

0.8 :: Running(Antetokounmpo, 19873294673)

0.6 :: Jumping(Antetokounmpo, 19873294677)

0.7 :: Dunking(Antetokounmpo, 19873294680)

then the probability space is composed of the 8 possible histories obtained through all the combinations
of event (non-)occurrence. Choosing the history in which all events do occur would yield a probability
of 0.8 ⇤ 0.6 ⇤ 0.7, assuming that all SDEs are independent (which is not always the case).

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.4. Evaluation Dimensions page 12 of 74

Probabilistic Model

In addition to handling uncertain data, we also require probabilistic rules. Syntactically, we express a
probabilistic rule by appending its probability value as a prefix, e.g.

Prob :: ce(A, T) ::= ⇡A=A2,T=T2(ce1(A1, T1); ce2(A2, T2))

where, if ce2 occurred after ce1, then ce occurred at T2 with probability Prob. The probability space
is extended to include the inferred CE in the event histories. A probabilistic rule should then be under-
stood as defining the conditional probability of the CE occurring, given that its sub-events occurred and
satisfied its pattern. The attribute values of this CE are those returned by the production operator. If we
need to define different probability values to the CE with different attribute values, we could use again
the syntax of annotated disjunctions, e.g.

Prob :: ce(T,A) ::=

⇡T=T2,A=A2(ce1(T1, A1); ce2(T2, A2)) ;

Prob
0
:: ce(T,A) ::=

⇡T=T2,A=2⇤A2(ce1(T1, A1); ce2(T2, A2))

where the occurrence probability of ce, with its attribute A having value A2, is Prob, whereas it may
also have occurred with A = 2 ⇤A2 and probability Prob

0 .
There are other ways to define the probability space and its semantics. For example, in the prob-

abilistic programming literature it is common to use the possible worlds semantics for the probability
space (e.g., in ProbLog Fierens et al. (2013)). The probability distribution is defined over the (possibly
multi-valued) Herbrand interpretations of the theory, as encoded by the CE patterns. In this setting, we
could assign non-zero probabilities even in cases where the rule is violated and we could end up with
every Herbrand interpretation being a model/possible world. The existence of “hard” rules which must
be satisfied excludes certain interpretations from being considered as models. When using grammars
(and sometimes logic), the space might be defined over the possible proofs that lead to the recogni-
tion/acceptance of a CE.

2.4.2 Inference
In probabilistic CER, the task is often to compute the marginal probabilities of the CEs, given the
evidence SDEs. Consider the following example:

P (o↵ense(MilwaukeeBucks, [00 : 00, 00 : 24])|SDEs)

where we want to calculate the probability that the team of MilwaukeeBucks was on the offensive for the
first 24 seconds of the game and we assume that o↵ense(team, [start , end]) is a durative CE, defined
over intervals and in terms of SDEs, such as running , dribbling , etc. Moreover, there are cases when
we might be interested in performing maximum a posteriori (MAP) inference, in which the task is to
compute the most probable states of some CEs, given the evidence SDE stream. A simple example from
our running example is the query which asks about the most probable time interval during which an
offense by a team is taking place:

I
o↵ense

= arg
I
maxP (o↵ense(MilwaukeeBucks, I)|SDEs)

Another important dimension concerns the ability of a system to perform approximate inference.
For all but the simplest cases, exact inference stumbles upon serious performance issues, unless several

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 13 of 74

simplifying assumptions are made. For this reason, approximate inference is considered essential. Cer-
tain systems also provide answers with confidence intervals and/or the option of setting a confidence
threshold above which an answer may be accepted.

2.4.3 Performance
CER systems are usually evaluated for their performance in terms of throughput, measured as number
of events processed per second and latency, as measured by the average time required to process an
event. Less often, the memory footprint is reported. Standard benchmarks have not yet been established,
although some work towards this direction has begun Mendes et al. (2013, 2009); Grabs and Lu (2012).
Reporting throughput figures is not enough by itself, since there are multiple factors which can affect
performance. E.g., the number of different event types in the SDE stream or the rule selectivity, i.e. the
percentage of SDEs selected by a rule, are such factors (see Mendes et al. (2009) for a comprehensive
list of performance affecting factors). When uncertainty is introduced, the complexity of the problem
increases and other factors that affect performance enter the picture, such as the option of approximate
inference.

Systems need to be evaluated along another dimension as well, that of accuracy. Precision and recall
are the usual measures of accuracy. In some applications, recall is more important than precision and in
others, the focus is on precision. F-measure is the harmonic mean of precision and recall. The issue of
accuracy is of critical importance and is not orthogonal to that of performance. A system may choose to
sacrifice accuracy in favor of performance by adopting techniques for approximate inference. Another
option would be to make certain simplifying assumptions with respect to the dependency relationships
between events so that the probability space remains tractable.

2.5 Approaches
Surprisingly, there have not been many research efforts devoted exclusively to the problem of handling
uncertainty within the community of distributed event-based systems. The majority of research papers
that could be deemed as relevant to our problem actually come from the computer vision community.
Perhaps it is not much of a surprise if one takes into account the historical roots of CER systems.
Stemming from the need to build more active databases and to operate upon streams of data that have
a pre-defined schema, the problem of uncertainty, although present, was not as critical as in the case of
efficiently processing events from real-world sensors. Moreover, for many of the domains where CER
solutions were initially applied, the goal was to produce some aggregation results (averages, medians,
etc.) from the input streams, which, in a sense, already constitute statistical operations.

Our analysis has identified the following classes of methods: automata-based methods, logic-based
methods, probabilistic Petri nets and approaches based on context-free grammars.

2.5.1 Automata-based methods
Most research efforts targeting the problem of uncertainty in CER are based on extensions of crisp
engines. Since many of these engines employ automata, it is not surprising that automata are one of
the dominant approaches. In this section, we present these approaches. Compared to other methods,
those based on automata seem better-suited to CER, since input events in CER are usually in the form of
streams/sequences of events, similarly to strings of characters recognised by (Non-)Deterministic Finite
Automata.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 14 of 74

SASE Wu et al. (2006) and its extension, SASE+ Agrawal et al. (2008), which includes support
for Kleene closure, is an automata-based CER engine which has frequently been amended in order
to support uncertainty Shen et al. (2008); Kawashima et al. (2010); Zhang et al. (2010); Wang et al.
(2013b). The focus of SASE is on recognizing sequences of events through automata. For each CE
pattern, a automaton is created whose states correspond to event types in the sequence part of the pattern
(excluding possible negations). As the stream of SDEs is consumed, the automaton transitions to a next
state when an event is detected that satisfies the sequence constraint. The recognized sub-sequences are
pruned afterwards, according to the other non-sequence constraints (e.g., attribute equivalences), but, for
some of these constraints, pruning can be performed early, while the automaton is active. Those SDEs
that triggered state transitions are recorded in a data structure that has the form of a directed acyclic
graph, called Active Instance Stack, allowing for quick retrieval of those sub-sequences that satisfy the
defined pattern. SASE+ deviates somewhat from this scheme in that it employs NFAb automata, i.e.,
non-deterministic finite automata with a buffer for storing matches. For the skip� till� any �match
selection policy, where all possible SDE combinations that match the pattern are to be detected, the
automaton is cloned when a SDE allows for a non-deterministic action. For example, a SDE whose type
satisfies a Kleene operator, may be selected or ignored, in which case a new automaton is created.

Assume that our SDEs consist of events indicating whether a certain player holds the ball, is running,
dribbling, shooting or jumping. Additionally, assume that we also have SDEs about whether the ball is
in the net. Now consider a pattern detecting an assist from a player X to a player Y . This pattern could
have the following simplistic definition:

assist(X,Y, T3) ::=hasBall(X,T1);

hasBall(Y, T2);

shooting(Y, T3);

ballInNet(T4)

(2.1)

where player X first has the ball, then player Y , who subsequently attempts a shot and finally it is
detected that the ball is in the net. Note that, for convenience, we omit explicitly writing some production
and selection predicates, like X 6= Y . We assume that the same variable symbols (like X in the CE and
in the SDEs) refer to the same variable and different symbols to different variables (like X and Y). We
also note that this is a simplistic definition, since the rule does not exclude cases where there might be
intervening hasBall SDEs between the two detected hasBall SDEs. A more refined rule would have to
make sure that the two detected hasBall SDEs are consecutive, but we use this simplistic definition for
demonstration purposes, in order to show the basic functionality of automata.

Suppose we have a stream of probabilistic SDEs, as the one shown in Table 2.1. The first and third
columns correspond to timestamps in seconds, while the second and fourth columns show SDEs and CEs
respectively. Each SDE has a probability prefix and its arguments correspond to players (here simply
denoted as pN) and timestamps, except for the ballInNet SDE, whose only argument is the timestamp.
The assist CEs have three arguments, two for the players involved and one for the timestamp. Ignoring
for the moment the probabilities, the crisp version of SASE, for the assist pattern (2.1), would construct
an automaton and Active Instance Stacks, as shown in Figure 2.1. Since rule (2.1) is a simple sequence
pattern, without iteration, the NFA simply proceeds to a next state when an event of the appropriate type
arrives. The other alternative is to ignore an incoming event (self-loops) and wait for another event in the
future to satisfy the pattern. By following the arrows in the Active Instance Stack, the events satisfying
the pattern can be efficiently retrieved. SASE would recognize the sequence of checkmarked SDEs in
Table 2.1, producing the assist(p2, p3, 6) CE. Note that rule (2.1), as it stands, would also recognize
two other CEs, namely those including the 0.8 :: hasBall(p2, 3) and 0.9 :: hasBall(p1 , 1). Here we
focus only on the CE produced by the checkmarked SDEs, as shown by the thick arrows in Figure 2.1.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 15 of 74

Time Input Time Output

1 0.9 :: hasBall(p1, 1)

1 0.8 :: dribbling(p1, 1)

1 0.95 :: running(p2, 1)

3 0.8 :: hasBall(p2, 3)

4 0.7 :: hasBall(p2, 4) X
4 0.7 :: dribbling(p2, 4)

5 0.9 :: hasBall(p3, 5) X
6 0.85 :: shooting(p3, 6) X
6 0.95 :: jumping(p6, 6)

7 0.9 :: ballInNet(7) X 7 P1 :: assist(p2, p3, 6)

7 P2 :: assist(p2, p3, 6)

7 P3 :: assist(p1, p3, 6)

. . .

Table 2.1: A stream of probabilistic SDEs from the basketball example

For the probabilistic versions of SASE, the issue is how to correctly and efficiently calculate the
probability of the produced CEs. In all of these versions Shen et al. (2008); Kawashima et al. (2010);
Zhang et al. (2010); Wang et al. (2013b), this probability is calculated by conceptualizing a probabilistic
stream as event histories, produced by making a choice among the alternatives of each SDE. In our
example, there are only two alternatives for each of the 10 SDEs in the example data stream – occurrence
and non-occurrence –, hence 1024 event histories. In Kawashima et al. (2010); Wang et al. (2013b), each
SDE is treated as having only these two alternatives. However, in other works, as in Shen et al. (2008),
a SDE may have more alternatives, corresponding to different values for some of the arguments of the
SDE. In Zhang et al. (2010), uncertainty about SDEs concerns their timestamps, which are described by
a distribution, an issue not addressed in other works.

The probability of a CE could be calculated by enumerating all the histories, selecting those which
satisfy the CE pattern and summing their probabilities. The probability of a history depends on the
independence assumptions that each approach makes with respect to SDEs. Moreover, since a full
enumeration is highly inefficient, optimization techniques are employed in order to calculate CE proba-
bilities.

In the simplest case, all SDEs are assumed to be independent. In Kawashima et al. (2010), where this
assumption is followed, a matching tree is gradually constructed with SDEs that trigger state transitions.
By traversing the tree, the sequence of SDEs producing a CE and its probability can be retrieved in a
straightforward manner, through multiplications and summation, since all SDEs are independent. For
our example, the probability of the assist(p2, p3, 6) CE would be 0.7 ⇤ 0.9 ⇤ 0.85 ⇤ 0.9, i.e. the product
of the SDE probabilities. In this approach, as more SDEs arrive, probabilities can only become smaller
and, by defining a confidence threshold, certain branches of the tree may be early pruned.

In Shen et al. (2008), SDEs are again assumed to be independent, but a full enumeration is avoided
by using a modified version of the Active Instance Stack, used in crisp SASE. A similar approach is used
in Wang et al. (2013b), where the assumption of complete SDE independence is relaxed and some SDEs
may follow a first-order Markov process. In this case, the edges of the Active Instance Stack are anno-

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 16 of 74

Figure 2.1: NFA and Active Instance Stack as constructed by SASE for rule (2.1) and example stream
of Table 2.1. hB=hasBall , s=shooting , bIN=ballInNet .

tated with the conditional probabilities. If we assume that P (ballInNet(7)|shooting(p3 , 6)) = 0.95,
then P (ballInNet(7), shooting(p3 , 6)) = P (shooting(p3 , 6)) ⇤ P (ballInNet(7)|shooting(p3 , 6)) =
0.85 ⇤ 0.95, hence P (assist(p2, p3, 6)) = 0.7 ⇤ 0.9 ⇤ 0.85 ⇤ 0.95. Note that the conditional probabil-
ity tables in this approach are based on event types, e.g., P (ballInNet |shooting) for all ballInNet and
shooting). For every specific SDE dependent on another SDE, probabilities must be explicitly provided.
In this work, hierarchies of CEs are also allowed.

In Zhang et al. (2010), the issue of imprecise timestamps is addressed, while all the other attributes
have crisp values. Again, SDEs are assumed to be independent. Complete enumeration of all possible
worlds is avoided by employing an incremental, three-pass algorithm through the events in order to
construct event matches and their intervals. This work was extended in Zhang et al. (2014), which added
negation and Kleene plus and allowed for user-defined predicates.

All of these SASE-based methods perform marginal inference and use confidence thresholds for
pruning results that fall below them. Only one attempts to increase performance through distribution.
To the best of our knowledge, the work in Wang et al. (2013b) is one of the very few developing a
CER system which is both probabilistic and distributed (PADUA, described later, is the only other such
method).

Non SASE-based approaches have also appeared. A recognition method that models activities using
a stochastic automaton language is presented in Albanese et al. (2007). In this case, it is not the SDEs that
are probabilistic, but the state transitions of the automaton, in a way similar to Markov chains. A possible
world is now essentially defined over activity occurrences that are targeted for recognition, i.e. CEs.
This method could not initially represent any temporal constraints. It was extended in Albanese et al.
(2011), in order to identify situations that cannot be satisfactorily explained by any of the known CEs.
In particular, the stochastic automaton model is extended with temporal constraints, where subsequent
SDEs can occur within a user-defined temporal interval. Using possible-worlds based modeling, the
method finds (partially) unexplained activities. This is the only automata-based method that can perform
both marginal and MAP inference.

Another extension of Albanese et al. (2007) is the PADUA system, presented in Molinaro et al.
(2014). PADUA employs Probabilistic Penalty Graphs and extends the stochastic automaton presented
in Albanese et al. (2007) with noise degradation. The edges that connect subsequent events in a Penalty
Graph, forming the structure of a CE, are associated with a probability (noise) value that degrades
the belief of the CE when other events intervene. As a result, under such situations, the CE is being
recognized, but with reduced probability. Besides event recognition itself, the method can find patterns
of events that do not belong to the set of known CEs. Additionally, for purposes of scalability, Penalty

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 17 of 74

Graphs can be combined by merging common sub-Graphs, indexing and executing them in parallel.
The Lahar system Ré et al. (2008) constitutes one of the earliest proposals and is based on the Cayuga

Demers et al. (2006) CER engine. Events are modelled by first-order Markov processes. The possible
queries are categorized in three different classes of increasing complexity. For the first two types of
queries, automata are used for recognition. For the most complex queries, in which variables are not
shared among all of the conditions (e.g., as in rule (2.1), with X and Y), a version of the Probabilistic
Relational Algebra Fuhr and Rölleke (1997) is used. A method which attempts to overcome the strict
markovian hypothesis of Lahar and apply certain optimizations, such as early pruning, may be found in
Chuanfei et al. (2010).

Automata-based methods focus on recognizing sequences of events, in which some of those events
may be related, via their attributes, to other events of the sequence. In general, time representation is
implicit. As a result, and with the exception of Albanese et al. (2011), they do not include explicit
temporal constraints, such as concurrency or inequalities between timestamps, e.g., a constraint like
T4�T1  24 seconds in rule (2.1) to make sure than the recognized activity takes place within a single
offense. Windowing is the only temporal constraint allowed. Moreover, they only address the issue
of data uncertainty (Albanese et al. (2011) is again the exception), lacking a treatment of other types of
uncertainty, such as pattern uncertainty, and model relatively simple probabilistic dependencies between
events.

To illustrate a case where concurrency and more complex dependencies may be required, consider a
pattern trying to detect an attempted block by a defender from the stream of Table 2.1:

attempt block(Y, T) ::=�
opponents(X,Y)(

shooting(X,T) ^
jumping(Y, T) ^
close(X,Y, T))

(2.2)

where player X is shooting at the same time that player Y is jumping, the distance between them is
small at that time (we assume image recognition can provide such information as close SDEs) and the
two players belong to different teams, i.e., they are opponents . Such a pattern would require explicit
temporal constraints or, at least, an implicit constraint about concurrent events, a feature generally miss-
ing in automata-based methods. Moreover, jumping is clearly dependent on shooting (a player usually
jumps at the same time or after another player shoots but not while all other players run), yet this depen-
dence cannot be captured by assuming a Markov process that generated those events. Note also that the
above rule makes use of the opponents predicate, assuming that the engine can take into account such
background knowledge that is not part of the SDE stream. Such knowledge is relatively easy to model
in logic-based systems, but the automata-based ones presented above have no such mechanism.

Now assume we want to express a rule stating that if two players are close to each other at the current
timepoint, then they are likely to be close at the next timepoint (a first-order Markov assumption). This
is not an event we would like to detect in itself, but domain knowledge which we would like our system
to take into account. Such rules may be helpful in situations where SDEs may suddenly be missing, for
example due to some sensor failure, but the activity has not ceased. We could introduce the following
two rules:

1 :: close m(X,Y, T) ::= close(X,Y, T) (2.3)

0.6 :: close m(X,Y, T) ::= �
next(T,T

previous

)(
close m(X,Y, Tprevious))

(2.4)

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 18 of 74

and use the close m predicate instead of close in the definition of rule (2.2) for attempt block . The first
of these rules simply transfers the “detection” probability of close to that of close m (rule probability
is 1), whereas the second one expresses the Markov assumption. In automata-based methods where
Markov assumptions are allowed, the conditional probabilities need to be provided for every “ground”
pair of SDEs. Uncertain rules allow us to describe such dependencies in a more succinct manner, as
“templates”.

Assume also that we need some rules to detect maneuvers in which the offender attempts to avoid
the defender. Two of these rules could be the following:

0.9 :: avoid(X,Y, T2) ::= waiting(X,Y, T1);
crossover dribble(Y, T2)

(2.5)

0.7 :: avoid(X,Y, T2) ::= waiting(X,Y, T1);
running(Y, T2)

(2.6)

where crossover dribble and waiting are assumed to be CEs detected by their respective rules.
In this case, we have a hierarchy of CEs, defined by probabilistic rules, starting with the SDEs, on

top of them the waiting and crossover dribble CEs and finally the avoid CE. An efficient mechanism
for propagating probabilities among the levels of the CE hierarchy would be required. Among the
presented methods, CE hierarchies are allowed only in Wang et al. (2013b). Moreover, combining rules
would also be required, both for rules (2.3) – (2.4) and rules (2.5) – (2.6), i.e. functions for computing
the probabilities of CEs with multiple rules (common head, different bodies). For example, rule (2.5)
provides the probability of avoid given waiting and crossover dribble and rule (2.6) the probability of
avoid given waiting and running , but we do not know this probability given all of the lower-level CEs.
A combining rule could help us in computing such probabilities, without adding them explicitly.

2.5.2 Logic-based methods
Another line of research revolves around methods which employ a logical formalism to describe CE
patterns, along with the necessary probabilistic extensions in order to handle uncertainty.

Markov Logic Networks

Since their first appearance Richardson and Domingos (2006), Markov Logic Networks (MLNs) have
attracted increasing attention as a tool that can perform CE recognition under uncertainty. MLNs are
undirected probabilistic graphical models which encode a set of weighted first-order logic formulas
(for a comprehensive description of MLNs, see Domingos and Lowd (2009)). In first-order logic, a
possible world (here meaning an assignment of truth values to all ground predicates) that violates even
one formula is considered as having zero probability. With MLNs, possible worlds can have non-zero
probability, even when violating some formulas, albeit a lower one than those without violations. The
combination of a general but formal representation language together with a well-defined probability
space constitutes an attractive feature of MLNs and has resulted in a significant number of research
efforts.

For a simple example of how a formula in first-order logic is encoded as a MLN, consider a formula

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 19 of 74

Figure 2.2: Markov Logic Network constructed for rule (2.7) and for part of the stream in Table 2.1.
s=shooting , bIN=ballInInet , gT=greaterThan

in first-order logic about a player scoring :

score(X,T2)
8X,T1, T2

shooting(X,T1) ^
ballInNet(T2) ^
greaterThan(T2, T1)

(2.7)

Note that in first-order logic, it is not possible to directly perform numerical calculation and time (in-
)equalities must be explicitly provided in the form of predicates, as above, with greaterThan . If we
take into account only one player (p3) and only two timepoints (6,7) from the stream of Table 2.1,
then the MLN corresponding to this formula would be the one shown in Figure 2.2, where each possible
ground predicate is represented as a node and edges exist between nodes that appear together in a ground
formula. Note that this is a direct and naive way of obtaining a ground MLN. Clever algorithms can
prune unnecessary parts of the graph.

There is a substantial body of work on CER with MLNs Biswas et al. (2007); Helaoui et al. (2011);
Tran and Davis (2008); Morariu and Davis (2011); Sadilek and Kautz (2012); Skarlatidis et al. (2011)
Skarlatidis et al. (2015b); Song et al. (2013b,a); Kanaujia et al. (2014). All of these methods are con-
cerned with human activity recognition, with input events derived mostly from video sources (less fre-
quently from GPS or RFID traces). As a result, many of them have developed solutions that are domain
dependent. Here we focus on those representative papers that are more closely related to CER, by provid-
ing a more generic way for handling events. E.g., in Morariu and Davis (2011) and Song et al. (2013b),
where Allen’s Interval Algebra Allen (1983b) is used and in Skarlatidis et al. (2011, 2015b), where a
version of the Event Calculus Kowalski and Sergot (1986) is used. With the use of such formalisms,
temporal constraints are not captured in the simplistic way implied by the greaterThan predicate. In-
stead, built-in predicates about the temporal relations of events are provided, e.g., the after relation in
Allen’s Interval Algebra, for indicating that an event succeeds in time another event. Interestingly, both
the Interval Algebra and the Event Calculus represent time as intervals.

Contrary to automata-based solutions, MLNs focus on encoding probabilistic rules. As we have
already mentioned, this allows both for incorporating background knowledge and for building hierar-
chies of CEs with correct probability propagation. On the other hand, they use the less intuitive weights

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 20 of 74

timeI0 3 10 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(h
o
l
d
s
A
t
(m
e
e
t
i
n
g
(i
d

1
,
i
d

2
),

T
)|
S
D
E
s
)

ECcrisp

MLN�ECHI

initiation initiation termination

Figure 2.3: Probability increasing for every initiation point in MLN-EC, Skarlatidis et al. (2011, 2015b)

instead of probabilities, which indicate how strong a rule is compared to the others. While it might
be possible for certain simple domains to manually define these weights, usually a learning phase is
required to estimate their best values.

As far as data uncertainty is concerned, it is possible to include probabilistic SDEs as well, through
formulas that “generate” them from the observed SDEs. Moreover, the flexibility of MLNs allows for
more complex reasoning about SDEs. For example, in Tran and Davis (2008), besides handling noisy
SDEs, missing SDEs may be inferred through rules about what must have happened for an event to have
occurred.

A similar approach is proposed in Morariu and Davis (2011), where the Interval Algebra is em-
ployed and the most consistent sequence of CEs are determined, based on the observations of low-level
classifiers. In order to avoid the combinatorial explosion of possible intervals, as well as to eliminate the
existential quantifiers in CE definitions, a bottom-up process eliminates the unlikely event hypotheses.
The elimination process is guided by the observations and the interval relations of the event definitions.

In Song et al. (2013b,a), MLNs are again combined with Allen’s Interval Algebra. In this case,
SDEs are not probabilistic, but a set of other domain-independent axioms is proposed. Abstraction
axioms define hierarchies of events in which an instance of an event with a given type is also an instance
of all abstractions of this type. Prediction axioms express that the occurrence of an event implies the
occurrence of its parts. Constraint axioms ensure the integrity of the (temporal) relations among CE and
its parts. Finally, abduction axioms allow CE to be inferred on the basis of their parts, i.e. inferring
when some events are missing.

The work of Skarlatidis et al. Skarlatidis et al. (2011, 2015b) represents one of the first attempts to
provide a general probabilistic framework for CER via MLNs. In order to establish such a framework, a
version of the Event Calculus is used whose axioms are domain-independent. Combined with the prob-
abilistic domain-dependent rules, inference can be performed regarding the time intervals during which
events of interest (fluents in the terminology of the Event Calculus) hold. The problem of combinatorial
explosion due to the multiple time-points that need to be taken into account is addressed by employ-
ing a discrete version of the Event Calculus, using only integer time-points and axioms that relate only
successive time-points. For similar reasons, existential quantifiers are not allowed. Due to the law of
inertia of the Event Calculus (something continues to hold unless explicitly terminated or initiated with
a different value), this model increases the probability of an inferred event every time its corresponding
rule is satisfied and decreases this probability whenever its terminating conditions are satisfied, as shown
in Figure 2.3. The model requires the existence of such terminating conditions for every event.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 21 of 74

Bayesian Networks

The work presented in Wasserkrug et al. (2008, 2012b,a) employs the technique of knowledge-based
model construction (KBMC), whereby knowledge representation is separated from the inference pro-
cess. Each event is assigned a probability, denoting how probable it is that the event occurred with
specific values for its attributes. In turn, CE patterns are encoded in two levels, with a selection opera-
tion performing an initial filtering, mostly based on event type, followed by a pattern-detection schema
for more complex operations, based on temporal and attribute constraints. The selection mechanism
imposes certain independence properties on the network. CEs are conditioned only on selectable lower-
level events (as determined by the selection operation), preventing the network from being cluttered with
many dependency edges. This framework is not limited to representing only propositional or even first-
order knowledge. It could potentially handle higher-order knowledge, since the pattern-matching step
may, in principle, be defined in any kind of language. However, the system presented allows only predi-
cates expressing temporal constraints on event timestamps and equality constraints on event attributes.

The calculation of probabilities for the CEs is done by a Bayesian network that is dynamically con-
structed upon each new event arrival. The nodes of the network correspond to SDEs and CEs. First,
SDEs are added. Nodes for CEs are inserted only when a rule defining the CE is crisply satisfied, hav-
ing as parents the events that triggered the rule, which might be SDEs or even other CEs, in case of
hierarchical CE patterns. The attribute values of the inferred CEs are determined by mapping expres-
sions associated with the corresponding rule, i.e. functions mapping attributes of the triggering events
to attributes of the inferred event. In order to avoid the cost of exact inference, a form of sampling
is followed, that bypasses the construction of the network by sampling directly according to the CE
patterns.

A more recent effort extends the TESLA Cugola and Margara (2010) event specification language
with probabilistic modelling, in order to handle the uncertainty both in input SDEs and in the CE pat-
terns Cugola et al. (2014). The semantics of the TESLA language is formally specified by using a
first-order language with temporal constraints that express the length of time intervals. At the input
level, the system, called CEP2U, supports uncertainty regarding the occurrence of the SDEs, as well as
the uncertainty regarding the content of the SDEs. SDEs are associated with probabilities that indicate
a degree of confidence, while the attributes of a SDE are modelled as random variables with some mea-
surement error. The probability distribution function of the measurement error is assumed to be known
(e.g. Gaussian distribution). The method also models the uncertainty of CE patterns, by automatically
building a Bayesian network for each rule. The probabilistic parameters of the network are manually
estimated by domain experts.

Other methods based on Bayesian networks, which could be used for CE recognition include Bayesian
logic programming (chapter 10 in Getoor and Taskar (2007)), relational Bayesian Networks Jaeger
(1997) and relational dynamic Bayesian Networks Sanghai et al. (2005). Towards this direction, Dy-
namic Bayesian Networks have been extended using first-order logic Manfredotti (2009); Manfredotti
et al. (2010). A tree structure is used, where each node corresponds to a first-order logic expression,
e.g., a predicate representing a CE, and can be related to nodes of the same or previous time instances.
Compared to their propositional counterparts, the extended Dynamic Bayesian Networks methods can
compactly represent CE that involve various entities.

Comments on graphical models

Graphical models, such as Markov Logic Networks and Bayesian Networks, can provide a substantial
degree of flexibility and they do not require restrictive independence assumptions to be made. Their
power, however, lies in their ability to encode such assumptions and factorize the probability space for

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 22 of 74

more efficient inference. Moreover, they allow the adoption of discriminative modeling and therefore
may avoid the explicit encoding of independence assumptions

On the other hand, this increased flexibility comes at a cost with respect to efficiency. In general,
a rule which references certain random variables implies that, before inference can begin, the cartesian
product of all the values of these variables needs to be taken into account. For human activity recog-
nition, one may assume that the number of persons involved in a scene is relatively limited. However,
this is not the case for all domains. For a fraud detection scenario, involving transactions with credit
cards, a CER system may receive thousands of transactions per second, most of them having different
card IDs. The demands of event recognition exacerbate this problem, since time is a crucial component
in these cases. The possible combinations of time points with the other random variables can quickly
lead to intractable models. All of the papers discussed in this section employ low-arity (or even 0-arity)
predicates, whose arguments have small domain sizes, except for that of time. In order to reduce the
unavoidable complexity introduced by the existence of time, they develop special techniques, such as
the bottom-up technique in Morariu and Davis (2011).

With respect to probabilistic SDEs, although they can be incorporated into graphical models, cor-
rectly encoding their dependencies can be far from obvious, especially with MLNs. Assume we want to
assign an occurrence probability of 80% to the close SDE of rules (2.3)–(2.4). With MLNs, we could
replace rule (2.3) with an equivalence rule, such as:

1.39 8X,Y, T close(X,Y, T) $ close m(X,Y, T) (2.8)

with the appropriate weight (log-odds of occurrence and non-occurrence probabilities), where close are
the observed SDEs and close m the inferred probabilistic events to be used in other rules, such as (2.2).
It would not be sufficient to directly express rules (2.4) and (2.8) in first-order logic and use them to
construct an MLN, since the dependencies introduced would mean that the marginal probability of the
close SDE could be affected by the probability of the close m(X,Y, Tprevious) predicate. Bayesian
Networks could be used to avoid such problems, due to their directionality. On the other hand, MLNs
can be trained as discriminative models, which can result in a simpler structure that does not require
determining all the dependencies among the evidence variables.

Probabilistic Logics

Similar to MLNs, the Probabilistic Event Logic (PEL) Brendel et al. (2011); Selman et al. (2011) method
has been used to define a log-linear model from a set of weighted formulas, but the formulas are rep-
resented in Event Logic, a formalism for defining interval-based events Siskind (2001). Each formula
defines a soft constraint over some events, using interval relations that are represented by a specialised
data structure (spanning intervals). The method performs inference via a local-search algorithm (based
on MaxWalkSAT of Kautz et al. (1997)), but, by using spanning intervals, it avoids grounding all possi-
ble time intervals.

Another probabilistic activity description language for expressing CE on top of an image processing
suite is proposed in Albanese et al. (2010). This method merges logic-based formulation with prob-
abilistic modeling and can handle both instantaneous events and events that span over intervals. The
input SDEs can be either Boolean or probabilistic. CEs are defined by users in first-order logic where
the dependencies between SDEs are modeled by triangular norms Fagin (1996), i.e. binary operations
that can specify more general probabilistic relationships, besides independence and exclusivity.

In Skarlatidis et al. (2013) the Event Calculus was again used, similarly to Skarlatidis et al. (2011),
but this time the focus was on probabilistic SDEs rather than probabilistic rules. The ProbLog logic pro-
gramming framework was used Kimmig et al. (2011), which allows for assigning probabilities to SDEs

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 23 of 74

and can compute the success probability of a query by summing the probabilities of all the subprograms
that entail it. The method exhibited improved accuracy performance with respect to crisp versions of the
Event Calculus on a dataset of video recognition.

2.5.3 Petri Nets
In order to address the issues of concurrency and synchronization, a probabilistic extension to Petri-Nets
has been proposed in Albanese et al. (2008), for recognizing CEs that represent human activities. A
Petri-Net expresses a CE and is formed by SDEs that are connected with constraints (temporal durations
and forbidden actions). The transition between a pair of subsequent SDEs is associated with a probability
value. Given a sequence of SDEs, the method can identify segments of the sequence in which a CE
occurs with probability above a specified threshold or infer the most likely CE in the sequence.

A stochastic variant of Petri-Nets that models the uncertainty of input SDEs is proposed in Lavee
et al. (2013), an issue not addressed in Albanese et al. (2008). Specifically, SDEs are recognized with
some certainty, using lower level classification algorithms. CEs are represented by Petri-Nets, in terms
of SDEs that are associated with certainties and temporal constraints. However, the rules themselves
cannot be probabilistic.

One limitation of the approaches that use Petri Nets is the lack of a mechanism for modelling a
domain in a truly relational manner, i.e. by allowing relations to be defined between attributes of events.
These methods treat events as 0-arity predicates, related only through temporal constraints, as implied
by the structure of the Petri Net, i.e. events are reified, in the terminology of logic. As is the case with
automata too, Petri Nets tend to make a significant number of independence assumptions. The domain
on which they have been tested is that of human activity recognition, in which the sequential nature
of activities allows for the adoption of first-order Markov models. As far as inference is concerned,
both MAP and marginal are possible and optimization techniques, such as confidence thresholds and
approximate inference have been employed.

2.5.4 Context-Free Grammars
A number of research efforts have focused on syntactic approaches to CE recognition. These approaches
typically convert a stream of input SDEs to a stream of symbols upon which certain user-defined rules
may be applied. Rules are defined via a stochastic context-free grammar Stolcke (1995) in order to
take uncertainty into account. A two-step approach along these lines is proposed in Ivanov and Bobick
(2000). Low-level detectors, based on Hidden Markov Models, are used to generate a symbol stream
which is then fed into a parser constructed from a stochastic context-free grammar. This parser in turn
employs stochastic production rules in order to determine the probability of a high-level event. Similar
approaches may be found in Moore and Essa (2002) and in Minnen et al. (2003). Note though that the
latter adds context-sensitive symbols to the grammar, i.e., symbols/events may have arguments.

Recognizing that such syntactic approaches are unable to handle concurrency, a hierarchical method
is proposed in Ryoo and Aggarwal (2009), that combines a syntax for representing the CE patterns of
Ryoo and Aggarwal (2006) with probabilistic recognition. A syntax similar to that of context-free gram-
mars is used for describing CEs, but the actual recognition is treated as a constraint satisfaction problem.
The method aims to probabilistically detect the time intervals in which CEs occur. Input SDEs are asso-
ciated with probabilities, indicating a degree of belief. Based on a context-free grammar representation
scheme, CE patterns are expressed in terms of other events (SDEs or CEs) and form a hierarchical model.
Furthermore, events are related with logical, spatial and temporal interval constraints Allen (1983a). In
situations where the input stream is incomplete, the method generates the missing SDEs with low confi-

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 24 of 74

Language Expressivity

Paper � ⇡ _ ¬ ; * W H. T.M.
Background
Knowl-
edge

Automata

SASE+ X X X X X Points,Implicit.

Lahar X X X Points,Implicit.

Chuanfei et al. X X X Points,Implicit.

SASE+ AIG X X X X X Points,Implicit.

Albanese et al. X X Points,Implicit.

SASE+ opt. AIG X X X X X X Points,Implicit.

SASE++ X X X X X X X Points,Implicit.

Logic-based

KBMC X X X X X Points,Explicit.

CEP2U X X X X X X Points,Implicit.

PEL X X X X Intervals,Implicit.
Allen’s Interval Algebra. X

PADS X X X X Intervals,Explicit.

MLN-Allen X X X X X X X Intervals,Explicit.
Allen’s Interval Algebra. X

MLN-Event Calculus X X X X X Points,Explicit.
Event Calculus.

X

MLN-hier. X X X X Intervals,Explicit.
Allen’s Interval Algebra. X

Prob-Event Calculus X X X X X Points,Explicit.
Event Calculus.

X

Petri Nets

PPN X X X X X Points,Implicit.

PFPN X X Points,Implicit.

Context-Free Grammars

Ivanov et al. X X X X Intervals,Implicit.

Ryoo et al. X X X X X Intervals,Implicit.
Allen’s Interval Algebra.

Paper � ⇡ _ ¬ ; * W H. T.M.
Background
Knowl-
edge

Table 2.2: Expressive capabilities of CER systems. �: selection, ⇡: production, _: disjunction, ¬:
negation,
;: sequence, *: iteration, W: windowing, H: Hierarchies, T.M.: Temporal Model

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 25 of 74

Probabilistic Expressivity

Paper Model Independence assumptions Data uncer-
tainty Patterns H. C.

Automata

SASE+ All events independent. Occurrence

Lahar 1st-order Markov for SDEs.
Different streams independent.

Occurrence/
Attributes

Chuanfei et al. 1st-order Markov with extensions. Occurrence/
Attributes

SASE+ AIG SDEs independent. Occurrence/
Attributes

Albanese et al.
Patterns modelled as stochastic
activities/processes, similar to

Markov chains.

1st-order Markov within activity.
Different activities independent. X

SASE+ opt. AIG SDEs independent or Markovian.
Different streams independent. Occurrence

SASE++ Probability distribution on time
attribute.

SDEs independent. Occurrence

Logic-based

KBMC Bayesian Networks. SDEs independent. Occurrence/
Attributes

X

CEP2U Bayesian Networks.

Event attributes independent. SDEs
independent.

CEs dependent only on events
immediately below in hierarchy.

Occurrence/
Attributes

X

PEL Weights, as in Conditional
Random Fields.

None X X

PADS Probabilities assigned to predicates
for object equality. None. Depends on t-norm. Occurrence

MLN-Allen Markov Logic Networks.
Bottom-up hypothesis generation. None. Occurrence X X

MLN-EC Markov Logic Networks. None. X X
MLN-hier. Markov Logic Networks. None X X

Prob-EC Probabilistic Logic Pro-
gramming. SDEs independent. Occurrence

Petri Nets

PPN

Hard constraints as forbidden
actions.

As in Albanese et al. (2011),
activities resemble stochastic

processes.

Conditioned on previous event in
pattern. X X

PFPN 1st-order Markov.
SDEs independent. Occurrence

Context-Free Grammars

Ivanov et al. Probability space defined over
proofs. Rules conditionally independent. Occurrence X

Ryoo et al. Conditional independence of SDEs. Occurrence

Paper Model Independence assumptions Data uncer-
tainty Patterns H. C.

Table 2.3: Expressive power of CER systems with respect to their probabilistic properties. H.C.: Hard
Constraints

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.5. Approaches page 26 of 74

Inference

Paper Type Confidence
Thresholds Approx. Distrib. Performance

Automata

SASE+ Marginal X 0.8-1.1 K events/sec with Kleene+.

Lahar Marginal X > 10 points increase in accuracy.
100K events/sec for Extended Regular Queries.

Chuanfei et al. Marginal X 4-8K events/sec for patterns of length 6 down to 2.

SASE+ AIG Marginal X
1000K events/sec, almost constant for varying

window size.
1000K-100K events/sec for experiments with 1 up to

10 alternatives of a SDE.

Albanese et al. Marginal and MAP X X

Running time linear in video length.
Better F-measure with the extensions in Molinaro

et al. (2014).
Parallel version reached 335K events/sec with 162

computing nodes.

SASE+ opt. AIG Marginal X X 8K-13K events/sec for 2-6 nodes.

SASE++ Marginal X Reduction from exponential to close-linear cost w.r.t
to selectivity / window size.

Logic-based

KBMC Marginal X CEs within desired confidence interval.
Sub-linear decay of event rate w.r.t possible worlds.

CEP2U Marginal X 50% overhead w.r.t deterministic case.

PEL MAP X
Smooth accuracy degradation when noise in time

intervals of SDEs added.
Relative robustness against false positives/negatives.

PADS Marginal X
Running time at most linear in the number of atoms.
Better precision/recall than Hidden Markov Models/
Dynamic Bayesian Networks, higher computation

time.
MLN-Allen Marginal F-measure > 70% for varying window sizes.

MLN-EC Marginal Increased precision, slight decrease in recall,
compared to deterministic solution.

MLN-hier. MAP

Prob-EC Marginal Improved F-measure w.r.t. crisp version.

Petri Nets

PPN Marginal and MAP X ⇠ 3 seconds to process videos ⇠ with 60 different
SDE types.

PFPN Marginal X
Increased true positive rate, compared to

deterministic solution. Slight increase in false
positive rate.

Context-Free Grammars

Ivanov et al. Marginal X
Ryoo et al. Marginal X Increased accuracy when noisy SDEs present.

Paper Type Confidence
Thresholds Approx. Distrib. Performance

Table 2.4: Inference capabilities of probabilistic CER systems

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.6. Discussion page 27 of 74

dence. The probability of a CE is calculated by exploiting the dependency information between the CE
and its sub-events, as encoded in the hierarchy tree. This method for calculating probabilities is similar
to that of Bayesian networks, the main difference being that siblings are not assumed to be conditionally
independent. When the calculated probability of the CE is above a specified threshold, it is considered
as recognized.

The SDEs of Ivanov and Bobick (2000) (the terminal symbols) are represented as 0-arity, hence no
relations may be defined on attributes (the addition of sensitivity in Minnen et al. (2003) provides a more
flexible approach). Since no event attributes are allowed, it is not possible to define probabilities on at-
tributes either. Moreover, when defining a (production) rule, all the possible sub-scenarios (expansions)
must be explicitly stated, with probability values that sum to 1. For example, a rule for detecting the
avoid event, as in rule (2.5), cannot be “simply” written, as:

0.9 ::Avoid P layer1 Player2 !
Waiting P layer1 Player2,

Crossover Dribble P layer2

(2.9)

All the possible scenarios for Avoid need to be explicitly provided In this example, rule (2.6) should be
added as:

0.1 ::Avoid P layer1 Player2 !
Waiting P layer1 Player2,

Running P layer2

(2.10)

However, note that the two scenarios are considered as mutually exclusive, with a total sum probability
of 1. Note also that events are again reified, as is the case with Petri Nets.

2.6 Discussion
Table 2.2 summarizes the expressive power of the presented CER systems. Its first columns correspond
to the list of operators presented in Section 2.4.1. The other columns assess various aspects of the
functionality supported by each system. These are:

• Hierarchies: A column to indicate whether a system supports event hierarchies, i.e. the ability to
define CEs at various levels and reuse those intermediate inferred events in order to infer other
higher-level events.

• Temporal Model: The temporal model used. Events may be represented by timepoints (P) or
intervals (In). Moreover, the time attribute might be explicitly included in the constraints (Ex)
(e.g. (T2 > T1) ^ (T2 � T1 > 100)) or temporal constraints may be defined by referring
implicitly to time in the rules (Im) (e.g. the Sequence operator implicitly defines T2 > T1).

• Background Knowledge: Does the system support background knowledge, besides what is en-
coded in the CE patterns?

In Table 2.3 we present the probabilistic properties of each method:

• Model: The probabilistic model used.

• Independence assumptions: What are the independence/dependence assumptions made?

• Data: Does the system support data uncertainty? If yes, is it only about the occurrence of events
or both about the occurrence and the event attributes?

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.6. Discussion page 28 of 74

Approach Strengths Weaknesses

Automata

dummy
Iteration, Windowing , formal Event Alge-
bra.

Data uncertainty, both with respect to occur-
rence of events and event attributes.

Existence of confidence thresholds. High
throughput values.

dummy
Limited support for event hierarchies. No
background knowledge. Implicit time rep-
resentation (hence no explicit constraints on
time attribute).

Limited or no support for rule uncertainty.
Too many independence assumptions. No
hard constraints.

Throughput figures come from experiments
with simplistic event patterns.

Logic

dummy
Complex temporal patterns, with explicit time
constraints. Event hierarchies. Background
knowledge. Usually provide a formal Event
Algebra.

Rule uncertainty. Limited independence as-
sumptions. Hard constraints possible.

MAP and approximate inference.

dummy
No Iteration . Limited support for
Windowing .

Harder (but not impossible) to express data
uncertainty. Often training required (experts
cannot “simply” assign probabilities to rules).

Under-performance with respect to through-
put.

Petri Nets

dummy
Concurrency and synchronization.

Have been shown to support both data and
rule uncertainty (but not both in the same
model).

Can perform both MAP and Marginal infer-
ence. Confidence thresholds and approximate
inference possible.

dummy
Not truly relational, event instances reified.
No Windowing , hierarchies or background
knowledge. Implicit time representation.

Strict independence assumptions. Have not
been shown to support continuous domains.

Low (or unknown) throughput.

Grammars

dummy
Very easy to model hierarchies and
Iteration. Recursive patterns.

Both data and rule uncertainty.

Confidence thresholds.

dummy
Not truly relational (unless context-sensitive
grammars are used). No Negation . Implicit
time representation. No background knowl-
edge.

No rich methodology for efficient probabilis-
tic inference.

Unknown performance for throughput.

Table 2.5: Strengths and weaknesses of the reviewed probabilistic CER approaches

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

2.6. Discussion page 29 of 74

• Patterns: Is there support for uncertain patterns?

• Hard constraints: Can the user specify rules that should not be violated?

Table 2.4 presents some of the inference capabilities of the presented systems:

• Type: Can the system perform Marginal inference, MAP inference or both?

• Confidence Thresholds: Can the user define confidence thresholds above which a CE is accepted?

• Approximate: Does the system support techniques for approximate inference?

• Distribution: Is there a distributed version of the proposed solution?

• Performance: Remarks about performance with respect to throughput, latency and accuracy. Note
that such information is not always available.

Our review of probabilistic CER systems identified a number of strengths and limitations for the
proposed approaches. We summarize our conclusions in Table 2.5. As a note of caution though, we
have to mention that, when a weakness is reported, this does not mean that the corresponding method
cannot in general support a feature (as might be the case, for example, for Iteration in first-order logic),
but that the presented methods have not incorporated it, although it might be possible (for example, the
absence of hierarchies in automata-based methods).

The current systems for probabilistic CER need to deal with a trade-off between language expres-
sivity, probabilistic expressivity and complexity. High throughput figures can be achieved only when
simple patterns and probabilistic models are used. Achieving the same figures with more complex
patterns/models so that online, real-time inference is possible still remains a challenge and very few ap-
proaches have explored distributed solutions. Moreover, only rarely do these systems attempt to learn the
weights or structure of patterns and instead rely on experts to define them. This might be sufficient for
simple patterns, but would not scale well in case multiple, complex rules with complicated dependencies
are required.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 30 of 74

3

Machine Learning: Approach

3.1 Introduction
Both fraud detection and traffic management applications depend upon multiple layered and distributed
information systems. As time evolves, such systems share, collect and process data in various structured
and unstructured digital formats. When such information is aggregated and correlated, it might become
a significant source of knowledge for an organization, allowing for the representation of important ac-
tivities. These pieces of information, together with their temporal occurrence, can be represented by
events.

Subsequently, automatic recognition and forecasting of significant events can be performed by sys-
tems that employ Complex Event Processing (CEP) techniques. The aim of a CEP system is to recognize
composite events (CEs) of interest, based on input streams of time-stamped symbols, that is, simple, de-
rived events (SDEs). CEs are defined as relational structures over other sub-events, either CEs or SDEs.
Such CE definitions have the form of rules, usually expressed in a formal language, that capture the
knowledge of domain experts. Due to the dynamic nature of the aforementioned use cases, the CE def-
initions may need to be refined or it might be required that the current knowledge based is enhanced
with new definitions. Manual creation of event definitions is a tedious and cumbersome process. Thus,
machine learning techniques to automatically derive event definitions are required.

Furthermore, uncertainty is an unavoidable aspect of real-world event recognition applications and
it appears to be a consequence of several factors (Shet et al. 2007; Artikis et al. 2010a; Etzion and
Niblett 2010b, Section 11.2; Gal et al. 2011; Skarlatidis 2014). Under environments characterized by
uncertainty, the performance of an event recognition system may be seriously compromised. There are
three types of uncertainty that might appear in an event recognition application: (a) Erroneous input
SDEs, (b) Incomplete input streams and/or (c) Imperfect event definitions.

To overcome the issues, we are developing probabilistic inference and structure learning algorithms
that operate under noisy environments and scale to very large datasets. Specifically, we combine a well-
defined temporal logic formalism with statistical relational modeling and learning methods. We present
an approach on scalable incremental learning of event definitions from large amounts of data.

In Section 3.2 we begin by briefly presenting background work for both batch and online parameter
learning. Then, in Section 3.3 we present related work for structure learning and outline the limitations
of these approaches. Finally, in Section 3.4 we present our developed algorithm OSL↵.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.2. Background on Parameter Learning page 31 of 74

3.2 Background on Parameter Learning
The weights of the soft-constrained clauses in Markov Logic Networks (MLNs) can be estimated from
training data, using supervised learning techniques. As mentioned in D3.1 (Skarlatidis et al., 2014), in
many applications (including event recognition), the actual goal is to maximize an alternative perfor-
mance metric to conditional log-likelihood (CLL) such as classification accuracy or F-measure. Thus,
an alternative to optimization to CLL is max-margin training which constitutes an approach competitive
to discriminative training and also has the advantage that it can be adapted to maximize a variety of per-
formance metrics beyond classification accuracy (Joachims, 2005). Furthermore, max-margin methods
have been successfully applied to structure prediction (Taskar et al., 2003; Tsochantaridis et al., 2005)
in order to learn parameters that maximize the margin between the probability of the correct assignment
and that of the other assignments. Instead of optimizing the CLL, max margin methods maximize the
following ratio:

P (Y=y|X=x,w)

P (Y=ŷ|X=x,w)

The above equation measures the ratio between the probability of correct truth assignment y of CEs
and the closest competing incorrect truth assignment ŷ=argmaxȳ2Y\yP (Y=ȳ|X=x) , also known as
separation oracle. We employ the method of Huynh and Mooney (2009) which formulates the max-
margin problem as a 1-slack structural support vector machine (SVM) using a cutting-plane algorithm
proposed by Joachims et al. (2009). Specifically, structural SVMs predict structured outputs instead of
discrete labels or real values. In particular, they describe the problem of learning a function h : X 7! Y ,
where X is the space of input examples, and Y is the space of multivariate and structured outputs from
the set of training examples S = ((x1,y1), . . . , (xn,yn)) 2 (X ⇥ Y)n.

The goal is to find a function h that has low prediction error. This can be accomplished by learning
a discriminant function f : X ⇥ Y 7! R and maximize f over all y 2 Y for a given input x in order to
get a classifier of the form:

hw(x) = argmax
y2Y

fw(x,y)

The discriminant function fw(x,y) = wT (x,y) is linear in the space of features, where w 2 RN

is a parameter vector and (x,y) is a feature vector relating an input x and output y. The features need
to be designed for a given problem so that they capture the dependency structure of y and x and the
relations among the outputs y. In our case (x,y) = n(x,y) is the number of satisfied groundings of
x and y. Therefore, the goal is to find a parameter vector w that maximizes the margin by employing
linear programming techniques described in Huynh and Mooney (2009).

Batch training algorithms must repeatedly run inference over all training examples in each iteration.
This becomes computationally expensive and eventually infeasible for very large datasets with thousands
of training examples, which may not even fit in the main memory. To overcome this problem, we employ
an online learning strategy where the learner sequentially processes a set of examples at each step in the
form of micro-batches. The size of these batches can be adjusted.

In particular, we employ an online max-margin method proposed by Huynh and Mooney (2011a)
based on the Coordinate-Dual-Ascent update rule (CDA). The algorithm is derived from the primal-dual
framework for strongly convex loss functions (Hazan et al., 2006), which is a framework for deriving
online algorithms that have low regret. CDA can use various loss functions to guide the optimization.
We employ a prediction-based loss which measures the difference between the predicted possible world

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.2. Background on Parameter Learning page 32 of 74

and the ground-truth one. The update rule in terms of the weight vector for each step t is the following:

wt+1 =
t� 1

t
wt +

1

�t
��t (3.1)

where � is a non-negative constant and �t is a feature vector representing the number of satisfied
groundings in x and y as in the batch version of max-margin training. Note that the learning rate of the
update rule is controlled by the loss suffered at each step. At the beginning, when the model has low
predictive quality, CDA aggressively updates the model based on the loss suffered at each step. Later,
when the model improves, it is updated less aggressively.

Although CDA is quite fast, it may lack in accuracy. Moreover, Lee et al. (2006) states that parameter
learning algorithms used by the structure learning procedure, which may introduce a lot of new features
and many of which may not be useful, perform better when they use L1-regularization. Therefore, L1-
regularization, which has the tendency to force parameters to zero and thus leads us to sparser models, is
preferred over other Lp norm regularization methods. For this reason we also employ another algorithm
for online optimization used by Huynh and Mooney (2011b) in order to perform structure learning more
efficiently.

AdaGrad, proposed by Duchi et al. (2011), is a state-of-the-art online method, which is an L1-
regularized adaptive subgradient algorithm based on composite mirror-descent updates. AdaGrad be-
longs to a family of subgradient methods that dynamically incorporate knowledge of the geometry of
the data observed in earlier steps to perform more informative gradient-based learning. Informally, the
algorithm gives frequently occurring features very low learning rates and infrequent features high learn-
ing rates, where the intuition is that each time an infrequent feature is seen, the learner should “take
notice”. Thus, the adaptation facilitates finding and identifying very predictive but comparatively rare
features. It is often the case that infrequently occurring features are highly informative and discrimina-
tive. Indeed, in many applications of online and stochastic learning, the input instances are of very high
dimensionality, yet within any particular instance only a few features are non-zero. AdaGrad updates
the weight vector at each step t as follows:

wt+1,i = sign
⇣
wt,i �

⌘

Ht,ii
gt,i

⌘h���wt,i �
⌘

Ht,ii
gt,i

����
�⌘

Ht,ii

i

+
(3.2)

where � is the regularization parameter used to tackle overfitting, ⌘ is the learning rate, wt,i is the
i-th component of the weight vector at step t and [a]+ denotes a truncated function at 0, i.e. [a]+ =
max(a, 0). The function sign returns the sign of the operation inside the brackets. The subgradient gt is
computed, at each step t, over the loss function which guides the optimization process, as follows:

gPL = nC(xt,y
PL
t)� nC(xt,yt) = �nC (3.3)

where nC is the number of true groundings for the clause C and yPL
t is the predicted possible

world. The subgradient of the loss function represents the difference between the number of satisfied
groundings computed over the predicted possible world and the ground-truth one. Regarding the loss
function, we use the prediction-based loss function, also used by Huynh and Mooney (2011b) which is
a simpler variant of the max-margin loss (Huynh and Mooney, 2009). Furthermore, the subgradient is
also required to compute Ht,ii as follows,

Ht,ii = � + ||g1:t,i||2 = � +

vuut
tX

j=1

g2
j,i (3.4)

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.3. Related Work page 33 of 74

where H is a diagonal matrix and � is the default value of the matrix. Note that AdaGrad assigns
a different step size ⌘

H
t,ii

for each component of the weight vector. Thus, AdaGrad needs to retain the
sum of squared subgradients of each component. From the update rule we can see that if a clause is not
relevant to the current example the AdaGrad discounts its weight by �⌘

H
t,ii

. Thus, irrelevant clauses will
be zeroed out in the long run.

3.3 Related Work
The task of structure learning is to discover the dependency structure of the model as well as estimate
the parameters of these dependencies given a set of training examples D. The training set usually
consists of a single interconnected example containing many ground instances of observed SDEs as well
as unobserved CEs (query predicates). Nearly all approaches developed for structure learning perform
a heuristic search through the space of possible structures, known as the hypothesis space H, in order
to avoid exhaustive search, which is combinatorially explosive for complex models. Typically, given a
particular scoring function S(h,D) for h 2 H the task is reduced to finding a hypothesis h⇤ 2 H that
maximizes the score, i.e. h⇤ = argmaxh2H S(h,D).

In MLNs the structure is a set of weighted formulas in conjunctive normal form. In principle, the
structure can be learned or revised by using approaches for learning graphical models (Pietra et al.,
1997; Heckerman, 1999; McCallum, 2012) as well as Inductive Logic Programming (ILP) techniques
(Quinlan, 1990; De Raedt and Dehaspe, 1997; Srinivasan, 2004). However, since an MLN represents
a probability distribution over possible worlds, much better results are obtained by using evaluation
functions based on likelihood (e.g. pseudo-likelihood), rather than typical ILP ones like accuracy and
coverage (Kok and Domingos, 2005). Log-likelihood or conditional log-likehood are probably the best
evaluation functions, albeit particularly expensive to compute.

In this section we outline important batch approaches that have been developed in order to effi-
ciently learn and revise the MLN structure, starting either from an existing knowledge base or an empty
one. These methods have proven to be beneficial in many real-world applications in citation analysis,
web mining, natural language processing, robotics, bioinformatics, computer games as well as activity
recognition.

Top-down structure learning Top-down structure learning as proposed by Kok and Domingos (2005)
learn or revise the MLN structure in an iterative fashion. The initial structure can be an empty network
or an existing KB. At each step, the algorithm searches for the best clause to add to the model. Search-
ing can be performed using one of two possible strategies. The first one, beam search, keeps the best k
clause candidates at each step of the search. The second one, shortest-first search, tries to find the best
clauses of length i before it moves on to clauses of length i+1. Candidate clauses are formed by adding
each predicate (negated or not) to each current clause, using all possible combinations of variables, sub-
ject to the constraint that at least one variable in the new predicate must appear in the current clause.
Candidate clauses are scored using the weighted pseudo log-likelihood measure, an adaptation of the
pseudo log-likelihood that weights the pseudo-likelihood of each grounded atom by 1 over the number
of groundings of its predicate, in order to prevent predicates with larger arity from dominating the ex-
pression. The procedure follows a blind generate-and-test strategy in which many potential changes to
an existing model are systematically generated independently of the training data, and then tested for
empirical adequacy. For complex models such as MLNs, the space of potential revisions is combinato-
rially explosive and such a search procedure can become difficult to control, resulting in convergence to
suboptimal local maxima.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.3. Related Work page 34 of 74

Iterative Local Search One way of addressing the potential shortcomings of greedy structure se-
lection is by using iterative local search techniques (Loureno et al., 2003), that explores the space of
structures through a biased sampling of the set of local optima found by a local search procedure. They
focus the search not on the full space of solutions but on a smaller subspace defined by the solutions that
are locally optimal for the optimization engine. These techniques alternate between two types of search
steps: (a) either moving towards a locally optimal solution using a given evaluation function, or (b) per-
turbing the current solution in order to escape from local optima. The algorithm proposed by Biba et al.
(2008) uses the above technique to avoid local maxima when learning MLNs in a discriminative setting,
where the focus is on predicting a specific target predicate given the evidence on all other predicates.

Bottom-up structure learning Another alternative is using algorithms developed to restrict the hy-
pothesis space H, typically by performing a pre-processing step that, roughly speaking, discovers more
promising regions of the space. Bottom-Up Structure Learning (BUSL) introduced by Mihalkova and
Mooney (2007) is based on the observation that, once an MLN is instantiated into a Markov network
(through the grounding procedure), the instantiations of each clause of the MLN define a set of identi-
cally structured cliques in the Markov network. BUSL inverts this process of instantiation and constrains
the search space by inducing lifted templates for such cliques in order to learn a so-called Markov net-
work template. The template network is composed of template nodes, conjunctions of one or more
literals that serve as building blocks for creating clauses. Template nodes are constructed by looking for
groups of constant-sharing ground literals that are true in the data and abstracting them by substituting
variables for constants. Thus, these template nodes could also be viewed as portions of clauses that
have true groundings in the data. To understand why conjunctions of literals with true groundings are
good candidates for clause components, consider the special case of a definite clause L1 ^ · · ·^Ln)P .
If the conjoined literals in the body have no true groundings, then the clause is always trivially satis-
fied. Therefore, true conjunctions will be most useful for building effective clauses. To search for these,
BUSL generates clause candidates by focusing on each maximal clique in turn and producing all possible
clauses consistent with it. The candidates are then evaluated using the weighted pseudo log-likelihood
score. BUSL restricts its search for clauses only to those candidates whose literals correspond to tem-
plate nodes that form a clique in the template. It also makes a number of additional restrictions on the
search in order to decrease the number of free variables in a clause, thus decreasing the size of the ground
MLN during inference, and further reducing the search space. Therefore, BUSL typically restricts the
search to very short paths, creating short clauses from them and greedily joining them into longer ones.
Although this approach is faster and yields more accurate models than the top-down approach, it may
still converge to a suboptimal local maxima.

Discriminative heuristic structure learning An approach somewhat similar to the principle under-
lying the BUSL algorithm was proposed by Dinh et al. (2010). Heuristic Method for Discriminative
Structure Learning employs a heuristic method in order to discriminatively learn the structure of MLNs.
It consists of three main steps. First, for each true ground query atom, applies a heuristic technique to
build a set of variable literals, called chain. To achieve that is adds to the set each ground atom in the
training example D connected to the ground query atom through its arguments and variabilize it. Then
transforms the learning dataset to a boolean table, having ground query atoms as rows and variable liter-
als as columns, representing their connections. Second, by applying the Grow-Shrink Markov Network
(Bromberg F, 2009) algorithm to these boolean tables, it extracts a set of template clauses. A template
clause is a disjunction of positive variable literals. Finally, candidate clauses are built from the template
clauses to be added into the MLN. The score of the weighted MLN is then measured by computing
either its conditional log-likelihood or weighted pseudo log-likelihood. The procedure follows a similar

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.3. Related Work page 35 of 74

approach to the BUSL algorithm. Both of them consist of three mains steps: Transforming the relational
dataset into template clauses, building candidate clauses using these templates and putting clauses into
the MLN. Although the quality of the boolean tables constructed yields higher accuracy, the greedy
strategy delivers higher running times.

Moralized Bayes Nets An alternative approach is searching for structures of increasing complexity
at each stage of the procedure; using the structures found at the previous stage to constrain the search
space. Such a strategy was employed by Khosravi et al. (2010) for learning MLN structure in domains
that contain many descriptive attributes, namely predicates having very large arity. Their approach,
which is similar to the technique employed to constrain the search space in Probabilistic Relational
Models (Friedman et al., 1999), distinguishes between two types of tables – attribute tables that describe
a single entity type, and relationship tables that describe relationships between entities. The algorithm,
called MBN (Moralized Bayes Net), proceeds in three stages. In the first stage, dependencies local to
attribute tables are learned. In the second stage, dependencies over a join of an attribute table and a re-
lationship table are learned, but the search space is constrained by requiring that all dependencies local
to the attribute table found in the first stage remain the same. Finally, in the third stage, dependencies
over a join of two relationship tables, joined with relevant attribute tables are learned and the search
space is similarly constrained. Although the goal of MBN is to learn an undirected model, dependencies
are learned using a Bayesian network learner and then the directed structures are converted to undi-
rected ones by using moralization (Cowell et al., 2007). The advantage of this approach is that structure
learning in directed models is significantly faster than structure learning in undirected models due to the
decomposability of the score, which allows it to be updated locally, only in parts of the structure that
have been modified, making scoring of candidate structures more efficient. On the other hand, when
scaling to larger table joins, the algorithm becomes computationally intensive.

Hypergraph Lifting Another MLN learner that is based on constraining the search space is the Learn-
ing via Hypergraph Lifting (LHL) algorithm introduced by Kok and Domingos (2009). LHL receives
as input the set of clause candidates considered by relational pathfinding (Richards and Mooney, 1992)
and focuses only on the most promising ones. Developed in the ILP community, relational pathfinding
searches for clauses by tracing paths across the true instantiations of relations in the data. The data are
represented as a generalized graph, called hypergraph, having edges connecting any number of nodes,
called hyperedges. However, because in real-world relational domains the search space over relational
paths may be very large, a crucial aspect of LHL is that it does not perform relational pathfinding over
the original relational graph of the data, but over a so-called lifted hypergraph, which is formed by jointly
clustering the entities in the domain via an agglomerative clustering procedure. Intuitively, constants are
clustered together if they tend to participate in the same kind of relations (i.e. predicates) with constants
from other clusters. The complexity of the agglomerative clustering in the general case is O(n3), which
makes it slow for large datasets. On the other hand, pathfinding on this lifted hypergraph is typically at
least an order of magnitude faster than on the ground training data, producing MLNs that are more ac-
curate than previous approaches. Subsequently, the ground atoms in each path are variabilized, and they
are used to form clauses, which are evaluated using a pseudo-likelihood measure. Then, the algorithm
iterates over the clauses from shortest to longest and for each clause, compares its score against those of
its sub-clauses. If a clause scores higher than all the sub-clauses it is retained, otherwise it is discarded
because it is unlikely to be useful. Finally, the retained clauses are added to an MLN, the weights are re-
learnt and the clauses are kept in the MLN, which improves the overall weighted pseudo log-likelihood.
LHL is a data-driven algorithm which cannot exploit background knowledge for learning rules. This
inability makes it inappropriate for capturing complex relations and learning qualitatively meaningful

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.3. Related Work page 36 of 74

rules.

Structural Motifs Kok and Domingos (2010) have proposed constraining the search for clauses by
identifying so-called structural motifs, which capture commonly occurring patterns among densely con-
nected entities in the domain (i.e. sets of entities that are closely related). The Learning using Structural
Motifs (LSM) algorithm, a modification of LHL, proceeds by first identifying motifs (recurring pat-
terns) and then searching for clauses by performing relational pathfinding within them. To discover
motifs, LSM starts from an entity i in the relational graph and performs a series of random walks. The
random walks are used to calculate the average number of steps required to reach another entity j for
the first time, called hitting time. Entities that are reachable within a thresholded hitting time as well as
the hyperedges among them are included in the motif and the paths through which they are reachable
from i are recorded. Next, the entities included in the motif are clustered by their hitting times into
groups of potentially symmetrical nodes (i.e. nodes that have symmetrical paths). The nodes within
each group are then further clustered in an agglomerative manner by the similarity of distributions over
paths through which they are reachable from i. This process results in a lifted hypergraph, analogous to
the one produced by LHL; however, whereas in LHL nodes were clustered based on their close neigh-
borhood in the relational graph, here they are clustered based on their longer-range connections to other
nodes. Thus, intuitively, LHL is making use of length-2 paths to determine the similarity of nodes. In
contrast, LSM uses longer paths, and thus more information, to find clusterings of nodes (motifs). In
addition, LSM finds various clusterings rather than just a single one. Motifs are extracted from the lifted
hypergraphs through depth-first search. Finally, LSM runs relational pathfinding on each motif to find
candidate rules, and retains the good ones in an MLN using the same procedure as LHL. Although LSM
is much faster and accurate than LHL, especially for more compex models, it, too, is data-driven and
cannot exploit background knowledge for learning rules.

Gradient-Based Boosting Khot et al. (2011) have extended the functional gradient boosting approach
to learning the relational dependency networks of Natarajan et al. (2012) to MLNs. In contrast to previ-
ous approaches, they learn structure and parameters simultaneously, thus avoiding the cost of repeated
parameter estimation. This is done through a sequence of functional gradient steps, each of which adds
clauses based on the point-wise gradients of the training examples in the current model. They present
two representations for functional gradients. The first one is based on relational regression trees (Block-
eel and De Raedt, 1998) and the second one learns Horn clauses by using a beam search that adds literals
to clauses that reduce the squared error. Moreover, Khot et al. (2015) extend the algorithm to handle
missing data by using an EM-based approach.

Markov Networks Structure learning techniques for Markov networks have been developed in the
graphical models community. One technique is that of structure selection through appropriate regular-
ization (Lee et al., 2006). In this approach, a large number of factors of a Markov network are evaluated
simultaneously by training parameters over them and using the L1 norm as a regularizer (as opposed
to the typically used L2 norm). Since the L1 norm imposes a strong penalty on smaller parameters, its
effect is that it forces more parameters to zero, leading to sparser models. Huynh and Mooney (2008)
extend this technique for structure learning of MLNs by first using Aleph (Srinivasan, 2004), an off-
the-shelf ILP learner, to generate a large set of potential factors (in this case, first-order clauses), and
then perform L1-regularized parameter learning over this set. Another technique proposed by Lowd and
Davis (2010) uses probabilistic decision trees to learn the structure. The Decision Tree Structure Learn-
ing (DTSL) algorithm learns probabilistic decision trees using the training data in a depth-first manner
to predict the value of each variable. It then converts the trees into sets of conjunctive features. All

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.3. Related Work page 37 of 74

learned features are merged into a global model and the parameters for those features can be estimated
using any standard parameter learning method. In addition to this conversion, various prune methods
are used during the feature generation process in order to make learning and inference faster. Lowd
and Davis (2014) extended the algorithm and introduced two new variations of DTSL. The first one,
DT-BLM, builds on DTSL by using the Bottom-Up Learning of Markov Networks (BLM) algorithm
of Davis and Domingos (2010) to further refine the structure learned by DTSL. This algorithm is much
slower but usually more accurate than DTSL. Furthermore, it serves as an example of how decision trees
can be used to improve search-based structure learning algorithms, by providing a good initial struc-
ture. The second one, DT+L1, combines the structure learned by DTSL with the pairwise interactions
learned by L1-regularized logistic regression (Ravikumar et al., 2010) by taking the union of the best
DTSL and L1 feature set. The trees used by DTSL are good at capturing higher-order interactions. In
contrast, L1 captures many independent interaction terms, but each interaction can only be between just
two variables. Their combination offers the potential to represent both kinds of interaction, leading to
better performance in many domains.

Online Structure Learning The Online Structure Learning (OSL) algorithm proposed by Huynh and
Mooney (2011b) updates both the structure and the parameters of the model using an incremental ap-
proach based on the model’s incorrect predictions. Unlike the previously presented methods, OSL takes
into account the predicted possible worlds, i.e. the most probable possible worlds predicted by the cur-
rent model. Specifically, at each step t of the algorithm, if the predicted possible world yPt is different
from the ground-truth one yt then OSL focuses on searching for clauses that differentiate yt from yPt .
This is related to the idea of using implicit negative examples in ILP (Zelle et al., 1995). In this particular
case, each ground-truth possible world plays the role of a positive example and any predicted possible
world that differs from the ground-truth one is incorrect and can be considered as a negative example. In
addition, this follows the max-margin training criterion which focuses on discriminating the true label
from the most probable incorrect one (Tsochantaridis et al., 2005). In order to discover useful clauses
specific to the set of wrongly predicted atoms, OSL employs relational pathfinding over a hypergraph
(Richards and Mooney, 1992). The search procedure is also combined with mode declarations (Muggle-
ton, 1995), a form of language bias, to speed up the process. Paths found by the mode-guided relational
pathfinding process are generalized into first-order clauses by replacing constants with variables. The
resulting set of clauses is added to an MLN and the parameters are updated using the AdaGrad weight
learning algorithm described in Section 3.2.

The aforementioned methods for structure learning in Markov Logic Networks, excluding OSL,
are batch learning algorithms that are effectively designed for training data consisting of many ground
instances. Moreover, most of these algorithms are strictly data-driven, which means that they only
consider the ground-truth possible worlds and search for clauses that improve the likelihood of those
worlds. They do not exploit the background knowledge that may be available about a task and may
spend a lot of time exploring clauses that are true in most of these worlds, therefore largely useless
for the purposes of learning. To overcome these issues we developed OSL↵, presented in Section 3.4,
that exploits the background knowledge domain-independent axiomatization in order constrain the seach
space of possible structures. Moreover, it uses an online strategy, like OSL, in order to effectively handle
large datasets.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 38 of 74

3.4 OSL↵: Online Structure Learning using background knowledge Ax-
iomatization

Our goal is to effectively learn Event Calculus definitions, in order to accurately perform event recogni-
tion given an input of observed SDEs. OSL has several limitations which renders it unable to learn such
definitions. Specifically, even when performing mode-guided search over the hypergraph, the space of
possible paths can become exponentially large. For instance, the Event Calculus is a temporal formalism
describing CE occurrences over time. Therefore, data used for training will inevitably contain a large
domain of time points (possibly) having multiple complex temporal relations between events. Mode
declarations alone cannot handle this large domain. It will be then fundamental to prune a portion of the
search space. Moreover, existing structure learning methods, including OSL, assume that domains do
not contain any functions, which are essential for the Event Calculus representation.

Micro-Batch tn
HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch tn+k

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

.

Data Stream/Training Examples

Learnt Hypothesis Hn:

0.51 HoldsAt(move(id1, id2), t+1) (
HappensAt(walking(id1), t)^
HappensAt(walking(id2), t)

+

MLNEC Axioms:
HoldsAt(f, t+1) (

InitiatedAt(f, t)

HoldsAt(f, t+1) (
HoldsAt(f, t) ^
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1) (
TerminatedAt(f, t)

¬HoldsAt(f, t+1) (
¬HoldsAt(f, t) ^
¬InitiatedAt(f, t)

OSL↵

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Figure 3.1: The procedure of OSL↵

To cope with these limitations we propose OSL↵, which exploits domain-independent axioms of
the background knowledge, to further constrain the search space only to clauses subject to specific
characteristics introduced by these axioms. Furthermore, our approach can handle a subset of functions
defined by the first-order logic formalism and effectively learn definitions using these functions. Figure
3.1 presents the interactions among the components underlying OSL↵. The background knowledge
consists of the MLN�EC axioms (i.e. domain-independent rules) and an already known hypothesis (i.e.
set of clauses). At a step tn of the online procedure a training example (micro-batch) Dt

n

arrives and
is used together with the already learnt hypothesis in order to predict the truth values yPt

n

of the CEs of

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 39 of 74

interest using probabilistic inference. Then for all wrongly predicted CEs the hypergraph is searched,
guided by MLN�EC axioms, for definite clauses explaining these CEs. The paths discovered during the
search are then translated into clauses and evaluated. The resulting set of retained clauses is passed onto
the weight learning module for estimating their weights. Then, the set of weighted clauses is appended
into the hypothesis Hn and the whole procedure is repeated given the next training example Dt

n+1 .
In Section 3.4.1 we describe the procedure of grouping the axioms into templates used by the hyper-

graph to constrain the space of possible structures. In Section 3.4.2 we present the hypergraph search by
relational pathfinding and mode declarations alone and in Section 3.4.3 the extended template-guided
search using the MLN�EC axioms. Finally, in Section 3.4.4 the clause creation/evaluation and weight
learning procedure is presented.

3.4.1 Extract Templates from Axioms
OSL↵ begins by partitioning the background knowledge into a set of axioms A and a set B incorporating
the rest of the formulas. Each axiom ↵ 2 A should contain exactly one so-called template predicate
as well as at least one query predicate representing the CEs we are trying to recognize. These are the
desired properties required for OSL↵ in order to operate. Furthermore, axioms must not contain free
variables, meaning variables only appearing in a single predicate. In order to explain these properties in
detail, consider that A contains the four axioms of Event Calculus (described in D3.1) presented below,

HoldsAt(f , t+1) (
InitiatedAt(f , t)

(3.5)

HoldsAt(f , t+1) (
HoldsAt(f , t) ^
¬TerminatedAt(f , t)

(3.6)

¬HoldsAt(f , t+1) (
TerminatedAt(f , t)

(3.7)

¬HoldsAt(f , t+1) (
¬HoldsAt(f , t) ^
¬InitiatedAt(f , t)

(3.8)

As stated previously in Skarlatidis et al. (2014), axioms (3.5) and (3.6) determine when a fluent F
holds. Similarly, (3.7) and (3.8) determine when F does not hold. Then, HoldsAt 2 Q are the query
predicates and InitiatedAt, TerminatedAt 2 P are the template predicates. Those latter predicates
specify the conditions under which a CE starts and stops being recognized respectively. They form the
target CE patterns that we want to learn. Therefore, these four axioms of MLN�EC can be used to define a
template over all possible structures and guide the search in selecting clauses following the desired prop-
erties of the Event Calculus. By exploiting the information of this template, the algorithm does not need
to search over time sequences during relational pathfinding, but only needs to find explanations for the
template predicates over the current time-point, in the form of definite clauses. Following the work of
Skarlatidis et al. (2015a), we perform circumscription by predicate completion, a syntactic transforma-
tion where formulas are translated into stronger ones. Predicate completion is applied on InitiatedAt

and TerminatedAt predicates. Finally, we also eliminate the InitiatedAt and TerminatedAt pred-
icates by exploiting the equivalences resulting from predicate completion (Mueller, 2008). Formally
speaking, the algorithm only needs to search for definite clauses having the following form:

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 40 of 74

InitiatedAt(f , t) (body

TerminatedAt(f , t) (body

The body of these definitions is a conjunction of n literals `1 ^ · · · ^ `n, which is very convenient
because it can be seen as a variabilized hypergraph path as we shall explain below. Given a set of axioms
A, we further partition it into templates. Each template Ti contains axioms having identical Cartesian
product of domain types over their template predicate variables. For instance, MLN�EC axioms (3.5)
– (3.8) should all belong to one template because InitiatedAt and TerminatedAt both have joint
domain Fluent ⇥ Time. Each of these resulting templates Ti is used during relational pathfinding in
order to constrain the search space into specific bodies for the definite clauses.

3.4.2 Hypergraph and Relational Pathfinding
Following the procedure of OSL, at each step t the algorithm receives an example xt representing the
evidence, it produces the predicted label yP

t = argmaxy2Yhw,n(xt,y)i, and then receives the true
label yt. Given both yt and yP

t , in order to discover clauses that separate yt from yP
t , it finds all ground

atoms that are in yt but not in yP
t denoted as �yt = yt \ yP

t . That means �yt contains the false
positives and false negatives resulted from inference. Then, it searches the ground-truth possible world
(xt,yt), namely the training example of the current step t, for clauses specific to the axioms defined
in the background knowledge using the constructed templates. In contrast to OSL, OSL↵ considers
all misclassified (false positives/negatives) ground atoms instead of the true ones (false negatives), and
searches the ground-truth possible world for clauses.

In order to discover useful clauses specific to a set of wrongly predicted atoms, we employ rela-
tional pathfinding, which considers a training example D as a hypergraph having constants as nodes and
true ground atoms as hyperedges, connecting the nodes appearing as its arguments. Hyperedges are a
generalization of edges connecting any number of nodes. It then searches the hypergraph for paths that
connect the arguments of an input literal. Consider, for example, a training example Dt at step t of SDEs
and CEs:

SDEs :

Minimum Activity(Min Activity Lid1, Lid1, Middle)

Inactive(Inactive Lid1, Lid1, Ramp)

Happens(Inactive Lid1, 2)

Happens(Min Activity Lid1, 2)

Next(2, 3)

CEs :

HoldsAt(Congested, 3)

HoldsAt(Idle, 3)

The equivalent hypergraph representing the above training example is presented in Figure 3.2, where
each colored ellipse is a hyperedge and each dot is a constant node. Starting from each wrongly pre-
dicted ground atom in �yt, relational pathfinding searches for all paths (up to length l) connecting the

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 41 of 74

Minimum_Activity

Min_Activity_Lid1Lid1

Middle

Happens

2

3

Next

Ramp

Inactive_Lid1

Inactive

HoldsAt

CongestedHappens

Idle

HoldsAt

Figure 3.2: Simple hypergraph

arguments of the given atom. In our case, these ground atoms correspond to the wrongly predicted CEs.
A path of hyperedges corresponds to a conjunction of true ground atoms connected by their arguments
and can be generalized into conjunction of variabilized literals. For example consider the training exam-
ple presented above. If the predicted label yPt says that HoldsAt(Idle, 3) is false, then is considered a
wrongly predicted atom and therefore the hypergraph should be searched for paths. Below, we present
two paths found by searching the hypergraph of Figure 3.2 for paths up to length l = 4 for this misclas-
sified CE. These paths are also presented in Figure 3.3 with highlighted hyperedges. Obviously there
are many other possible paths that can be found.

{HoldsAt(Idle, 3), Next(2, 3), Happens(Inactive Lid1, 2), (3.9)
Inactive(Inactive Lid1, Id1, Ramp)}

(3.10)
{HoldsAt(Congested, 3), Next(2, 3), Happens(Min Activity Lid1, 2), (3.11)
Minimum Activity(Min Activity Lid1, Lid1, Middle)}

To speed up relational pathfinding, we employ mode declarations to constrain the search for paths,
which represent the body of the definite clauses defined by the template predicates appearing in the
axioms of the background knowledge. Mode declarations are a form of language bias that constrain
the search for definite clauses. Since we want to constrain the space of paths, we use a variant of the
path mode declarations introduced by Huynh and Mooney (2011b). Formally speaking, declaration
modep(r, p) has two components: a recall number r 2 N0, and an atom p whose arguments are place-
markers optionally preceding the symbol #. A place-marker is either + (input), � (output), or . (ignore).

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 42 of 74

Minimum_Activity

Min_Activity_Lid1Lid1

Middle

Happens

2

3

Next

Ramp

Inactive_Lid1

Inactive

HoldsAt

CongestedHappens

Idle

HoldsAt

Minimum_Activity

Min_Activity_Lid1Lid1

Middle

Happens

2

3

Next

Ramp

Inactive_Lid1

Inactive

HoldsAt

CongestedHappens

Idle

HoldsAt

Figure 3.3: Hyper-graph paths discovered by relational pathfinding

The symbol # preceding each place-marker specifies that this particular predicate argument will remain
constant after the generalization of the path. For many tasks it is critical to have clauses specific to
particular constants. The recall number r limits the number of appearances of the predicate p in a path
to r. These place-markers restrict the search of relational pathfinding. A ground atom is only added to a
path if one of its arguments has previously appeared as ‘input’ or ‘output’ arguments in the path and all
of its ‘input’ arguments are ‘output’ arguments of previous atoms.

Furthermore, in order for our algorithm to be able to handle functions, we also introduce mode
declarations for functions, defined as modef(r, p) and having exactly the same functionality as described
above. The only difference is that functions have a return type and the position for this type cannot be
declared in the mode declaration; it is always assumed as ‘input’. The intuition behind this is that a
function always returns a constant value belonging to some other function or predicate as an argument.
Therefore, the return value it must appear before in the path. Below we present a couple of mode
declarations for both predicates and functions:

modep(1, HappensAt(�, +)) modef(1, inactive(�,�))

The above mode declarations require that a legal path contains at most one ground atom of each of
the predicates HappensAt and at most one ground function inactive. Moreover, the first argument of
HappensAt and all arguments of inactive are ‘output’ arguments; the second argument of HappensAt
is an ‘input’ argument. The ‘input’ mode constrains the position constant in HappensAt atoms to have
appeared in previous atoms in a path.

Algorithm 1 presents the pseudocode for efficiently constructing the hypergraph from a training
example D based on mode declarations, by only allowing input and output nodes. There is no point
in constructing the entire search space, because only the portion of it defined by the mode declarations
will be eventually searched. Note that template predicates are not added in the hypergraph because
they are not allowed to appear in the body of the definite clause. Moreover, in order to search for
functions, before the hypergraph is constructed, all functions in the domain are converted into auxiliary

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 43 of 74

Algorithm 1 HG(D, modes, P)
Input: D: training example, modes: mode declarations, P: set of template predicates
Output: HG: hypergraph

1: for each constant c 2 D do
2: HG[c] = ;
3: for each true ground atom p(c1, . . . , cr) 2 D & p /2 P do
4: for each constant ci 2 {c1, . . . , cr} do
5: if isInputOrOutputVar(ci,modes) then
6: HG[ci] = HG[ci] [{p(c1, . . . , cr)}

return HG

predicates and their corresponding mode declarations are converted into predicate modes. For example,
the function inactive will be converted into the auxiliary predicate Inactive (see training example
above) having arity 3, because it also incorporates the return value of the function and the corresponding
mode declaration modef(1, inactive(�,�)) will be converted into modep(1, Inactive(+,�,�)).
By performing this conversion, the functions can be included in the hypergraph as auxiliary predicates
and added to paths during the search procedure.

3.4.3 Template Guided Search
Starting from each wrongly predicted ground atom q(c1, . . . , cn) 2 �yt, we use the templates Ti con-
structed at the initial steps of the algorithm in order to find the corresponding ground template predicates
for which the axioms belonging in the template Ti are satisfied by the current training example. The al-
gorithm considers each axiom ↵ 2 A in turn and checks whether the desired properties, presented in
Section 3.4.1, hold. Assume, for example, that one of these axioms is 3.5:

HoldsAt(f , t+1) (
Next(t, t+ 1) ^ InitiatedAt(f , t)

and we have given the wrongly predicted ground atom HoldsAt(CE , T4) (false negative). We
would substitute the constants of the given atom q into the axiom. The result of the substitution on the
above rule will be the following partially grounded axiom:

HoldsAt(CE, T4) (
Next(t, T4) ^ InitiatedAt(CE, t)

If after the substitution there are no variables left in the template predicate of the axiom, it adds
the grounded template predicate into the initiation set I and moves to the next axiom. Otherwise, it
searches for all literals in the axiom sharing variables with the template predicate. For these literals, it
searches the training data for all jointly ground instantiations among those satisfying the axiom. Then,
for each of them, it substitutes the remaining variables of the template predicate and adds them into the
initiation set. In this example, InitiatedAt has one remaining variable t and the only literal sharing
this variable is Next. Thus, we search for all ground instantiations of Next in the training data D that
satisfy the axiom and substitute their constants into the partially grounded axiom. Because t represents
time-points and the predicate Next describes sequence of time-points, there will be only one true ground

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 44 of 74

atom in the training data D having the constant T3. The same applies for axioms 3.7 and 3.8 determining
the termination conditions and false positives. Algorithm 2 presents the pseudocode for extracting these
ground template predicates.

Algorithm 2 InitialSet(q, D, T)
Input: q: misclassified ground atom, D: training example, T : path template
Output: I: a set of grounded template predicates

1: I = ; . The set of ground template predicates used to initiate the search
2: for each axiom ↵ 2 T do
3: if 9 literal ` 2 ↵ : signature(`) = signature(q) & isPositive(`) == isTrue(g,D) then
4: ✓-substitute � = ↵✓ where ✓ = {variables(`) ! constants(q)}
5: ⌧ = templateAtom(�)
6: if 9 variable v 2 ⌧ then
7: L = ;
8: if 9 variable v 2 ⌧ ^ 9 literal ` 2 � : v 2 ` then
9: L = L [`

10: for each literal ` 2 L do
11: Tl = {c1, . . . , cn} 2 D : `(c1, . . . , cn)) >
12: for each row r = {c1, . . . , cn} 2 ./|L|

`=1Tl do
13: ✓-substitute � = �✓ where ✓ = {variables(�)) r}
14: I = I [templateAtom(�)

15: else
16: I = I [⌧

return I

For each grounded template predicate returned by Algorithm 2, the mode-guided relational pathfind-
ing, presented in Algorithm 3, is used to search the constructed hypergraph for an appropriate body. It
recursively adds to the path ground atoms or hyperedges that satisfy the mode declarations. The search
terminates when the path reaches a specified maximum length or when no new hyperedges can be added.
The algorithm stores all paths encountered during the search.

By employing this procedure the hypergraph is essentially pruned in order to contain only ground
atoms explaining the template predicates. Consider the hypergraph presented in Figure 3.2. By exploit-
ing the Event Calculus axioms the hypergraph is pruned and only need to contain predicates explaining
the InitiatedAt and TerminatedAt as presented in Figure 3.4. Therefore the paths (3.9) and (3.11)
are pruned by removing Next and HoldsAt predicates, resulting into the paths (3.12) and (3.13). The
pruning resulting from the template guided search is essential to learn Event Calculus, because the search
space becomes independent of time.

{InitiatedAt(Idle, 3), Happens(Inactive Lid1, 2), (3.12)
Inactive(Inactive Lid1, Id1, Ramp)}
{InitiatedAt(Congested, 3), Happens(Min Activity Lid1, 2), (3.13)
Minimum Activity(Min Activity Lid1, Lid1, Middle)}

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 45 of 74

Algorithm 3 ModeGuidedSearch(curPath, C, HG, mode, maxLength, paths)
Output: paths: a set of paths

1: if |curPath| < maxLength then
2: for each constant c 2 C do
3: for each p(c1, . . . , cr) 2 HG[c] do
4: if canAdd(p, curPath, mode) then
5: if curPath /2 paths then
6: curPath = curPath [{p(c1, . . . , cr)}
7: paths = paths [{p(c1, . . . , cr)}
8: C0 = ;
9: for each ci 2 {c1, . . . , cr} do

10: if ci /2 C & isInputOrOutputVar(ci, mode) then
11: C = C [{ci}
12: C0 = C0 [{ci}
13: ModeGuidedFindPath(curPath,C,HG,mode,maxLength,paths)
14: curPath = curPath \p
15: C = C \ C0

Minimum_Activity

Min_Activity_Lid1Lid1

Middle

Happens

2

3

Next

Ramp

Inactive_Lid1

Inactive

HoldsAt

CongestedHappens

Idle

HoldsAt

Figure 3.4: Pruned hypergraph

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 46 of 74

3.4.4 Clause Creation, Evaluation and Weight Learning
In order to generalize paths into first-order clauses, we follow three steps. First, we replace each constant
ci in a conjunction with a variable vi, except for those declared constant in the mode declarations. Then,
these conjunctions are used as a body to form definite clauses using the template predicate present in
each path as head. The auxiliary predicates are converted back into functions. Therefore, from the paths
presented above, the following definite clauses will be created:

InitiatedAt(Idle, t) (
HappensAt(inactive(lid

1

), t)
(3.14)

InitiatedAt(Congestion, t) (
HappensAt(minimum activity(lid1), t)

(3.15)

The first definition says that the CE Idle is initiated for a lane lid1 at t when the event inactive
happens for lid1. Similarly the second definition says that Congestion is initiated when lid1 has min-
imum activity. These definite clauses can be used together with the axioms defined in the background
knowledge in order to eliminate all the template predicates by exploiting the equivalences resulting from
predicate completion. After the elimination process all resulting formulas are converted into clausal nor-
mal form (CNF), since that is the form used by the inference algorithms. Therefore the resulting set of
clauses is independent of the template predicates. Evaluation must take place for each clause c indi-
vidually. The difference in the number of true groundings of c in the ground-truth world (xt,yt) and
the predicted world (xt,yP

t) is computed. Then, the only clauses whose difference in the number of
groundings is greater than or equal to a predefined threshold µ will be added to the existing MLN:

�nc = nc(xt,yt)� nc(xt,y
P
t)

The intuition behind this measure is to keep clauses whose coverage of the ground-truth world is
different from the one induced by the clauses already learnt.

Finally, the parameters of these clauses are learned by the AdaGrad online learner described in Sec-
tion 3.2. We can treat the rules as either hard or soft constraints and modify the behavior of the Event
Calculus as stated by Skarlatidis et al. (2015a); Skarlatidis (2014). In order to do this, we only need
to define the corresponding axioms of the MLN�EC as either soft or hard constraints in the background
knowledge. By doing so, the resulting set of clauses produced by predicate completion and elimination
can be either soft or hard constraint, depending on the axiom used to produce each clause during pred-
icate completion. If the axiom has an infinite weight, then the corresponding clauses created by it will
also have an infinite weight and therefore it cannot be changed during weight learning.

Finally, at the end of the OSL↵ learning we can choose to remove those clauses whose weights
are less than a predefined threshold ✓ in order to speed-up inference. By doing so and finding a good
✓, the resulting hypothesis can be pruned significantly and the accuracy, although reduced, remains in
acceptable levels. We present below the complete procedure of OSL↵.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

3.4. OSL↵: Online Structure Learning using background knowledge Axiomatization page 47 of 74

Algorithm 4 OSLa(C,P ,modes,maxLength,µ,�,⌘,�)
Input: KB: initial knowledge base

1: P: template predicates
2: modes: mode declarations
3: maxLength: maximum number of hyperedges in a path
4: µ: evaluation threshold
5: �, ⌘, �: AdaGrad parameters
6: Partition KB into A and B
7: Create templates T from A
8: Initialize resulting theory R0 = B
9: Initialize weight vector w0 = initialValue

10: for t = 1 to T do
11: Receive an instance xt

12: Predict yP
t = argmaxy2Yhw,n(xt,y)i

13: Receive the correct target yt

14: Compute �yt = yt \ yP
t

15: if �yt 6= ; then
16: HG = HG

�
(xt,yt),modes,P

�

17: paths= ;
18: for each wrogly predicted query atom q 2 �yt do
19: for each template Ti 2 T do
20: I = InitialSet

�
q, (xt,yt), Ti

�

21: V = ;
22: for each ⌧(c1, . . . , cn) 2 I do
23: for each ci 2 {c1, . . . , cn} do
24: if isInputOrOutputVar(ci,modes) then
25: V = V [ci
26: ModeGuidedSearch

�
q,V, HG,modes,maxLength,paths

�

27: Dt = CreateDefinitions(Dt�1,paths,modes)
28: Ct = CreateClauses(Dt,modes)
29: Compute �nC

t

30: for i = 1 to |Ct| do
31: if �nC

t,i

 µ then
32: Remove definite clause di corresponding to Ct,i from Dt

33: Rt = B [CreateClauses(Dt,modes)
34: Compute �nR

t

35: for i = 1 to |Rt| do
36: if 9 ci,t�1 2 Rt�1, ci,t 2 Rt : ci,t�1 ✓-subsumes ci,t then
37: wi,t=wi,t�1

38: else
39: wi,t=initialValue

40: AdaGrad(wt,�nR
t

,�, ⌘, �)

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 48 of 74

4

Machine Learning: Experimental Evaluation

In this section we evaluate our employed parameter learning methods in the domain of video activity
recognition and traffic management. Furthermore, we present results of our recently developed OSL↵
method for probabilistc structure learning on the surrogate dataset of video activity recognition. The
aim of the experiments is to assess the effectiveness of our methods in learning both the structure and
their parameters used for recognising CEs, based on imperfect CE definitions and in the presence of
incomplete narratives of SDEs. To demonstrate the methods that we developed in this work, we use
the publicly available benchmark dataset of the CAVIAR project1 as well as real and simulation data
provided by CNRS.

4.1 Traffic Management (Real Rocade Data)
In this task, the aim is to recognize traffic congestions which take place in the Grenoble South Ring, that
links the city of Grenoble from the south-west to the north-east, by exploiting real time data collected
from traffic sensors. The dataset comprises one month of data (⇡ 3.3GiB of sensor readings), where
each day is annotated by human traffic controllers for traffic congestions. The real data was collected
from sensors placed in 19 collection points along a 12km stretch of the highway and each collection
point has a sensor per lane. Sensor data are collected every 15 seconds, containing the total number of
vehicles passing through a lane, the average speed and sensor occupancy. These readings constitute the
simple derived events (SDEs) that concern activity on individual points in the highway.

4.1.1 Learning Challenges
At first, we attempted to perform parameter learning on simple rules defining the concept of traffic
congestion for any possible location regardless of the lane type. These rules are presented below:

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

4.1. Traffic Management (Real Rocade Data) page 49 of 74

InitiatedAt(trafficjam(locID), t) (
HappensAt(aggr(locID , occupancy , avgspd), t)^
20  occupancy  50 ^ 0  avgspd < 50

(4.1)

InitiatedAt(trafficjam(locID), t) (
HappensAt(aggr(locID , occupancy , avgspd), t)^
30  occupancy  75 ^ 0  avgspd < 35

(4.2)

We defined a rule (4.1) recognizing that when the average speed is between 0 and 50 km/h and the
sensor occupancy is between 20% and 50% in any lane of a specific location then a traffic jam is initiated
in that location, as well as another rule (4.2) defining exactly the same thing but using stricter thresholds
for average speed and sensor occupancy. The intuition behind these definitions is that if any location
and lane have high occupancy and low average speed then probably a traffic jam takes place.

Figure 4.1: Weight value per learning step for rule (4.1) (left) and (4.2) (right)

We trained both rules for 365 learning steps, each step corresponding to 1500 seconds. We observed
that the parameter value for each of the rules between sequential steps had large fluctuations leading to
zero crossings, which indicate that both rules are insufficient. Zero crossings are shown in Figure 4.1.
These zero crossings mean that the rules correctly capture the concept of traffic jam for some locations
and completely fail for others.

In order to understand the problem better we performed a data analysis on the dataset. We plotted
the annotation across the values of average speed and sensor occupancy for each location and lane. From
these figures we observed that we are unable to learn a general location-independent, lane-independent
congestion rule. Figure 4.2 presents an example of average speed and occupancy difference between
two lanes (fast and queue) in the same location. Note that the average speed and sensor occupancy
are inversely proportional. When the average speed is decreasing the occupancy is increasing. The
fast lane has useful data to detect a traffic congestion in contrast to the queue lane which is completely
uninformative. This is reasonable because the definition of traffic congestion differs depending on the
shape of the road in a specific point, whether the specific location is a highway interchange or being
close to entry points of crowded places. Therefore a fast lane has different characteristics in a traffic
congestion from another lane type and should be handled differently.

Moreover, there are also many missing annotations making the machine learning task more difficult.
As shown in Figure 4.3 there are cases where annotation is missing. There are many such cases in the
data leading to false recognitions and false penalization of otherwise good rules.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.1. Traffic Management (Real Rocade Data) page 50 of 74

7100 7150 7200 7250 7300 7350 7400 7450 7500

timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

110

120

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

7100 7150 7200 7250 7300 7350 7400 7450 7500

timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

110

120

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

Figure 4.2: Location 0ddd: fast lane (left) vs queue lane (right). Blue points indicate avg. speed while
green windows indicate the congestion annotated by human experts.

1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

timepoints (x15 sec)

10

20

30

40

50

60

70

80

90

100

av
er

ag
e

sp
ee

d
(k

m
/h

ou
r)

1400 1450 1500 1550 1600 1650 1700 1750 1800 1850

timepoints (x15 sec)

5

10

15

20

25

30

35

40

45

50

55

60

oc
cu

pa
nc

y
(%

 o
f t

im
e)

Figure 4.3: Location 25ec, fast lane: avg. speed (left) and occupancy (right). Blue points indicate
avg. speed (occupancy), green windows the congestion annotated by human experts, and red (dashed)
windows the potentially missing annotations.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.1. Traffic Management (Real Rocade Data) page 51 of 74

4.1.2 Experimental Setup
We defined rules for traffic congestion initiation and termination for three different locations. Each pair
of rules concerns a fast lane. For all these rules, we performed parameter learning for 126 steps, each
consisting of 1500 seconds, that is to say about 52 hours. A pair of these initiation and termination rules
are presented in equation (4.3) and (4.4) respectively.

InitiatedAt(trafficjam(10314363961353708), t) (
HappensAt(aggr(locID , lane, occupancy , avgspd), t)^
26  occupancy  100 ^ 0  avgspd < 55^
locID = 10314363961353708 ^ lane = fast

(4.3)

TerminatedAt(trafficjam(10314363961353708), t) (
HappensAt(aggr(locID , occupancy , avgspd), t)^
0  occupancy  25 ^ 56  avgspd < 100^
locID = 10314363961353708 ^ lane = fast

(4.4)

4.1.3 Experimental Results
We collected the weight values for the presented rules across all learning steps and plotted them in order
to present the quality of the rules compared to the initial defined rules (4.1) and (4.2).

Figure 4.4: Weight value per learning step for rules (4.3) (left) and (4.4) (right)

As shown in the Figure 4.4 the fluctuations have decreased significantly, especially for the left plot
representing the InitiatedAt. The remaining fluctuations are explained by the fact that data has in-
complete annotation, which makes the learner think that in some cases it wrongly recognizes from the
data traffic congestions while the annotation says otherwise. Although some fluctuations exist, there are
not oscillating from positive to negative weights. This is a proof of stability for these rules, meaning that
they recognizing traffic congestion most of the times.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.2. Traffic Management (Simulation Rocade Data) page 52 of 74

Subsequently, we performed 10-fold cross validation over the entire dataset (172799 timepoints)
using varying batch sizes. At each fold, an interval of 17280 timepoints was left out and used for testing.
Figure 4.5 presents the evaluation results for OSL↵ and AdaGrad. In OSL↵ the predictive accuracy of
the learned model increases initially, due to the increase in the number of learning iterations, and then
decreases, due to the decreasing batch size. On the contrary, the accuracy of AdaGrad increases (almost)
monotonically as the number of learning iterations increase.

OSL↵ achieves comparable predictive accuracy to the weighted manually constructed rules (Ada-
Grad), which is encouraging. Moreover, it can process data batches efficiently. For example, OLSa
takes ⇡ 11 seconds to process a 50 minute batch (1400 SDEs). As expected, AdaGrad is faster than
OSLa. The predictive accuracy of the learned model, both for OSLa and AdaGrad, is low. This arises
from the semi-supervised nature of the problem (see Section 4.1.1).

0.5
500

0.5387

0.55

400 3000

F 1 s
co

re

0.6

2500300

0.65

batch size (minutes)

2000

#iterations

200 1500

0.6331

1000100

0.6062
0.6077

500
0 0

0.6115

0 0.064

0.5

0

0.397

1

15000

1.5

0.864

2

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

100

2.5

3

3.5

10000200

batch size (minutes) SDEs

3.012

300 5000400
500 0

0.5
50

0.52

0.5495
0.54

300040

F 1 s
co

re 0.56

2500

batch size (minutes)

0.58

30

#iterations

2000

0.6

0.5796

150020

0.5911

1000

0.5984

10 500

0
0.6913

2

10

4

2.8938

6

1400av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
on

ds
)

8

11.4362

20

10

6.3153

1200

12

1000

batch size (minutes)

30

SDEs

800
60040 400

50 200

Figure 4.5: F1 score (left) and avg. batch processing time (right) for AdaGrad (top) and OSL↵ (bottom).
In the left figures, the Y axis shows the number of learning iterations.

4.2 Traffic Management (Simulation Rocade Data)
In this task, similarly the aim is to recognize traffic congestions which take place in the Grenoble South
Ring, but instead of the real data we are using the simulated dataset provided by the CNRS. The dataset
compromises 10 simulations of 1 hour duration each and a specific location is annotated with traffic
congestion. The annotated location for each simulation id is different and therefore one cannot use all
the simulations for learning weighted patterns for one location. Therefore, we performed experiments

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 53 of 74

for each simulation id separately. Because the training data provided for each annotated location are
very little (121 timepoints), we performed training using a 60% of timepoints for training and the rest
for testing. The pair of rules trained for location 1311 are presented in equation 4.5 and 4.6.

InitiatedAt(trafficjam(1311), t) (
HappensAt(aggr(1311 , avgspd), t) ^ 0  avgspd < 18

(4.5)

TerminatedAt(trafficjam(1311), t) (
HappensAt(aggr(1311 , avgspd), t) ^ avgspd > 45

(4.6)

Figure 4.6 presents the evaluation results for OSL↵ for simulation id 1 and location 1311. The
purpose of the experiment is to present the accuracy change in a fully supervised dataset. The predictive
accuracy of the learned model remains almost the same as the iterations increase and arrives at the best
F1 score when batch sizes of 2.5 minutes are used. Note that the recognition results are much more
accurate (highest F1 score) than the real data case presented in Section 4.1, which arise from the fully
supervised nature of the data. Finally, as in the case of the real data, OSL↵ can process data batches
efficiently. For example, it takes ⇡ 3 seconds to process a 25 minute batch (6000 SDEs).

15

#iterations

10

0.8846

0.7826

5

0.7843

00

0.78430.7843

10

batch size (minutes)

0.7843

20

0.9

0.85

0.8

0.75
30

F 1 s
co

re

6000
4000

SDEs

3.005

2000

1.428

030

1.0950.8712

20

batch size (minutes)

0.5954

10

0.3975

0

1

0

0.5

3.5

3

2.5

2

1.5

av
g.

 b
at

ch
 p

ro
ce

ss
in

g
(s

ec
.)

Figure 4.6: F1 score (left) and avg. batch processing time (right) for AdaGrad (top) and OSL↵ (bottom).
In the left figures, the Y axis shows the number of learning iterations.

4.3 Activity Recognition
In this task, the aim is to recognise complex activities that take place between multiple persons, by ex-
ploiting information about simple observed individual activities. This dataset comprises 28 surveillance
videos, where each frame is annotated by human experts from the CAVIAR team on two levels. The
first level contains simple, derived events (SDEs) that concern activities of individual persons or the
state of objects. The second level contains composite event (CE) annotations, describing the activities
between multiple persons and/or objects – i.e., people meeting and moving together, leaving an object
and fighting. In Section 4.3.1 we briefly describe the dataset characteristics and the experimental setup
for all of our experiments. Then in Section 4.3.2 we give an overview of the compared methods. Finally,
in Sections 4.3.3 and 4.3.4 we present the results of weight learning and OSL↵ learning performance
respectively.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 54 of 74

4.3.1 Experimental Setup
The input to the learning methods is a stream of SDEs along with the CE annotations. The SDEs
are representing people walking, running, staying active, or inactive. The first and the last time that a
person or an object is tracked are represented by the SDEs enter and exit. Additionally, the coordinates
of tracked persons or objects are also taken into consideration in order to express qualitative spatial
relations, e.g. two persons being relatively close to each other. The CE supervision indicates when each
of the CE holds. Table 4.1 presents the structure of the training sequences. Each sequence is composed
of input SDEs (ground HappensAt), precomputed spatial constraints between pairs of people (ground
Close), as well as the corresponding CE annotations (ground HoldsAt). Negated predicates in the
training sequence state that the truth value of the corresponding predicate is False.

Simple Derived Events Supervision of Composite Events

.

HappensAt(walking(ID1), 100)

HappensAt(walking(ID2), 100)

OrientationMove(ID1 , ID2 , 100)

Close(ID1 , ID2 , 24, 100)

Next(100, 101) HoldsAt(move(ID1 , ID2), 101)

.

HappensAt(exit(ID1), 200)

HappensAt(walking(ID2), 200)

¬OrientationMove(ID1 , ID2 , 200)

¬Close(ID1 , ID2 , 24, 200)

Next200, 201) ¬HoldsAt(move(ID1 , ID2), 201)

Table 4.1: Training example for move CE. The first column is composed of a narrative of SDEs, while
the second column contains the CE annotation in the form of ground HoldsAt predicates.

The definitions of the CEs meet and move we are using were developed in Artikis et al. (2010b).
These definitions take the form of common sense rules and describe the conditions under which a CE
starts or ends (InitiatedAt, TerminatedAt). For example, when two persons are walking together
with the same orientation, then moving starts being recognized. Similarly, when the same persons walk
away from each other, then moving stops being recognized.

From the 28 videos of the CAVIAR dataset, we have extracted 19 sequences that are annotated
with the meet and/or move CEs. The rest of the sequences in the dataset are ignored, as they do not
contain positive examples of the target CE. Out of the 19 sequences, 8 are annotated with both meet and
move activities, 9 are annotated only with move and 2 only with meet. The total length of the extracted
sequences is 12869 frames. Each frame is annotated with the (non-)occurrence of a CE and is considered
an example instance. The whole dataset contains a total of 25738 annotated example instances. There
are 6272 example instances in which move occurs and 3722 in which meet occurs. Consequently, for
both CEs the number of negative examples is significantly larger than the number of positive examples,
specifically 19466 for move and 22016 for meet. The input consists of a sequence of SDEs, i.e., active,
inactive, walking, running, enter and exit, the spatial constraints Close and OrientationMove,
which was precomputed, and its truth value was provided as input, as well as the supervision for meet

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 55 of 74

and move.
Following the work of Skarlatidis (2014); Skarlatidis et al. (2015a) we used three different inertia

settings (HI, SIh and SI, see Table 4.2 for a description). In all three variants, all rules are always
soft-constrained, except the inertia rules that, depending on the setting, may be either soft-or hard-
constrained.

Settings Description

HI All inertia rules are hard-constrained.

SIh
The inertia rules of HoldsAt are soft-constrained, while the rest
remains hard-constrained.

SI All inertia rules are soft-constrained.

Table 4.2: Variants of CAVIAR, using hard and soft inertia rules.

Throughout the experimental analysis, the evaluation results was obtained using the MAP inference
of Huynh and Mooney (2009) and are presented in terms of True Positives (TP), False Positives (FP),
False Negatives (FN), Precision, Recall and F1 score. All reported experiment statistics are micro-
averaged over the instances of recognized CEs using 10-fold cross validation over the 19 sequences.
Details about the dataset are presented in Table 4.3. The experiments were performed in a computer
having an Intel i7 4790@3.6GHz processor (4 cores and 8 threads) and 16GiB of RAM, running OSX
El Capitan 10.11.

total SDEs 63147

average SDEs per fold 56832

total meet positive CEs 3722

total move positive CEs 6272

average meet positive CEs 3350

average move positive CEs 5600

Table 4.3: CAVIAR statistics

4.3.2 The Methods Being Compared
We begin by evaluating the online weight learning methods using manual definitions. We compare
their results against the batch max-margin learning method. Moreover, for comparison purposes, we
also include in the experiments the results of the logic-based activity recognition method of Artikis
et al. (2010b), which we call here ECcrisp. The latter cannot perform probabilistic reasoning. Then we
present the experimental results of our OSL↵ learning and compare them against the results obtained by
the manual definitions trained by the online weight learning and the pure logic-based method ECcrisp.
Finally, we also present the running times of OSL for the meet CE.

4.3.3 Weight Learning Performance
In this section both online max-margin (CDA) and AdaGrad algorithms presented in Section 3.2 are
compared for all three inertia configurations of Table 4.2 against the batch max-margin learning and

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 56 of 74

ECcrisp. The CE definitions of meet and move CEs are transformed by using the domain-independent
axioms of MLN�EC and exploiting the equivalences resulting from predicate completion to eliminate
InitiatedAt, TerminatedAt predicates. Then by applying CNF transformation each theory results
into 23 and 44 clauses for meet and move respectively. Results of weight learning for both CEs are
presented in Tables 4.4 and 4.5. As expected the batch max-margin weight learning yields the best
overall accuracy due the fact that it uses all the data at once in order to estimate the optimal weights.
AdaGrad is the second best choice as it yields more accurate results as opposed to CDA and ECcrisp in
the majority of the cases.

Note that the SIh inertia setting yields the best results for each individual method. In this setting, the
inertia rule of HoldsAt remains soft-constrained. As a result, the probability of a CE tends to decrease,
even when the required termination conditions are not met. Therefore, if the probability cannot be
reinforced by a re-initiation then SIh setting is very useful (Skarlatidis, 2014; Skarlatidis et al., 2015a).
This dataset in particular has overlaps where meet CE has been initiated and not terminated and then
move CE is recognized. Thereafter all occurring SDEs during the overlap are irrelevant to meet and
cannot cause any re-initiation or termination.

Method TP FP FN Precision Recall F1 score

ECcrisp 3099 1413 523 0.6868 0.8556 0.7620

CDAHI 1868 106 1754 0.9463 0.5157 0.6676

CDASIh 1767 183 1855 0.9061 0.4878 0.6342

CDASI 1552 355 2070 0.8138 0.4284 0.5614

AdaGradHI 3099 1397 523 0.6892 0.8556 0.7634

AdaGradSIh 3096 1187 526 0.7228 0.8547 0.7833

AdaGradSI 3099 1397 523 0.6892 0.8556 0.7634

MaxMarginHI 3099 1397 523 0.6892 0.8556 0.7634

MaxMarginSIh 2946 260 676 0.9189 0.8133 0.8629
MaxMarginSI 3009 809 613 0.7673 0.4770 0.5883

Table 4.4: Weight learning accuracy of the meet CE

Table 4.6 present the running times for learning the weights of the manual definitions. Both training
and testing times are accumulated across the 10 folds. The results justify the usage of an online weight
learner. Both CDA and AdaGrad are an order magnitude faster during training in contrast to the batch
max-margin learner. This arises from the fact that batch learning methods require to run inference over
the whole dataset in each iteration. CDA is a little faster than AdaGrad in most cases, but it lacks in
accuracy and therefore AdaGrad is preferred. Moreover, AdaGrad uses L1-regularization in contrast to
CDA which uses L2 and is more appropriate for the task of structure learning, which may introduce a
lot of new features and many of which may not be useful. Note that testing times are almost identical
because the set of learned clauses used as an input to these methods is the same and only their resulting
weights differ. Therefore grounding and inference times do not change substantially. Consequently,
the presented experimental evaluation justifies our choice for selecting AdaGrad in our online structure
learning method.

Figure 4.7 present the F1 score change as batch size increases. Note that the accuracy of the model
increases in most cases with respect to batch size. Nevertheless, the batch size can lower the accuracy
(see meet CE for batch size 1000) if the batches bisect SDEs depending on each other for correctly

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 57 of 74

Method TP FP FN Precision Recall F1 score

ECcrisp 4008 400 2264 0.9093 0.6390 0.7506

CDAHI 4008 384 2264 0.9125 0.6390 0.7516

CDASIh 2437 261 1197 0.9032 0.6706 0.7697

CDASI 3386 368 2886 0.9019 0.5398 0.6754

AdaGradHI 4008 384 2264 0.9125 0.6390 0.7516

AdaGradSIh 4077 368 2031 0.9172 0.6674 0.7726

AdaGradSI 3148 1542 3124 0.6712 0.5019 0.5743

MaxMarginHI 5598 1128 674 0.8323 0.8925 0.8614

MaxMarginSIh 5902 1088 370 0.8443 0.9410 0.8901
MaxMarginSI 3226 1268 1760 0.6599 0.6470 0.6534

Table 4.5: Weight learning accuracy of the move CE

Method meet move

total training testing total training testing

CDAHI 16m 29s 14m 40s 1m 49s 27m 20s 24m 26s 2m 54s

CDASIh 15m 52s 14m 1s 1m 51s 19m 23s 17m 15s 2m 8s

CDASI 15m 54s 14m 18s 1m 36s 25m 55s 23m 44s 2m 11s

AdaGradHI 18m 28s 16m 37s 1m 51s 26m 29s 23m 31s 2m 58s

AdaGradSIh 16m 2s 14m 16s 1m 46s 28m 17s 25m 48s 2m 29s

AdaGradSI 15m 52s 14m 20s 1m 32s 32m 10s 29m 39s 2m 31s

MaxMarginHI 3h 12m 29s 3h 10m 41s 1m 48s 4h 28m 27s 4h 26m 2s 2m 25s

MaxMarginSIh 3h 10m 41s 3h 8m 47s 1m 54s 4h 42m 36s 4h 41m 38s 1m 58s

MaxMarginSI 3h 27m 32s 3h 25m 54s 1m 38s 4h 58m 34s 4h 56m 27s 2m 7s

Table 4.6: Weight learning running times for meet and move CE

recognising a CE into different batches. Figure 4.8 present the average training time per fold as batch
size increases. Note that the training time increases linearly with the batch size.

4.3.4 OSL↵ Performance
In this section the experiments for our online probabilistic structure learning method are presented. The
model is trained discriminitavely and its performance is evaluated using 10-fold cross-validation over 19
sequences. The results are compared against the results presented in the previous Section and OSL. In
order to achieve the best possible accuracy for OSL↵, tuning of the evaluation threshold µ (see Section
3.4.4) is required. We run structure learning using 10-fold cross validation over 5 distinct values of µ.
The results are presented in Figure 4.9. The highest accuracy is achieved by using µ=4 and µ=1 for
meet and move CEs respectively. In the case of meet the evaluation threshold smoothly affects accuracy,
in contrast to move where a lot of important structures are penalized if OSL↵ becomes more austere and
accuracy is decreasing significantly.

Then by using the best thresholds detailed results of OSL↵ over 10 folds are presented in Tables

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 58 of 74

Figure 4.7: F1 score change as batch size increases for meet (left) and move(right).

Figure 4.8: Average training time per fold as batch size increases for meet (left) and move(right). Aver-
age number of SDEs for batch sizes 50, 100, 500, and 1000 are 338, 688, 3244, and 5840 respectively.

4.7a and 4.7b. Note that OSL↵ can be at least as accurate as AdaGrad training definitions developed
by hand or even better (see Tables 4.4 and 4.5 for comparison). Different inertia configurations do not
affect the accuracy. That is happening because the dataset contains SDEs in every single timepoint and
the definitions learned by OSL↵ introduce all possible predicates in the bodies of the template atoms
(i.e. InitiatedAt,TerminatedAt) due to the exhaustive hypergraph search. As a consequence, inertia
rules are outweighed by the rest of the theory.

Furthermore, Table 4.8 present the running times of OSL↵ for both CEs. Both training and testing
times are accumulated across the 10 folds. Training time of move is much slower than the one of
meet. That is because move includes another predicate (OrientationMove) in its predicate schema and
therefore yields more possible structures. Moreover testing times, although pretty fast, still is slower in
contrast to the ones presented in the weight learning experiments (see Table 4.6). However, structure
learning yields a lot of clauses and therefore the grounding of the theory during inference is slower.

Then we attempted to perform probabilistic structure learning on this dataset using OSL. Specifi-
cally, we began running experiments for the meet CE and we terminated the experimentation after 25
hours. During this time OSL had processed only 4 training examples (micro-batches) out of the 17 con-

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 59 of 74

1 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

F
1
s
c
o
r
e

meet

move

Figure 4.9: F1 score over 10 folds for various evaluation threshold values.

tained in the first fold. OSL↵ on the other hand performed 10 fold cross validation for the meet CE in
about 4 hours.

(-2,-1.5] (-1.5,-1] (-1,-0.5] (-0.5, 0] (0, 0.5] (0.5, 1] (1, 1.5] (1.5, 2] (2, 2.5]
0

50

100

150

weight

cl
au

se
s

(-2.5,-2](-2,-1.5](-1.5,-1](-1,-0.5] (-0.5, 0] (0, 0.5] (0.5, 1] (1, 1.5] (1.5, 2] (2, 2.5]
0

100

200

300

400

weight

cl
au

se
s

Figure 4.10: Weight distibution learned for meet (left) and move (right)

For effective CE recognition, we prune a portion of the learned weighted structures having weights
below a certain threshold ✓ (see Section 3.4.4), for various values of ✓, and present the results in terms
of both accuracy and testing time. We begin by running OSL↵ using all the 19 sequences of the dataset
and present a histogram for each CE representing the distribution of weights learned. The distributions
are shown in Figure 4.10. The presented histogram give an insight of the portion of the theory that is
about to be pruned for each chosen ✓ value.

Note that there is a considerable amount of clauses having significantly small weight values. These
clauses may be pruned in order to simplify the resulting model without significantly affecting the ac-
curacy, but yielding better inference times. Therefore, we prune the resulting structure for 3 distinct
values of ✓ and present the change in the behavior with respect to the original model, where all learned
structures were retained (✓=0). The following results are obtained over 10 folds. Figure 4.11 present
the reduction in the number of clauses in the resulting theory as ✓ increases. This reduction corresponds
to missing features that can affect accuracy and on the other hand reduce the inference time.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 60 of 74

Method TP FP FN Precision Recall F1 score

ECcrisp 3099 1413 523 0.6868 0.8556 0.7620

AdaGradSIh 3096 1187 526 0.7228 0.8547 0.7833

MaxMarginSIh 2946 260 676 0.9189 0.8133 0.8629
OSL↵HI 3082 680 540 0.8192 0.8509 0.8347

OSL↵SIh 3082 680 540 0.8192 0.8509 0.8347

OSL↵SI 3082 680 540 0.8192 0.8509 0.8347

(a) Results for the meet CE

Method TP FP FN Precision Recall F1 score

ECcrisp 4008 400 2264 0.9093 0.6390 0.7506

AdaGradSIh 4077 368 2031 0.9172 0.6674 0.7726

MaxMarginSIh 5902 1088 370 0.8443 0.9410 0.8901
OSL↵HI 4718 1138 1554 0.8056 0.7522 0.7780

OSL↵SIh 4718 1138 1554 0.8056 0.7522 0.7780

OSL↵SI 4718 1138 1554 0.8053 0.7522 0.7779

(b) Results for the move CE

Table 4.7: Results for OSL↵ for µ= 4 and µ=1 respectively.

Method meet move

total training testing total training testing

OSL↵HI 3h 57m 12s 3h 48m 13s 8m 59s 19h 31m 29s 19h 20m 24s 11m 5s

OSL↵SIh 3h 58m 58s 3h 50m 43s 8m 15s 20h 0m 50s 19h 50m 58s 9m 52s

OSL↵SI 4h 1m 5s 3h 52m 52s 9m 13s 19h 58m 43s 19h 48m 23s 10m 20s

Table 4.8: OSL↵ running times for meet and move CE

Figures 4.12 and 4.13 present the effect of ✓ in accuracy and testing time. Note that ✓=0.5 results
in a slight reduction in accuracy for move and no reduction for meet, but testing time is much better.
Therefore, we can prune a subset of the resulting theory using an optimal value for ✓ in order to achieve
a minimal set of clauses yielding the best overall accuracy and inference performance.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

4.3. Activity Recognition page 61 of 74

0 0.1 0.5 1
0

100

200

300

245
229

178

50

✓

cl
au

se
s

✓=0 ✓=0.1 ✓=0.5 ✓=1

0 0.1 0.5 1
0

200

400

600

800

1,000

780
745

531

169

✓

cl
au

se
s

✓=0 ✓=0.1 ✓=0.5 ✓=1

Figure 4.11: Reduction in the number of clauses learned as ✓ increases for meet (left) and move (right).

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.83 0.83 0.83

0.69

✓

F
1
s
c
o
r
e

✓=0 ✓=0.1 ✓=0.5 ✓=1

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.83 0.83 0.83

0.69

✓

F
1
s
c
o
r
e

✓=0 ✓=0.1 ✓=0.5 ✓=1

Figure 4.12: Effect of F1 score as ✓ increases for meet (left) and move (right).

0 0.1 0.5 1
0

200

400

600
539

430
395

52

✓

s
e
c
o
n
d
s

✓=0 ✓=0.1 ✓=0.5 ✓=1

0 0.1 0.5 1
0

200

400

600

660

540 530

376

✓

s
e
c
o
n
d
s

✓=0 ✓=0.1 ✓=0.5 ✓=1

Figure 4.13: Reduction of testing time as ✓ increases for meet (left) and move (right).

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 62 of 74

5

Conclusions

We presented a survey of methods for complex event recognition under uncertainty, i.e. in cases where
the input stream may be probabilistic and/or in cases where the rules for detecting complex events may
be characterized by a lack of absolute confidence. The two dominant approaches are those that employ
probabilistic/stochastic automata and those that are logic-based. A small number of research efforts have
employed other frameworks in order to address other issues. For example, probabilistic Petri Nets, which
are powerful when modeling concurrency and synchronization of activities, and stochastic context-free
grammars, with which it is easy to model hierarchies of events and recursive patterns. However, these
frameworks have not been systematically explored and general conclusions are not easy to be drawn. In
general, they lack the means to express relational structures and are not suited for event recognition. As
far as the two dominant classes of methods are concerned, our survey has shown that a trade-off emerges
between complexity and performance. On the one hand, the logic-based systems are expressive and can
model complex probabilistic , but suffer from under-performance. On the other hand, automata-based
systems yield high performance with respect to throughput, but with simple patterns and dependencies.

We also presented our approach for scalable incremental learning of event definitions from large
amounts of data. As far as parameter learning is concerned, we described our algorithm of choice
(AdaGrad), whose main feature is that it gives frequently occurring features very low learning rates
and infrequent features high learning rates. This way, finding and identifying predictive but compara-
tively rare features becomes easier. With respect to parameter learning, we presented the state-of-the-art
methods and identified their weaknesses. We noted that they are batch learning algorithms, effectively
designed for training data consisting of relatively few mega-examples. Moreover, most of these algo-
rithms are strictly data-driven and they do not exploit background knowledge, possibly spending a lot
of time exploring clauses that are true in most of the possible worlds, therefore largely useless for pur-
poses of learning. We subsequently described our preferred algorithm that attempts to overcome these
limitations when learning definitions for complex events. It is a variant of the Online Structure Learn-
ing algorithm, which takes into account the predicted possible worlds, i.e. the most probable possible
worlds predicted by the current model. Our variant exploits domain-independent axioms defined in the
knowledge base, to further constrain the search space to clauses subject to specific characteristics of the
Event Calculus formalism that we use for event recognition.

Finally, we presented two sets of experiments for the learning algorithms. We tested our parameter
learning algorithm, along with other alternatives, against a publicly available video dataset, showing that

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

page 63 of 74

AdaGrad indeed strikes a balance between performance and accuracy. We subsequently used AdaGrad
for weight learning of traffic jam rules with the dataset provided by CNRS for the Grenoble South Ring.
We showed that if the rules are specialized against location and lane type, their weights show much less
fluctuations and are more stable, compared to more generic rules, even when annotation is not ideal.

In the future, we aim to build upon our survey work on probabilistic event recognition in order to
develop a forecasting system. Moreover, our goal is to refine the rules for the traffic use case, according
to the results obtained from our learning system. Additionally, we will apply this same system on the
other use case of credit card fraud detection. As another step, our structure learning algorithm will be
applied against both datasets.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

Bibliography page 64 of 74

Bibliography

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In
SIGMOD Conference, page 147160, 2008.

M. Albanese, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea. Detecting Stochastically
Scheduled Activities in Video. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1802–1807, 2007.

M. Albanese, R. Chellappa, N. P. Cuntoor, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea.
A Constrained Probabilistic Petri Net Framework for Human Activity Detection in Video. IEEE
Transactions on Multimedia, 10(6):982–996, 2008.

M. Albanese, R. Chellappa, N. Cuntoor, V. Moscato, A. Picariello, V. S. Subrahmanian, and O. Udrea.
PADS: A Probabilistic Activity Detection Framework for Video Data. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(12):2246–2261, 2010. ISSN 0162-8828. doi: 10.1109/TPAMI.
2010.33.

M. Albanese, C. Molinaro, F. Persia, A. Picariello, and V. S. Subrahmanian. Finding “Unexplained” Ac-
tivities in Video. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI), pages 1628–1634, 2011.

J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26(11):
832–843, 1983a.

J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):
832843, 1983b.

J. F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–154, July
1984. ISSN 0004-3702.

A. Artikis, M. Sergot, and G. Paliouras. A Logic Programming Approach to Activity Recognition. In
Proceedings of the 2nd International Workshop on Events in Multimedia (EiMM), pages 3–8. ACM,
2010a.

A. Artikis, A. Skarlatidis, and G. Paliouras. Behaviour Recognition from Video Content: a Logic
Programming Approach. International Journal on Artificial Intelligence Tools (JAIT), 19(2):193–
209, 2010b.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

Bibliography page 65 of 74

A. Artikis, O. Etzion, Z. Feldman, and F. Fournier. Event processing under uncertainty. In Proceedings
of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS ’12, pages 32–
43, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1315-5.

M. Biba, S. Ferilli, and F. Esposito. Discriminative structure learning of markov logic networks.
In Proceedings of the 18th International Conference on Inductive Logic Programming, ILP ’08,
pages 59–76, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-85927-7. doi: 10.1007/
978-3-540-85928-4 9. URL http://dx.doi.org/10.1007/978-3-540-85928-4_9.

R. Biswas, S. Thrun, and K. Fujimura. Recognizing Activities with Multiple Cues. In Proceedings of
the 2nd Workshop on Human Motion - Understanding, Modeling, Capture and Animation, Lecture
Notes in Computer Science, pages 255–270. Springer, 2007.

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision trees. Arti-
ficial Intelligence, 101(1–2):285–297, 1998. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/
S0004-3702(98)00034-4. URL http://www.sciencedirect.com/science/article/
pii/S0004370298000344.

M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov models for complex action recognition.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), page 994999.
IEEE Computer Society, 1997.

W. Brendel, A. Fern, and S. Todorovic. Probabilistic Event Logic for Interval-based Event Recognition.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages 3329–
3336. IEEE Computer Society, 2011.

H. V. Bromberg F, Margaritis D. Efficient markov network structure discovery using independence tests.
The journal of artificial intelligence research, 35(1):449–484, 2009.

M. Bruynooghe, B. De Cat, J. Drijkoningen, D. Fierens, J. Goos, B. Gutmann, A. Kimmig, W. Labeeuw,
S. Langenaken, N. Landwehr, W. Meert, E. Nuyts, R. Pellegrims, R. Rymenants, S. Segers, I. Thon,
J. Van Eyck, G. Van den Broeck, T. Vangansewinkel, L. Van Hove, J. Vennekens, T. Weytjens, and
L. De Raedt. An exercise with statistical relational learning systems, July 2009.

I. Cervesato and A. Montanari. A calculus of macro-events: progress report. In Seventh International
Workshop on Temporal Representation and Reasoning, 2000. TIME 2000. Proceedings, pages 47–58,
2000.

X. Chuanfei, L. Shukuan, W. Lei, and Q. Jianzhong. Complex event detection in probabilistic stream.
In Web Conference (APWEB), 2010 12th International Asia-Pacific, pages 361–363, Apr. 2010.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and Ex-
pert Systems: Exact Computational Methods for Bayesian Networks. Springer Publishing Company,
Incorporated, 1st edition, 2007. ISBN 0387718230, 9780387718231.

G. Cugola and A. Margara. TESLA: a formally defined event specification language. In Proceedings of
Conference on Distributed-Event Based Systems (DEBS), page 5061, 2010.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex event pro-
cessing. ACM Computing Surveys, 44(3), 2011.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dx.doi.org/10.1007/978-3-540-85928-4_9
http://www.sciencedirect.com/science/article/pii/S0004370298000344
http://www.sciencedirect.com/science/article/pii/S0004370298000344

Bibliography page 66 of 74

G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing uncertainty in com-
plex event processing: model, implementation, and validation. Computing, pages 1–42, 2014.
ISSN 0010-485X. doi: 10.1007/s00607-014-0404-y. URL http://dx.doi.org/10.1007/
s00607-014-0404-y.

J. Davis and P. Domingos. Bottom-up learning of markov network structure. In In Proc. of the 27th
International Conference on Machine Learning. ACM Press, 2010.

L. De Raedt and L. Dehaspe. Clausal discovery. Mach. Learn., 26(2-3):99–146, Mar. 1997.
ISSN 0885-6125. doi: 10.1023/A:1007361123060. URL http://dx.doi.org/10.1023/A:
1007361123060.

L. De Raedt and K. Kersting. Probabilistic logic learning. SIGKDD Explor. Newsl., 5(1):31–48, July
2003. ISSN 1931-0145. doi: 10.1145/959242.959247.

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive publish/subscribe
systems. In Y. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm,
A. Kemper, T. Grust, and C. Boehm, editors, Advances in Database Technology - EDBT 2006, number
3896 in Lecture Notes in Computer Science, pages 627–644. Springer Berlin Heidelberg, Jan. 2006.

Q.-T. Dinh, M. Exbrayat, and C. Vrain. Heuristic method for discriminative structure learning of markov
logic networks. In Machine Learning and Applications (ICMLA), 2010 Ninth International Confer-
ence on, pages 163–168, December 2010. doi: 10.1109/ICMLA.2010.31.

P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2009.

C. Dousson. Extending and unifying chronicle representation with event counters. In ECAI, pages
257–261. Citeseer, 2002.

C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing and hierar-
chization. In IJCAI, volume 7, pages 324–329, 2007.

C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: representation and algorithms. In IJCAI,
volume 93, pages 166–172, 1993.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL http:
//dl.acm.org/citation.cfm?id=1953048.2021068.

O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Company, 2010a. ISBN
978-1-935182-21-4.

O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Company, 2010b. ISBN
978-1-935182-21-4.

R. Fagin. Combining fuzzy information from multiple systems. In In Proceedings of the Fifteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 216–226. ACM
Press, 1996. ISBN 0-89791-781-2.

D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, and
L. De Raedt. Inference and learning in probabilistic logic programs using weighted boolean formulas.
Theory and Practice of Logic Programming, pages 1–44, 2013.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dx.doi.org/10.1007/s00607-014-0404-y
http://dx.doi.org/10.1007/s00607-014-0404-y
http://dx.doi.org/10.1023/A:1007361123060
http://dx.doi.org/10.1023/A:1007361123060
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068

Bibliography page 67 of 74

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2, IJ-
CAI’99, pages 1300–1307, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. URL
http://dl.acm.org/citation.cfm?id=1624312.1624404.

N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of Information Retrieval
and Database Systems. ACM Trans. Inf. Syst., 15(1):32–66, Jan. 1997. ISSN 1046-8188.

A. Gal, S. Wasserkrug, and O. Etzion. Event Processing over Uncertain Data. In S. Helmer, A. Poulo-
vassilis, and F. Xhafa, editors, Reasoning in Event-Based Distributed Systems, volume 347 of Studies
in Computational Intelligence, pages 279–304. Springer, 2011. ISBN 978-3-642-19723-9.

L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT Press, 2007. ISBN
9780262072885.

M. L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Compu-
tational Intelligence, 4:265–316, 1988.

S. Gong and T. Xiang. Recognition of group activities using dynamic probabilistic networks. In Pro-
ceedings of the 9th International Conference on Computer Vision (ICCV), volume 2, page 742749.
IEEE Computer Society, 2003.

T. Grabs and M. Lu. Measuring performance of complex event processing systems. In Topics in Perfor-
mance Evaluation, Measurement and Characterization, pages 83–96. Springer, 2012.

E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online convex optimiza-
tion. In In 19th COLT, pages 499–513, 2006.

D. Heckerman. Learning in graphical models. chapter A Tutorial on Learning with Bayesian Networks,
pages 301–354. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-60032-3. URL http://dl.
acm.org/citation.cfm?id=308574.308676.

R. Helaoui, M. Niepert, and H. Stuckenschmidt. Recognizing Interleaved and Concurrent Activities:
A Statistical-Relational Approach. In Proceedings of the 9th Annual International Conference on
Pervasive Computing and Communications (PerCom), pages 1–9. IEEE Computer Society, 2011.

T. N. Huynh and R. J. Mooney. Discriminative structure and parameter learning for markov logic net-
works. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08, pages
416–423, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.
1390209. URL http://doi.acm.org/10.1145/1390156.1390209.

T. N. Huynh and R. J. Mooney. Max-Margin Weight Learning for Markov Logic Networks. In Proceed-
ings of the European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), volume 5781 of Lecture Notes in Computer Science, pages
564–579. Springer, 2009.

T. N. Huynh and R. J. Mooney. Online Max-Margin Weight Learning for Markov Logic Networks. In
Proceedings of the 11th SIAM International Conference on Data Mining (SDM11), pages 642–651,
Mesa, Arizona, USA, April 2011a.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dl.acm.org/citation.cfm?id=1624312.1624404
http://dl.acm.org/citation.cfm?id=308574.308676
http://dl.acm.org/citation.cfm?id=308574.308676
http://doi.acm.org/10.1145/1390156.1390209

Bibliography page 68 of 74

T. N. Huynh and R. J. Mooney. Online structure learning for markov logic networks. In Proceedings of
the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2011), volume 2, pages 81–96, September 2011b. URL http://www.
cs.utexas.edu/users/ai-lab/?huynh:ecml11.

Y. Ivanov and A. Bobick. Recognition of visual activities and interactions by stochastic parsing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):852–872, Aug. 2000. ISSN 0162-
8828. doi: 10.1109/34.868686.

M. Jaeger. Relational bayesian networks. In Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence, UAI’97, pages 266–273, San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-485-5.

M. Jaeger. Model-theoretic expressivity analysis. In L. D. Raedt, P. Frasconi, K. Kersting, and S. Mug-
gleton, editors, Probabilistic inductive logic programming, number 4911 in Lecture Notes in Com-
puter Science, pages 325–339. Springer Berlin Heidelberg, Jan. 2008.

T. Joachims. A support vector method for multivariate performance measures. In Machine Learn-
ing, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, Au-
gust 7-11, 2005, pages 377–384. ACM Press, 2005. URL http://doi.acm.org/10.1145/
1102351.1102399.

T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural SVMs. Machine Learning,
77(1):27–59, 2009. ISSN 0885-6125. doi: 10.1007/s10994-009-5108-8. URL http://dx.doi.
org/10.1007/s10994-009-5108-8.

A. Kanaujia, T. E. Choe, and H. Deng. Complex events recognition under uncertainty in a sensor
network. arXiv:1411.0085 [cs], Nov. 2014. arXiv: 1411.0085.

H. Kautz, B. Selman, and Y. Jiang. A General Stochastic Approach to Solving Problems with Hard
and Soft Constraints. In D. Gu, J. Du, and P. Pardalos, editors, The Satisfiability Problem: Theory
and Applications, volume 35 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 573–586. AMS, 1997.

H. Kawashima, H. Kitagawa, and X. Li. Complex event processing over uncertain data streams. In 2010
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pages
521–526, Nov. 2010. doi: 10.1109/3PGCIC.2010.89.

K. Kersting, L. de Raedt, and T. Raiko. Logical Hidden Markov Models. Journal of Artificial Intelligence
Research (JAIR), 25(1):425–456, 2006.

H. Khosravi, O. Schulte, T. Man, X. Xu, and B. Bina. Structure learning for markov logic networks
with many descriptive attributes. In M. Fox and D. Poole, editors, AAAI. AAAI Press, 2010. URL
http://dblp.uni-trier.de/db/conf/aaai/aaai2010.html#KhosraviSMXB10.

T. Khot, S. Natarajan, K. Kersting, and J. Shavlik. Learning markov logic networks via functional
gradient boosting, 2011.

T. Khot, S. Natarajan, K. Kersting, and J. Shavlik. Gradient-based boosting for statistical relational
learning: The markov logic network and missing data cases. Mach. Learn., 100(1):75–100, July
2015. ISSN 0885-6125. doi: 10.1007/s10994-015-5481-4. URL http://dx.doi.org/10.
1007/s10994-015-5481-4.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://www.cs.utexas.edu/users/ai-lab/?huynh:ecml11
http://www.cs.utexas.edu/users/ai-lab/?huynh:ecml11
http://doi.acm.org/10.1145/1102351.1102399
http://doi.acm.org/10.1145/1102351.1102399
http://dx.doi.org/10.1007/s10994-009-5108-8
http://dx.doi.org/10.1007/s10994-009-5108-8
http://dblp.uni-trier.de/db/conf/aaai/aaai2010.html#KhosraviSMXB10
http://dx.doi.org/10.1007/s10994-015-5481-4
http://dx.doi.org/10.1007/s10994-015-5481-4

Bibliography page 69 of 74

A. Kimmig, B. Demoen, L. D. Raedt, V. S. Costa, and R. Rocha. On the implementation of the prob-
abilistic logic programming language ProbLog. Theory and Practice of Logic Programming, 11:
235262, 2011.

S. Kok and P. Domingos. Learning the structure of Markov logic networks. In Proceedings of the 22nd
international conference on Machine learning, pages 441–448. ACM, 2005.

S. Kok and P. Domingos. Learning markov logic network structure via hypergraph lifting. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pages 505–512. ACM,
2009.

S. Kok and P. Domingos. Learning markov logic networks using structural motifs. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 551–558. Citeseer, 2010.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing, 4(1):6795,
1986.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In Proceedings of the 18th International Conference on
Machine Learning (ICML), pages 282–289. Morgan Kaufmann, 2001.

G. Lavee, M. Rudzsky, and E. Rivlin. Propagating Certainty in Petri Nets for Activity Recognition.
IEEE Transactions on Circuits and Systems for Video Technology, 23(2):326–337, Feb 2013. ISSN
1051-8215. doi: 10.1109/TCSVT.2012.2203742.

S. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of markov networks using l1 regular-
ization. In In NIPS, 2006.

L. Liao, D. Fox, and H. A. Kautz. Hierarchical conditional random fields for GPS-based activity recog-
nition. In International Symposium of Robotics Research (ISRR), volume 28 of Springer Tracts in
Advanced Robotics (STAR), page 487506. Springer, 2005.

H. Loureno, O. Martin, and T. Sttzle. Iterated local search. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research
& Management Science, pages 320–353. Springer US, 2003. ISBN 978-1-4020-7263-5. doi:
10.1007/0-306-48056-5 11. URL http://dx.doi.org/10.1007/0-306-48056-5_11.

D. Lowd and J. Davis. Learning markov network structure with decision trees. In Proceedings of the
2010 IEEE International Conference on Data Mining, ICDM ’10, pages 334–343, Washington, DC,
USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4256-0. doi: 10.1109/ICDM.2010.128. URL
http://dx.doi.org/10.1109/ICDM.2010.128.

D. Lowd and J. Davis. Improving markov network structure learning using decision trees. J.
Mach. Learn. Res., 15(1):501–532, Jan. 2014. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=2627435.2627451.

D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. ISBN
0201727897.

J. Ma, W. Liu, and P. Miller. Event modelling and reasoning with uncertain information for distributed
sensor networks. In Scalable Uncertainty Management, pages 236–249. Springer, 2010.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1109/ICDM.2010.128
http://dl.acm.org/citation.cfm?id=2627435.2627451
http://dl.acm.org/citation.cfm?id=2627435.2627451

Bibliography page 70 of 74

C. Manfredotti. Modeling and Inference with Relational Dynamic Bayesian Networks. In Y. Gao and
N. Japkowicz, editors, Advances in Artificial Intelligence, volume 5549 of Lecture Notes in Computer
Science, pages 287–290. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-01817-6.

C. Manfredotti, H. Hamilton, and S. Zilles. Learning RDBNs for Activity Recognition. In NIPS Work-
shop on Learning and Planning from Batch Time Series Data, 2010.

A. McCallum. Efficiently inducing features of conditional random fields. CoRR, abs/1212.2504, 2012.
URL http://arxiv.org/abs/1212.2504.

M. R. Mendes, P. Bizarro, and P. Marques. A performance study of event processing systems. In
Performance Evaluation and Benchmarking, pages 221–236. Springer, 2009.

M. R. Mendes, P. Bizarro, and P. Marques. Towards a standard event processing benchmark. In Pro-
ceedings of the 4th ACM/SPEC International Conference on Performance Engineering, ICPE ’13,
page 307310, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1636-1. doi: 10.1145/2479871.
2479913.

L. Mihalkova and R. Mooney. Bottom-up learning of markov logic network structure. In Proceedings
of the 24th international conference on Machine learning, pages 625–632. ACM, 2007.

D. Minnen, I. Essa, and T. Starner. Expectation grammars: leveraging high-level expectations for
activity recognition. In 2003 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2003. Proceedings, volume 2, pages II–626–II–632 vol.2, June 2003. doi:
10.1109/CVPR.2003.1211525.

C. Molinaro, V. Moscato, A. Picariello, A. Pugliese, A. Rullo, and V. S. Subrahmanian. PADUA: Parallel
Architecture to Detect Unexplained Activities. ACM Transactions on Internet Technology (TOIT), 14
(1):3:1–3:28, Aug. 2014. ISSN 1533-5399. doi: 10.1145/2633685. URL http://doi.acm.org/
10.1145/2633685.

D. Moore and I. Essa. Recognizing multitasked activities from video using stochastic context-free
grammar. In AAAI/IAAI, pages 770–776, 2002.

V. I. Morariu and L. S. Davis. Multi-agent event recognition in structured scenarios. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), pages 3289–3296. IEEE
Computer Society, 2011.

E. T. Mueller. Event Calculus. In Handbook of Knowledge Representation, volume 3 of Foundations of
Artificial Intelligence, pages 671–708. Elsevier, 2008.

S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13:245–286, 1995. doi:
10.1007/BF03037227.

S. Muggleton and J. Chen. A behavioral comparison of some probabilistic logic models. In L. D. Raedt,
P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilistic Inductive Logic Programming,
number 4911 in Lecture Notes in Computer Science, pages 305–324. Springer Berlin Heidelberg,
Jan. 2008. ISBN 978-3-540-78651-1, 978-3-540-78652-8.

K. P. Murphy. Dynamic Bayesian Networks: representation, inference and learning. PhD thesis, Uni-
versity of California, 2002.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://arxiv.org/abs/1212.2504
http://doi.acm.org/10.1145/2633685
http://doi.acm.org/10.1145/2633685

Bibliography page 71 of 74

S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. Gradient-based boosting for statistical
relational learning: The relational dependency network case. Mach. Learn., 86(1):25–56, Jan. 2012.
ISSN 0885-6125. doi: 10.1007/s10994-011-5244-9. URL http://dx.doi.org/10.1007/
s10994-011-5244-9.

A. Paschke. ECA-RuleML: An approach combining ECA rules with temporal interval-based KR
event/action logics and transactional update logics. arXiv preprint cs/0610167, 2006.

A. Paschke and M. Bichler. Knowledge representation concepts for automated SLA management. De-
cision Support Systems, 46(1):187–205, Dec. 2008. ISSN 0167-9236.

S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features of random fields. IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 19(4):380–393, 1997.

J. R. Quinlan. Learning logical definitions from relations. MACHINE LEARNING, 5:239–266, 1990.

L. R. Rabiner and B.-H. Juang. An introduction to Hidden Markov Models. Acoustics, Speech, and
Signal Processing Magazine (ASSP), 3(1):4–16, 1986.

P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High dimensional ising model selection using l1
regularized logistic regression. Ann. Statist., 38(3):1287–1319, 06 2010. doi: 10.1214/09-AOS691.
URL http://dx.doi.org/10.1214/09-AOS691.

C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on correlated probabilistic streams. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 715–728, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/
1376616.1376688. URL http://doi.acm.org/10.1145/1376616.1376688.

B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In Proceedings of the Tenth
National Conference on Artificial Intelligence, AAAI’92, pages 50–55. AAAI Press, 1992. ISBN
0-262-51063-4. URL http://dl.acm.org/citation.cfm?id=1867135.1867143.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(12):107136, 2006.

M. S. Ryoo and J. K. Aggarwal. Recognition of Composite Human Activities through Context-Free
Grammar Based Representation. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1709–1718. IEEE Computer Society, 2006.

M. S. Ryoo and J. K. Aggarwal. Semantic Representation and Recognition of Continued and Recursive
Human Activities. International Journal of Computer Vision, 82(1):1–24, 2009.

A. Sadilek and H. A. Kautz. Location-Based Reasoning about Complex Multi-Agent Behavior. Journal
of Artificial Intelligence Research (JAIR), 43:87–133, 2012.

S. Sanghai, P. Domingos, and D. Weld. Relational dynamic bayesian networks. Journal of Artificial
Intelligence Research, 24(2005):759–797, 2005.

J. Selman, M. R. Amer, A. Fern, and S. Todorovic. PEL-CNF: Probabilistic event logic conjunctive
normal form for video interpretation. In Proceedings of the International Conference on Computer
Vision Workshops (ICCVW), pages 680–687. IEEE Computer Society, 2011.

Z. Shen, H. Kawashima, and H. Kitagawa. Probabilistic event stream processing with lineage. In Proc.
of Data Engineering Workshop, 2008.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dx.doi.org/10.1007/s10994-011-5244-9
http://dx.doi.org/10.1007/s10994-011-5244-9
http://dx.doi.org/10.1214/09-AOS691
http://doi.acm.org/10.1145/1376616.1376688
http://dl.acm.org/citation.cfm?id=1867135.1867143

Bibliography page 72 of 74

V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis. Bilattice-based Logical Reasoning for Human
Detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8. IEEE Computer Society, 2007.

V. D. Shet, M. Singh, C. Bahlmann, V. Ramesh, J. Neumann, and L. S. Davis. Predicate Logic Based
Image Grammars for Complex Pattern Recognition. International Journal of Computer Vision, 93(2):
141–161, 2011.

J. M. Siskind. Grounding the lexical semantics of verbs in visual perception using force dynamics and
event logic. Journal of Artificial Intelligence Research (JAIR), 15:3190, 2001.

A. Skarlatidis. Event Recognition Under Uncertainty and Incomplete Data. PhD thesis, Department of
Digital Systems, University of Piraeus, October 2014.

A. Skarlatidis, G. Paliouras, G. Vouros, and A. Artikis. Probabilistic event calculus based on markov
logic networks. In Proceedings of the 5th International Symposium on Rules (RuleML), volume 7018
of Lecture Notes in Computer Science, page 155170. Springer, 2011.

A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras. A probabilistic logic programming event calcu-
lus. Journal of Theory and Practice of Logic Programming (TPLP), 2013.

A. Skarlatidis, E. Michelioudakis, N. Katzouris, A. Artikis, G. Paliouras, E. Alevizos, I. Vetsikas, and
C. Vlassopoulos. Event recognition and forecasting technology (part 2), 02 2014.

A. Skarlatidis, G. Paliouras, A. Artikis, and G. A. Vouros. Probabilistic Event Calculus for Event
Recognition. ACM Transactions on Computational Logic, 16(2):11:1–11:37, Feb. 2015a. ISSN 1529-
3785. doi: 10.1145/2699916. URL http://doi.acm.org/10.1145/2699916.

A. Skarlatidis, G. Paliouras, A. Artikis, and G. A. Vouros. Probabilistic event calculus for event
recognition. ACM Trans. Comput. Logic, 16(2):11:1–11:37, Feb. 2015b. ISSN 1529-3785. doi:
10.1145/2699916. URL http://doi.acm.org/10.1145/2699916.

Y. C. Song, H. Kautz, J. Allen, M. Swift, Y. Li, J. Luo, and C. Zhang. A Markov Logic Frame-
work for Recognizing Complex Events from Multimodal Data. In Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, ICMI ’13, pages 141–148, New York, NY,
USA, 2013a. ACM. ISBN 978-1-4503-2129-7. doi: 10.1145/2522848.2522883. URL http:
//doi.acm.org/10.1145/2522848.2522883.

Y. C. Song, H. A. Kautz, Y. Li, and J. Luo. A General Framework for Recognizing Complex Events in
Markov Logic. In AAAI Workshop: Statistical Relational Artificial Intelligence. AAAI, 2013b.

A. Srinivasan. The Aleph Manual, 2004. URL http://www.comlab.ox.ac.uk/activities/
machinelearning/Aleph/. http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/.

A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities.
Comput. Linguist., 21(2):165–201, June 1995. ISSN 0891-2017.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. MIT Press, 2003.

S. D. Tran and L. S. Davis. Event Modeling and Recognition Using Markov Logic Networks. In
Proceedings of the 10th European Conference on Computer Vision (ECCV), volume 5303 of Lecture
Notes in Computer Science, pages 610–623. Springer, 2008.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://doi.acm.org/10.1145/2699916
http://doi.acm.org/10.1145/2699916
http://doi.acm.org/10.1145/2522848.2522883
http://doi.acm.org/10.1145/2522848.2522883
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/

Bibliography page 73 of 74

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. J. Mach. Learn. Res., 6:1453–1484, Dec. 2005. ISSN 1532-4435.
URL http://dl.acm.org/citation.cfm?id=1046920.1088722.

D. L. Vail, M. M. Veloso, and J. D. Lafferty. Conditional random fields for activity recognition. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), page 13311338. IFAAMAS, 2007.

S. Vishwakarma and A. Agrawal. A survey on activity recognition and behavior understanding in video
surveillance. The Visual Computer, 29(10):983–1009, Oct. 2013. ISSN 0178-2789, 1432-2315.

Y. Wang, X. Li, X. Li, and Y. Wang. A survey of queries over uncertain data. Knowledge and Information
Systems, 37(3):485–530, Apr. 2013a. ISSN 0219-1377, 0219-3116.

Y. H. Wang, K. Cao, and X. M. Zhang. Complex event processing over distributed probabilistic event
streams. Computers & Mathematics with Applications, 66(10):1808–1821, Dec. 2013b. ISSN 0898-
1221.

S. Wasserkrug, A. Gal, and O. Etzion. A taxonomy and representation of sources of uncertainty in active
systems. In O. Etzion, T. Kuflik, and A. Motro, editors, Next Generation Information Technologies
and Systems, number 4032 in Lecture Notes in Computer Science, pages 174–185. Springer Berlin
Heidelberg, Jan. 2006. ISBN 978-3-540-35472-7, 978-3-540-35473-4.

S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event processing over uncertain data. In
Proceedings of the second international conference on Distributed event-based systems, pages 253–
264. ACM, 2008.

S. Wasserkrug, A. Gal, and O. Etzion. A model for reasoning with uncertain rules in event composition
systems. arXiv:1207.1427 [cs], July 2012a. URL http://arxiv.org/abs/1207.1427.

S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Efficient processing of uncertain events in rule-based
systems. IEEE Transactions on Knowledge and Data Engineering, 24(1):45–58, Jan. 2012b. ISSN
1041-4347. doi: 10.1109/TKDE.2010.204.

E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event Processing over Streams. In Proceed-
ings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06,
pages 407–418, New York, NY, USA, 2006. ACM.

T.-y. Wu, C.-c. Lian, and J. Y.-j. Hsu. Joint recognition of multiple concurrent activities using factorial
conditional random fields. In Proceedings of the Workshop on Plan, Activity, and Intent Recognition
(PAIR), page 8288. AAAI Press, 2007.

J. M. Zelle, C. A. Thompson, M. E. Califf, and R. J. Mooney. Inducing logic programs without explicit
negative examples. In Proceedings of the Fifth International Workshop on Inductive Logic Program-
ming (ILP-95), pages 403–416, Leuven, Belgium, 1995. URL http://www.cs.utexas.edu/
users/ai-lab/?zelle:ilp95.

H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in streams with imprecise timestamps. Proc.
VLDB Endow., 3(1-2):244–255, Sept. 2010. ISSN 2150-8097. doi: 10.14778/1920841.1920875. URL
http://dx.doi.org/10.14778/1920841.1920875.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

http://dl.acm.org/citation.cfm?id=1046920.1088722
http://arxiv.org/abs/1207.1427
http://www.cs.utexas.edu/users/ai-lab/?zelle:ilp95
http://www.cs.utexas.edu/users/ai-lab/?zelle:ilp95
http://dx.doi.org/10.14778/1920841.1920875

Bibliography page 74 of 74

H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expensive queries in complex
event processing. pages 217–228. ACM Press, 2014. ISBN 9781450323765. doi: 10.1145/2588555.
2593671.

D3.2: Second Version of Event Recognition and Forecasting Technology – Part II

