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Executive Summary

SPEEDD (Scalable ProactivE Event-Driven Decision Making) is developing a system for event recogni-
tion and proactive decision making in real-time, based on the on-the-fly processing of Big-Data streams.
The goal of WP4 (Real-Time Event-Based Decision-Making Under Uncertainty) is to provide innova-
tive techniques for proactive event-driven decision-making, ranging from worst-case real-time decision-
making to randomized, scenario-based decision-making, enabling varying degrees of automation.

The purpose of this document is to describe the first version of the decision making component.
This component provides a body of proactive event-driven decision-making tools for the respective use-
cases, which exploit the detected or forecasted events of complex event processing. Conceptually, the
Decision Making module receives as inputs the detected, derived and forecasted events and emits control
actions or appropriate suggestions. Note that any decision making algorithms that are expected to satisfy
guarantees on optimality and robustness can only provide those guarantees with respect to an underlying
model. Hence those decision making tools need to be inherently use-case specific. In this deliverable,
we describe decision making tools for freeway traffic control, inner-city traffic control and credit card
fraud detection.

The main contributions of this deliverable address the traffic use case. A theoretical analysis of an
existing decentralized decision making algorithm for freeways (ALINEA) is presented and optimality
guarantees are derived. This decision making scheme has been implemented within the event-driven,
scalable architecture selected for the SPEEDD project. The implemented algorithms will also be part of
the traffic show-case for the first review meeting. Furthermore, a novel algorithm for the optimization of
large-scale urban traffic networks has been derived. Performance measures for the use-case objectives
are introduced and simulation results are presented, which show clear improvements. To address the sec-
ond use case (Credit-Card Fraud Detection), we introduce the novel concept of “distributionally robust
classifiers”. This approach mitigates the uncertainty in the training data in a “worst-case” approach.

Future extensions for the decision making strategies for the traffic use case will introduce coordi-
nation and online optimization into the decision making process. They are expected to build upon the
deentralized algorithm in a hierarchical fashion. Distributionally robust classifiers in their present stage
are linear classifiers. To improve performance, it is worth exploring if they can be generalized to allow
for nonlinear decision boundaries by employing the kernel trick or an equivalent extension.
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1

Introduction

1.1 History of the Document

Version Date Author Change Description

0.1 01/12/2014 Marius Schmitt (ETH) Initial draft
0.2 01/12/2014 Marius Schmitt (ETH) Included contribution by P. Grandinetti (CNRS)
0.3 19/12/2014 Marius Schmitt (ETH) Refined draft for internal review
1.0 23/12/2014 Marius Schmitt (ETH) Addressed some comments by the reviewers

1.2 Purpose and Scope of the Document

The purpose of this document is to describe the first version of the decision making component. We
describe decision making tools for freeway traffic control, inner-city traffic control and credit card fraud
detection. The deliverable is structured as follows:

In Chapter 2, a novel, theoretical analysis of an existing, decentralized decision making algorithm
for freeways (ALINEA) is presented. The central result is that this (simplistic) feedback controller is
asymptotically flow-optimal for the idealized freeway ramp-metering problem. Because of its inherently
distributed structure, it has been selected for a first implementation within the SPEEDD project. It is
intended to serve as a bottom-level controller for the freeway use case, on top of which coordinated,
optimization-based decision making strategies can be implemented. Note that even though decisions
are made without the explicit use of robust optimization tools (T4.2: “Worst-Case Decision-Making
Methods”), the inherent feedback structure of the control strategies mitigates the uncertainties in free-
way traffic to a certain extent. In particular, ALINEA only requires one model parameter (the critical
density) to be estimated a priori for implementation. Domain-specific triggering mechanisms based on
the reported events as outlined in T4.1 (“Event-Driven Proactive Decision-Making”) are in place.

Chapter 3 describes the design of a novel algorithm for optimization of large-scale urban traffic
networks. The algorithm has favorable scalability properties, because it formulates the decision making

D4.1: Decision Making I
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problem as a linear program. Performance measures for the use–case objectives are introduced and an
initial evaluation of simulation results is given.

In the second use-case (Credit Card Fraud Detection), Event Recognition (WP3) and Decision Mak-
ing (WP4) are much closer related, since the decision of whether a transaction should be blocked ob-
viously depends on the estimated probability that the respective transaction is fraudulent. Therefore,
we briefly address the classification problem in this deliverable as well and we present a novel lin-
ear classifier in Chapter 4. We introduce the concept of “distributionally robust classifiers”, which are
distribution-agnostic as opposed to existing solutions that commonly rely on the assumption of Gaus-
sian probability distributions. The uncertainty, which is introduced into the problem by the absence
of an exact knowledge of the probability density function, is then handled using a “worst-case” (T4.2)
approach.

1.3 Relationship with Other Documents

This document takes the scenario definitions given in D8.1 for the Proactive Traffic Management use
case and D7.1 for the Proactive Credit Card Fraud Detection use case into account. We also refer to the
description of the architecture design of the SPEEDD prototype (D6.1 )in section 2.4, where we briefly
address the integration of the decision making module into the SPEEDD framework. The development
of decision making components is ongoing work, and future deliverables (D4.2 and D4.3) will build
upon the initial results presented in this document. Parts of the results presented in this document have
been submitted for publication in Schmitt et al.. and Grandinetti et al..
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2

Flow-maximizing Equilibria of the CTM

M. Schmitt, P. Goulart, J. Lygeros

We consider the freeway ramp metering problem, based on the Cell Transmission Model. This work
addresses the question of how well distributed control strategies, e.g. local feedback controllers at every
onramp, can maximize the traffic flow asymptotically under time-invariant boundary conditions. We
extend previous results on the structure of steady-state solutions of the Cell Transmission Model and
use them to optimize over the set of equilibria. By using duality arguments, we derive optimality con-
ditions and show that closed-loop equilibria of certain distributed feedback controllers, in particular the
practically successful “ALINEA” method, are in fact globally optimal. Parts of this chapter have been
submitted for publications in Schmitt et al..

2.1 Introduction

Active traffic control schemes have been established as an effective and practically useful tool to improve
traffic flows on congestion-prone road networks Papageorgiou et al. (2003). This work concentrates on
the freeway ramp metering problem, where we can actively control the number of cars that enter the
freeway using a specific onramp. A survey of ramp metering strategies can be found in Papageorgiou
and Kotsialos (2000). To model the freeway traffic dynamics, we make use of the Cell Transmission
Model (CTM), which was originally derived as a first-order Godunov approximation of the kinematic
wave partial differential equation Daganzo (1994, 1995). More precisely, we adopt the “asymmetric”
CTM Gomes and Horowitz (2006); Gomes et al. (2008), which simplifies the model of onramp-mainline
merges in comparison to the originally proposed formulation. Its popularity for model-based control
stems from the simplicity of the model equations, allowing for computationally efficient solutions meth-
ods for optimal control problems Gomes and Horowitz (2006); Ziliaskopoulos (2000).

A variety of local feedback strategies, i.e., ramp metering controllers that only receive measurements
from sensors in close vicinity of the onramp location, have been described in literature, e.g. Papageorgiou
et al. (1991); Stephanedes (1994); Zhang and Ritchie (1997). These strategies have been shown to
come close to the performance of optimal control strategies in practical applications, even though they
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Figure 2.1: Sketch of the cell transmission model

only aim to maximize bottleneck flows locally Smaragdis et al. (2004); Wang et al. (2014). While
it is apparent that such local feedback controllers are far easier to implement and to configure than
centralised, model-based optimal control strategies, it is not obvious why the former tend to come close
in performance to the latter in practice Papamichail et al. (2010). An explanation is given in Zhang
and Levinson (2004), which explicitly constructs the optimal control strategy for a special case – it
is assumed for example that there are no internal freeway queues – and states that the structure of the
explicit solution “explains why some local metering algorithms [...] are successful – they are really close
to the most-efficient logic.”

In this work, we address the question of how distributed control strategies, such as local feedback
controllers at every onramp, compare to optimal control strategies asymptotically under time-invariant
boundary conditions. The idea to focus on traffic controllers which are only required to achieve con-
vergence to an optimal equilibrium (instead of solving the far more challenging problem of optimizing
the transient behavior) has recently received attention in a series of papers on traffic density balancing
Pisarski and C. de Wit (2012, 2013); Pisarski and De Wit (2012). It is well known that the problem of
maximizing the flow over the set of equilibria of the CTM can be posed as a linear program (LP). By
using duality arguments, we derive simple optimality conditions for flow-maximizing equilibria. We
show that all closed-loop equilibria of certain local feedback controllers, in particular the practically
successful ALINEA method Papageorgiou et al. (1991), are in fact globally optimal in the idealized
CTM.

2.2 Problem formulation

In this section, we motivate and introduce the (asymmetric) Cell Transmission Model (CTM) Gomes
and Horowitz (2006); Gomes et al. (2008). Throughout this work, we consider a freeway section as
depicted in Figure 2.1. The CTM admits the following intuitive explanation: The freeway is partitioned
into n sections or cells of length lk. The state of the highway is described by the traffic density ρk(t)
in each cell k at sampling time t. Since the CTM is a first order model, the velocity is not part of the
state. The evolution of the traffic is described by the traffic flows φk(t), i.e., the number of cars that
move from cell k to cell k+ 1 in one time interval ∆t. We model the off-ramp flows rk(t) = βk

β̄k
φk(t) as

a proportion of the mainline flow φk(t) with the (constant) split ratios βk and β̄k := 1 − βk. The flow
entering the freeway via an onramp at cell k is denoted uk. The flow entering the considered freeway

D4.1: Decision Making I
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Figure 2.2: Sketch of the fundamental diagram for uniform freeway conditions, i.e., parameters and
densities that do not differ between consecutive cells.

section on the mainline is denoted u0. We can thus formulate the conservation law for each cell as:

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + uk(t)−

φk(t)

β̄k

)
.

The road conditions are described by the so-called free-flow velocity vk, the congestion-wave velocity
wk and the jam density ρ̄k. The flows φk(t) are limited by the number of cars in the origin cell that
want to travel downstream (β̄kvkρk(t)), the capacity of the highway Fk and the available free space
((ρ̄k+1 − ρk+1(t))wk+1) in the receiving cell:

φk(t) = min
{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
.

This relationship can be visualized with the so-called fundamental diagram as depicted in Figure 2.2.
The critical density ρck = wk

vk+wk
ρ̄k is the density value at which the fundamental diagram is maximized.

The peak value of both the sending as well as the receiving cell determine the values of the capacities
Fk, which are defined as Fk := min

{
β̄kvkρ

c
k, (ρ̄k+1 − ρck+1)wk+1

}
1 . This equation is slightly adapted

for the first and the last cell, where we define F0 = (ρ̄1 − ρc1)w1 and Fn = min
{
β̄nvnρ

c
n, φ̄n

}
. Here,

u0 ≥ 0 models the mainline traffic demand and φ̄n ≥ 0 is some arbitrary, constant bound on the outflow
from the highway. All parameters and variables of the CTM are summarized in Table 2.1 . Note that
all parameters of the CTM are positive and all states are nonnegative. Furthermore, the split ratios
are limited to the interval 0 ≤ βk < 1 and the sampling time ∆t is restricted to ∆t ≤ lk

vk
to ensure

convergence.
For a given initial state ρk(0) and ramp metering rates uk(t) for 1 ≤ k ≤ n and t ∈ N, the evolution

of the highway is described by the following equations:

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + uk(t)−

φk(t)

β̄k

)
,

φ0(t) = min {u0, F0, (ρ̄1 − ρ1(t))w1} ,
φk(t) = min

{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
,

φn(t) = min
{
β̄nvnρn(t), Fn, φ̄n

}
.

Note that this model includes the implicit assumption that congestion does not spill back onto the on-
ramps. While this assumption might not be satisfied for an uncontrolled highway, it was shown to
be satisfied by a large margin for a highway controlled by ramp metering in a field study Gomes and

1Note that some authors allow for capacities 0 < Fk ≤ min
{
β̄kvkρ

c
k, (ρ̄k+1 − ρck+1)wk+1

}
which leads to a fundamental

diagram of trapezoidal shape.
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Symbol Name/Definition Unit

V
ar

ia
bl

es


φk flow 1/h
ρk density 1/mile
uk onramp flow 1/h

Pa
ra

m
et

er
s



βk split ratio 1
β̄k 1− βk 1
lk cell length mile
vk free-flow velocity mile/h
wk congestion-wave velocity mile/h
ρ̄k jam density 1/mile
∆t sampling time interval h

Table 2.1: Summary of symbols

Horowitz (2006), since such a controller will limit inflows and mainline congestion by design.

In this work, we seek to find an equilibrium of the CTM, which maximizes a positive, linear combi-
nation of the mainline flows:

maximize
uk,φk,ρk

∑n
k=0 ckφk

subject to φk, ρk, uk describe an equilibrium of the CTM,
(2.1)

for ck ≥ 0. This somewhat informal problem statement will be made precise in Section 2.2.3, after we
have analyzed the equilibria of the CTM in Section 2.2.1. We restrict our attention to equilibria, since
periodic solutions do not provide an advantage with respect to flow–maximization (Section 2.2.2).

2.2.1 Existence of Equilibria
In this work, we are mainly interested in optimal steady-state solutions to the CTM equations. We start
by deriving some general properties in the form of three lemmas that characterize equilibria of the CTM,
which will be important tools in the analysis of optimality of such equilibria in the following sections.
In the following, if the time index is omitted for some variable, e.g. φk instead of φk(t), the variable is
to be understood as a steady-state value.

The equations describing steady-state solutions or equilibria of the CTM can be derived by imposing
ρk(t+ 1) = ρk(t) =: ρk (and removing the time index t from all variables), which yields:

φk = (φk−1 + uk) β̄k, 1 ≤ k ≤ n,
φ0 = min {u0, F0, (ρ̄1 − ρ1)w1} ,
φk = min

(
β̄kvkρk, Fk, (ρ̄k+1 − ρk+1)wk+1

)
, 1 ≤ k < n,

φn = min
{
β̄nvnρn, Fn, φ̄

}
.

(2.2)

We call u the (traffic) demand, which consists of the mainline demand u0 and the onramp inflows uk,
1 ≤ k ≤ n (as introduced earlier). Note that the onramp flows can be changed by ramp metering and
thus serve as control inputs, whereas the mainline demand is fixed. For ease of notation, we define the
equilibrium set E(u) as

E(u) = {(φ, ρ) : For fixed demand u, (φ, ρ) satisfy (2.2)}.

D4.1: Decision Making I
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We call a section k a bottleneck if φk = Fk. The locations of the bottlenecks are important in the
analysis of the CTM equilibria Gomes et al. (2008). Assuming that there are m − 1 bottlenecks
b1, b2, . . . , bm−1, these bottlenecks partition the highway into m segments S1 = {0, . . . , b1}, S2 =
{b1 + 1, . . . , b2}, . . . , Sm = {bm−1 + 1, . . . , n}, as depicted in Figure 2.3. Note that the first and the
last segment may be empty if φ0 or φn are bottleneck flows. For a constant demand u, define the induced

Segment

⌫qj
= 0 ⌫qj+1  0⌫qj�1 � 0

SegmentSj Sj+1

bj�1 bj bj+1

�bj+1
= Fbj+1

�bj�1
= Fbj�1

�bj
= Fbj

Segement Sj

bj�1

⇢k = ⇢c
k ⇢k > ⇢c

k⇢k < ⇢c
k

�bj
> 0�bj�1

> 0

bj
qj

Segment Segment

�b1 = Fb1

b1

S1 Sm

Figure 2.3: Segments, defined according to the bottleneck locations, in a CTM representation of a
freeway.

flows ϕ as:

ϕ := u0,

ϕk := (ϕk−1 + uk)β̄k, 1 ≤ k ≤ n,
i.e., the induced flows are the flows that result in steady-state if the complete traffic demand can be
accommodated by the freeway.

We can categorize traffic demands for a particular freeway according to whether or not they can be
served: The traffic demand u is called feasible if the induced flows are equal or smaller than the local
capacities in every section ϕk ≤ Fk ∀k. It is called strictly feasible if the induced flows are strictly
smaller than the capacity in every section ϕk < Fk ∀k and it is called marginally feasible if it is feasible,
but not strictly feasible. Using these definitions, we are now ready to characterize equilibria of the CTM.

Lemma 1. For a feasible traffic demand u, the unique equilibrium flows of the CTM are equal to the
induced flows φk = ϕk. Equilibrium densities are as follows:

(i) For strictly feasible demands, the unique equilibrium is the uncongested equilibrium with densities
ρk = φk

β̄kvk
< ρck.

(ii) For marginally feasible demands, the equilibrium densities are no longer unique. One particular
equilibrium is the uncongested equilibrium with densities ρk = φk

β̄kvk
≤ ρck.

Proof. This result follows immediately from (Gomes et al., 2008, Theorem 4.1).

Note that (Gomes et al., 2008, Theorem 4.1) also states the complete set of equilibrium densities for
case (ii) explicitly. For our purposes, it is sufficient to know that a non-empty set of equilibrium densities
exists for every feasible demand. We also need to consider situations in which the mainline demand
cannot be completely served and a congestion on the mainline spills back outside of the considered part
of the freeway. If the demand u = {u0, u1, . . . , un} is infeasible, but the demand ũ = {0, u1, . . . , un}
is feasible, we call the demand u onramp-feasible. Onramp-feasible demands exceed the capacity of the
freeway, but the capacity is sufficient to accommodate the onramp flows alone, assuming zero mainline-
flow.

Lemma 2. For onramp-feasible demands, the unique equilibrium flow is given as ϕ0 = max{x ≥ 0 :
(x, u1, . . . , un) is feasible}) and ϕk := (ϕk−1 + uk)β̄k for 1 ≤ k ≤ n. The equilibrium densities are
not unique in general. One particular equilibrium is given as a congested first segment ρk = ρ̄k− φk

wk
≥

ρck, ∀k ∈ S1 and the remaining freeway operating in free-flow ρk = φk
β̄kvk

≤ ρck, ∀k /∈ S1.

D4.1: Decision Making I
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Segement SegementSj Sj+1

bj�1 bj bj+1

�bj+1
= Fbj+1

�bj�1
= Fbj�1

SegmentSj

⇢k = ⇢c
k ⇢k > ⇢c

k⇢k < ⇢c
k

Congestion queue bottleneck:bottleneck:

Figure 2.4: Pattern of the highway state within one segment. Note that there is not necessarily a cell in
which the critical density is exactly achieved (ρk = ρck). In this case, cell qi is the last cell in free flow:
ρk < ρck.

Proof. See Schmitt et al..

In an equilibrium, some cells in a segment might be congested while other cells operate in free-flow.
The order of congestion and free-flow conditions is not arbitrary, but follows a specific pattern instead.
Let cell qj be the last cell within segment Sj which is not congested, i.e. qj := argmaxk{k ∈ Sj : ρk ≤
ρck}. If all cells within a segment j are congested, define qj := bj + 1.

Lemma 3. All cells downstream of cell qj within a segment are congested: ρk > ρck, k ∈ Sj , k > qj .
All cells upstream of cell qj within a segment operate in free-flow: ρk < ρck, k ∈ Sj , k < qj .

Proof. The first assertion holds by definition of qj . The second assertion can be proven by contradic-
tion: Assume some cell(s) upstream of cell qj , but within the same segment are congested. Let nj :=
argmaxk{k ∈ Sj , k < qj : ρk ≥ ρck} be the most downstream one of those cells. By definition, cell nj is
congested, but cell nj+1 is not. It follows that φnj = min

{
β̄njvnjρnj , Fnj , (ρ̄nj+1 − ρnj+1)wnj+1

}
≥

min
{
β̄njvnjρ

c
nj
, Fnj , (ρ̄nj − ρcnj

)wnj

}
= Fnj , i.e. cell nj + 1 is a bottleneck. This is a contradiction

to the assumption that there are no bottlenecks within a segment.

Intuitively, this means that there exists only one congestion queue per segment2, which starts in cell
qj . Furthermore, there can at most be one cell within a segment (cell qj) in which the density actually
equals the critical density. The resulting congestion/ free-flow pattern is visualized in Figure 2.4.

Remark 1. Note that the equilibrium flows as a function of the traffic demand φ(u) can be written as

φ0 = max{ϕ : ϕ ≤ u0, (ϕ, u1, . . . , un)},
φk = (φk−1 + uk)β̄k, 1 ≤ k ≤ n,

for both feasible demands, yielding simply φ0 = u0, and onramp-feasible demands, by definition.

Having established various properties of the equilibrium flows and densities for fixed onramp inflows
u, we are now ready to address the problem of finding the optimal ramp metering rates u to maximize
traffic flows.

2.2.2 Periodic solutions
In Problem (2.4), we optimize over the set of equilibria of the CTM equations in order to obtain the
optimal steady-state solution. In Gomes et al. (2008) the authors speculate about the possibility, that the

2A similar result is stated in (Gomes et al., 2008, Lemma 4.3). The cases ρk < ρck and ρk = ρck are not distinguished,
however, but this distinction will be crucial in our further analysis.
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periodic execution of a congestion-decongestion cycle could potentially yield an improvement over the
optimal equilibrium and thus provide what they call a ”free-lunch” opportunity. In the following, we
will show that such a periodic cycle will not improve the steady-state optimum given as the solution to
Problem (2.4), assuming that the boundary conditions uk, ūk, φin and φout are constant in time.

To make this statement precise, let uk(t) be the inputs/inflows during one cycle/horizon of length
N , i.e. [uk(0), uk(1), . . . uk(N − 1)]>. Let ρk(t) be the corresponding densities, with ρk(0) the initial
condition, and φk(i) the corresponding flows. We can write down the CTM equations for one cycle:

ρk(t+ 1) = ρk(i) +
∆t

lk

(
φk−1(t) + uk(t)−

φk(t)

β̄k

)
(2.3a)

φk(t) = min
{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
(2.3b)

φ0(t) = min {F0, (ρ̄1 − ρ1(t))w1} (2.3c)

φn(t) = min
{
β̄nvnρn(t), Fn+1

}
(2.3d)

Since we are considering a periodic cycle, we impose in addition that ρk(0) = ρk(N). Let us define the
average inputs, flows and densities as

uavgk :=
1

N

N−1∑
i=0

uk(t) ,

φavgk :=
1

N

N−1∑
i=0

φk(t) ,

ρavgk :=
1

N

N−1∑
i=0

ρk(t)

Theorem 1. For any cycle of (finite) period N which operates in quasi-steady state, i.e. ρk(0) = ρk(N)
and satisfies the CTM equations, there exists a steady state solution to the CTM, that achieves both equal
average onramp inflows in all sections uavgk = uk and also equal flows on the mainline φavgk = φk, for
all k. Moreover, any box constraints on the metering rates that are satisfied throughout the cycle will
also be satisfied in the equilibrium. In this sense, there is no free lunch.

Proof. Let φk(t) for k ∈ {0, . . . , N − 1} denote the flows during one periodic cycle of period N and
accordingly ρk(t) ∀k ∈ {0, . . . , N − 1} the densities and uk(t) ∀k ∈ {0, . . . , N − 1} the onramp
flows resp. the ramp metering rates. Since we operate in quasi-steady-state, the sum off all inflows and
outflows for every cell vanishes over one period:

ρk(N)− ρk(0) =
N−1∑
t=0

(
φk−1(t) + uk(t) +

φk(t)

β̄k

)

=
N−1∑
i=0

φk−1(t) +
N−1∑
i=0

uk(t) +
N−1∑
i=0

φk(t)

β̄k

= N ·
(
φavgk−1 + ūk +

φavgk (t)

β̄k

)
!

= 0

It follows that the average flows satisfy the steady-state conservation equation φavgk−1 + ūk+
φavgk (t)

β̄k
=

0. They do not necessarily satisfy the flow-density relationship given by the fundamental diagram, but
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they satisfy a related inequality instead:

φavgk =
1

N

N−1∑
t=0

φk(t) =
1

N

N−1∑
t=0

min
{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
≤ min

{
1

N

N−1∑
t=0

β̄kvkρk(t), Fk,
1

N

N−1∑
t=0

(ρ̄k+1 − ρk+1(t))wk+1

}
= min

{
β̄kvkρ

avg
k , Fk, (ρ̄k+1 − ρavgk+1)wk+1

}
Similarly φavg0 ≤ min {(ρ̄1 − ρavg1 )w1, F0} and φavgn ≤ min

{
β̄nvnρ

avg
n , Fn

}
. It is now easy to show

that there exists an equilibrium that achieves at least the same average throughput. Define:

ussk := uavgk ,

φss0 := φavg0 .

Note that because the average quantities satisfy the steady-state conservation equation,
φssk+1 :=

(
φssk + ussk+1

)
β̄k+1 holds, i.e. the average flows define a valid traffic demand. Furthermore,

φssk ≤ Fk holds. Therefore, the traffic demand is feasible. But we have previously shown in Lemmas
1 and 2, that for any feasible traffic demand uss, we can find densities to construct an equilibrium to
the CTM. Note that the average onramp flows are obviously bounded by the minimal/ maximal onramp
inflows during one cycle. This simple, yet important observation implies that the equilibrium onramp
flows ussk = uavgk satisfy any box constraints that are satisfied by the onramp inflows during one cycle:
uk ≤ min0≤t<N uk(t) ≤ uavgk ≤ max0≤t<N uk(t) ≤ ūk. Therefore, the ramp metering strategy
uk(t) = uavgk ∀t ≥ 0 is implementable for any cycle with average metering rates uavgk . Since the CTM
is globally asymptotically stable (and the equilibrium flows are unique), convergence to an equilibrium
with equilibrium flows equalling the average flows over one period of the cycle, i.e. limt→∞ φk(t) =
φavgk , is guaranteed.

Having thus established that there does not exist an improving cycle, the problem of maximizing
long–term throughput under constant boundary conditions is reduced to optimizing over the set of equi-
libria.

2.2.3 Flow-Optimal Equilibria
In this section, we will address the problem of optimizing over steady-state equilibria of the CTM. To
this end, we will first state the (nonconvex) main problem, show the equivalence of this problem with a
suitable linear relaxation and then use duality arguments to derive optimality conditions.

Consider a highway modeled by the CTM and controlled by ramp metering. We want to find the
equilibrium that maximizes a positive combination of all flows c>φ (c ∈ Rn+1

+ ) by choosing appropriate
(steady-state) ramp metering rates uk. The ramp metering rates are assumed to be constrained by box
constraints uk ≤ uk ≤ ūk. In the simplest case, the lower limit might be equal to zero to prevent negative
flows and the upper bounds will reflect the maximal number of cars that want to enter the freeway at
a certain onramp per time period. We assume that the lower bounds (u0, u1, . . . , un) on the inflows
are onramp-feasible, guaranteeing the existence of a feasible solution. Thus we consider the following
optimization problem over equilibria of the CTM:

maximize
u,φ,ρ

c>φ

subject to uk ≤ uk ≤ ūk, 1 ≤ k ≤ n,
(φ, ρ) ∈ E(u).

(2.4)
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Note that Problem (2.4) includes the maximization of the Total Travel Distance TTD :=
∑n

k=0
φk
β̄k

or

the total discharge flows rtot := φn +
∑n

k=1
βk
β̄k
φk as special cases. Also note that Problem (2.4) is

nonconvex, due to the nonlinear flow constraints that make the set of equilibria E(u) a nonconvex set.
Even though the flow-constraints are nonconvex, it is well-known that there exists an uncongested,

flow-maximizing equilibrium for freeways under fairly general conditions Wattleworth (1965); Chen
et al. (1974). One can find this solution by solving a suitable Linear Program, for example by intro-
ducing a condition that restricts the highway to free-flow conditions (which does not introduce any
conservativeness in terms of the objective value, as long as the problem remains feasible). We want to
avoid this explicit restriction and consider the following relaxation:

maximize
u,φ

c>φ

subject to uk ≤ uk ≤ ūk, 1 ≤ k ≤ n,
φk = (φk−1 + uk) · β̄k, 1 ≤ k ≤ n,
φk ≤ Fk, 1 ≤ k ≤ n,
φ0 ≤ F̃0 := min{F0, u0},

(2.5)

in which the nonconvex flow-constraints have been relaxed and the constraints involving the densities
have been removed altogether.

Proposition 1. Let c ∈ Rn+1
+ . Then problem (2.4) is equivalent to the relaxation (2.5), in the sense that

the objective values are equal. Furthermore, given a maximizer (u∗, φ∗) of the relaxed problem (2.5),
we can compute densities ρ∗ such that (u∗, φ∗, ρ∗) is a maximizer of (2.4).

Proof. Since (2.5) is a relaxation of (2.4), it is sufficient to show that for any optimizer φ∗, u∗ to (2.5),
we can find ρ∗ such that φ∗, u∗, ρ∗ are feasible for (2.4). Assume u∗, φ∗ are solutions of the relaxed
problem (2.5). Then φ∗ is also the solution of φ∗ = argmax

φ
{c>φ : φ ∈ F} with:

F :=

{
φk = (φk−1 + u∗k) · β̄k 1 ≤ k ≤ n
φk ≤ Fk 0 ≤ k ≤ n .

For fixed onramp flows, all flows φk can be expressed as affine functions of φ0, thus we can rewrite:

φ∗ = argmax
φ
{c>φ : φ ∈ F} = argmax

φ
{aφ0 + b : φ ∈ F}

= argmax
φ
{φ0 : φ ∈ F} = φ(u∗)

for suitable a, b ∈ R+. We see that the flows φ∗ equal the equilibrium flows for the fixed traffic de-
mands u∗ as stated in Remark 1. We have previously established that the set of equilibrium densities is
nonempty in every case, according to Lemmas 1 and 2. Therefore, we can always find feasible equilib-
rium densities ρ∗ and equivalence of the optimization problems holds.

Note that in general, the optimal solution set for the densities includes equilibria in which some cells
are congested. While optimizing over free-flow conditions will yield a global optimum, the CTM also
allows for (partly) congested equilibria, which achieve the same objective value.

We will now derive sufficient optimality conditions for the maximal flow problem (2.4). These
optimality conditions will be tailored for the analysis of distributed control approaches and are based
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on the following consideration: Assume a distributed controller with the objective of moving the local
density at every controlled onramp (as close as possible) to the critical density. It is easy to check
that each individual flow will be maximal if ρk = ρck is achieved in every cell, which is the main
idea behind this control approach. However, this will in general not be the case due to saturation of
the available control inputs (the ramp metering rates), in particular if multiple local controllers interact
while controlling a freeway. Therefore, the performance of such closed-loop equilibria in terms of flow
maximization is not clear a priori. The following theorem presents sufficient optimality conditions, by
imposing only local constraints on the ramp metering rates, dependent only on the local densities:

Theorem 2. Let u, φ, ρ be an equilibrium of the CTM and assume the equilibrium ramp metering u
rates satisfy:

“free-flow”: uk = ūk ∀k : ρk < ρck,

“critical density”: uk ≤ uk ≤ ūk ∀k : ρk = ρck,

“congestion”: uk = uk ∀k : ρk > ρck.

(2.6)

Then u, φ, ρ solve the maximal flow problem (2.4).

Proof. Feasibility of the primal problem (2.4) holds by assumption. To verify optimality, it is sufficient
to show that the equilibrium flows solve the LP-relaxation (2.5), according to Proposition 1. Consider
the dual of problem (2.5) which is given as:

minimize
µ.ν,ξ,λ

ν>u− ξ>ū− λ>F

subject to µk + νk − ξk = 0 1 ≤ k ≤ n
−ck + µk

β̄k
− µk+1 + λk = 0 0 ≤ k ≤ n

µ0 = µn+1 = 0

µ ∈ Rn+2, ν ∈ Rn+, ξ ∈ Rn+, λ ∈ Rn+1
+

(2.7)

To simplify notation, we have introduced µ0 := 0 and µn+1 := 0. We will show that for any solution to
the primal problem which satisfies (2.6), we can construct a complementary dual solution, thus proving
that the primal solution is indeed optimal. The complementarity conditions are given as

0 ≤ (u− u) ⊥ ν ≥ 0,

0 ≤ (u− ū) ⊥ ξ ≥ 0,

0 ≤ (φ− F ) ⊥ λ ≥ 0.

For ease of notation, we define the following index sets: The set of all bottlenecks B := {k : Fk = φk},
the set of all congested cells C := {k : ρk > ρck}, the set of all cells in free flow F := {k : ρk < ρck}
and the set of all cells in which the critical density is achieved D := {k : ρk = ρck}. By combining
the constraints for dual feasibility and the complementarity constraints, we end up with the following
optimality conditions:

φ, ρ ∈ E(u), u, ρ satisfy (2.6), (2.8a)

−ck +
µk
β̄k
− µk+1 + λk = 0, (2.8b)

µk = 0 if k ∈ D, λk = 0 if k /∈ B, (2.8c)

µk ≥ 0 if k ∈ F , µk ≤ 0 if k ∈ C, (2.8d)

λk ≥ 0 if k ∈ B. (2.8e)
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Figure 2.5: Dual variables corresponding to the congestion/ free-flow pattern of the freeway within one
segment.

We will now find an explicit solution to the dual problem, by constructing a solution to every segment
Sj . Define

µqj := 0.

Then feasible multipliers µk for all other cells in segment Sj can be computed by iterating in up-
stream/downstream direction, starting from the cell bj + nF :

µk := β̄k (µk+1 + ck) , bj−1 < k < qj ,

µk :=
µk−1

β̄k−1
− ck−1, qj < k ≤ bj ,

and the multipliers λ are computed as

λk := ck −
µk
β̄k

+ µk+1, k ∈ B,

λk := 0, k 6∈ B.

The resulting pattern within one segment is depicted in Figure 2.5.
We will now verify that the proposed solution indeed solves the optimality conditions (2.8). Note that

condition (2.8a) is satisfied by assumption. Conditions (2.8b) and (2.8c) are satisfied by construction.
Conditions (2.8d) and (2.8e) remain to be checked.

We will first show that conditions (2.8d) hold for a generic segment Sj . For this we need some
intermediate steps:

• Recall that the parameters β̄k and ck are nonnegative. We claim that the multipliers of all cells
upstream of cell qj , but within segment Sj , are nonnegative. This can be verified by induction:
µqj = 0 by definition. Assume now that µk ≥ 0. Then µk−1 = β̄k−1 (µk + ck−1) ≥ 0 for all
cells with indices bj−1 < k < qj .

• Conversely, the multipliers of all cells downstream of cell qj , but within segment Sj , are nonpos-
itive. This can again be verified by induction: µqj = 0 by definition. Assume now that µk ≤ 0.
Then µk+1 = µk

β̄k
− ck ≥ 0 for all cells with indices qj < k ≤ bj .

Recall now that according to Lemma 3, the congestion pattern within a segment is ordered. In particular,
all cells bj−1 < k < qj operate in free-flow and all cells qj < k ≤ bj are congested. Satisfaction of
conditions (2.8d) immediately follows.

We can also conclude from the previous analysis that for every bottleneck bj , it holds that µbj ≤ 0
(since cell bj is located downstream of cell qj) and also µbj+1 ≥ 0 (since cell bj + 1 is located upstream

of cell qj + 1). Therefore λbj := cbj −
µbj
β̄bj

+ µbj+1 ≥ 0 and conditions (2.8e) follow.
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Figure 2.6: Simulation results using the CTM. Note that the flows are normalized such that a flow of “1”
means that the optimal steady-state flow (computed separately) is achieved. Similarly, the densities are
normalized by the respective critical densities. Note the different timescales.

It is interesting to note that the result does not depend on the choice of the weights for the individual
mainline flows c (as long as all are non-negative), so all such objectives will be jointly maximized by
an equilibrium satisfying the optimality condition (2.6). This is a consequence of the assumption of
constant split rations βk, under which it is impossible to trade off the mainline flow at some part of the
freeway with the mainline flow at another place.

2.3 Application

To demonstrate the practical relevance of the previously derived optimality conditions, we use them
to analyze the well-known distributed ramp-metering strategy ALINEA Papageorgiou et al. (1991).
ALINEA is in essence an integral controller that aims at stabilizing the local densities at the critical
density. It is easy to verify that every closed-loop equilibrium of a freeway controlled by local ALINEA
controllers satisfies the optimality conditions (2.6).

We implement the standard ALINEA anti-windup integral controller

uk(t) := ũk(t− 1) +KI · (ρck − ρk(t))

in which ũk(t − 1) is the saturated inflow ũk(t) := max(uk,min(uk(t), ūk)) and KI := 70/ρck is the
integral gain chosen as recommended in Papageorgiou et al. (1991). Closed-loop simulation results of
this controller operating on simple freeways represented by the CTM are depicted in Figure 2.6. In both
examples, the closed-loop system converges to the optimal closed-loop equilibrium, as predicted. In
the first example, the controller converges to the unique uncongested equilibrium. In fact, all densities
converge to the respective critical densities. In the second example, however, the controlled onramp and
the bottleneck are two sections apart. We observe convergence to a partly congested equilibrium, also
the convergence is slow and heavy oscillations occur. These effects have already been described Wang
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Figure 2.7: Conceptual architecture of coordinated ramp metering.

et al. (2014), nevertheless, the optimal flows are achieved in the limit as long as we use the CTM for
simulations.

It is important to keep in mind that this result holds only under the assumptions made in the CTM. In
particular, the equilibrium may contain congested bottlenecks, which lead in practice to an empirically
observed reduction of the bottleneck capacity. Such effects are not described by the simplistic CTM.
In this sense, the simulations described in this section are not meant to be a realistic assessment of the
real-world traffic behavior, but rather a way to demonstrate the properties of the idealized CTM. Note
however, that the equilibrium densities are not unique and techniques described in Gomes et al. (2008) or
Wang et al. (2014) can be employed to steer the system to the preferred equilibrium (usually the unique,
least congested equilibrium) in order to avoid the aforementioned capacity drop.

2.4 Integration within SPEEDD

Its inherently decentralized structure makes the ALINEA controller perfectly suitable for a distributed
architecture. In addition, it does not rely on online optimization at all. As a (nonlinear) feedback con-
troller, decisions at runtime are made by evaluating a function, which has a constant complexity (O(1)),
irrespective of the size of the road network. Therefore, it has been selected for a first implementation
within the SPEEDD project. It is intended to serve as a bottom-level controller for the freeway use
case, on top of which coordinated, optimization–based decision making strategies can be implemented
(Figure 2.7).

We also want to briefly address the question about the appropriate degree of automation. In principle,
there are two modes of operation envisioned for SPEEDD, as outlined for example in D8.1:

• Decision support Decision making only suggests appropriate control actions. At the very least,
every proposed action has to be reviewed and acknowledged by a (human) operator.

• Automatic decision making Decisions are implemented automatically, that is they are immedi-
ately sent to the actuators. The operators will receive a notification, though, and might have the
possibility to override the automatically chosen actions.

A low-level ramp metering controller such as ALINEA will change ramp metering rates typically every
minute. This will happen for every onramp independently, also one can expect most changes of the ramp
metering rates to be relatively small, at least in the absence of disruptive events. A manual acknowl-
edgement of all those changes seems to be neither practical nor desirable. In the first implementation,
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Figure 2.8: The integration of the described decision making unit for freeway traffic. At the current stage,
local feedback controllers and the communication with the user interface are in place. The development
and implementation of a coordination layer will be the next step.

we considered those changes to be automatic decisions that are sent to the actuators directly, without
requiring prior approval. However, for a system like a traffic network, an option for human operators to
interfere is mandatory, at the very least as a response to emergencies. The current implementation, as
depicted in Figure 2.8, allows for this by providing the possibility to set lower and upper limits on the
metering rates, for every individual onramp (”Admin Commands”). Those limits, which correspond to
uk and ūk in the previous analysis, will be respected by all automatically made decisions, until they are
manually changed or removed by the operators. It shall be stressed, that the previously derived optimal-
ity conditions continue to hold in the presence of (constant) limits on the ramp metering rates. Setting
the lower and upper limits to equal values, uk = ūk, effectively disables the automatic controller at the
respective onramp. Thus the operators have the option to override the automatic control entirely at any
time, if the situation seems to require such a drastic action.

2.5 Conclusions

In this chapter, we have conducted a theoretical analysis of the CTM for freeways. We found simple
optimality conditions for flow–maximization, that are tailored to distributed control approaches, since
only constraints between local ramp metering rates and the densities in the adjacent cells are imposed.
In particular, the optimality conditions are satisfied for all closed-loop equilibria of a freeway controlled
by independent local ALINEA controllers, thus proving that all such equilibria are globally optimal
(w.r.t. flow maximization). Due to its simplicity, the ALINEA controller has been chosen for a first
implementation in the SPEEDD use-case. Based on the presented analysis, the next step will be the
derivation and implementation of a hierarchical control scheme, that uses (robust) online optimization
in order to coordinate the lower level feedback controllers.

D4.1: Decision Making I



page 18 of 25

3

An efficient one-step-ahead optimal control for urban signalized traffic
networks based on an averaged Cell-Transmission model

P. Grandinetti, F. Garin, C. Canudas de Wit

Our contribution to the Real-time event-based decision-making under uncertainty work package consists
in the design of a novel algorithm for optimization of large–scale urban traffic network Grandinetti et al..

The steadily increasing traffic demands have given rise to the need for efficient network operations.
In this sense, traffic lights assume a fundamental role, since they are the major control measure in urban
scenario.

Urban traffic control strategies are classified as fixed–time techniques and model–based algorithms.
The main drawback of the former ones is that their settings are based on historical rather than real–time
data, while the latter ones basic problem is the presence of discrete variables that require exponential
complexity algorithms for a global optimization.

We have instead developed a decision–making scheme that can be implemented via linear opti-
mization, and it is therefore computationally very efficient and scalable. This technique is based on a
dynamical representation of traffic flow inside the newwork.

3.1 Traffic flow model

Traffic evolution in time and space is a complex system which strongly affects security and pollution;
hence, effective and easy–to–handle models are needed to represent and control its behaviour.

The scientific community relies on macroscopic models of time–space evolution of the traffic. Such
models describe traffic as a fluid, and are based on a mass conservation law . With respect to microscopic
models, macroscopic ones are preferred due to their simplicity and accuracy in characterizing vehicles’
flows and densities. The Cell Transmission Model (CTM) is an example, widely used, of this kind of
representation.

We have build a model for large signalized traffic network based on the CTM, where flows at inter-
section of roads are regulated by traffic lights, and we have introduced the concept of averaged CTM, a
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Figure 3.1: Precision of the averaged CTM approved via software simulation. In 3.1a (regarding the
actual system) and in 3.1b (regarding the averaged system) each row shows the density of a road evolving
in time.

more effective characterization of the system by means of control purpose. The averaged CTM evolu-
tion, tested in software simulation within a network with 40 roads, results to also have a good precision
in terms of reliability with respect to the actual CTM network, as figure 3.1 shows.

3.2 Traffic performance

Traffic behaviour needs to be evaluated and assessed with respect to performance indices properly de-
fined. There exist several metrics in literature to address performance evaluation; we focused on the
following two features:

Service of Demand An urban traffic network is an highly dynamical environment that continously re-
ceives demand from outside. This demand cannot be ignored just to favour the inner quality of
the system, because the external request will end up growing with several undesired effects, due
to the bigger and bigger queues arising outside.

For this reason we define as service of demand the number of vehicles (users) served:

SoD(t) =

∫ t

0
ϕin
r (τ)dτ

where ϕin
r is the flow at the network boundary which enters in road r. The Service of Demand is

a quantity that we would like to maximize.

Optimization of the infrastructures In urban networks some roads are preferred than others by the
users. The infrastructure holder would like to set traffic lights as to diminish this usage disparity,
to guarantee a more equilibrate diffusion of vehicles, thus reducing hard congestions in main
streets as well as the possibility of accidents.

A standard metric that takes into account this behaviour is the Total Travel Distance, a cumulative
index here defined as:

TTD(t) =

∫ t

0

( ∑
r∈network

ϕr(τ)
)
dτ
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Figure 3.2: Application of the proposed decision–making strategy. Figures 3.2a and 3.2b show the
distance from the best working point (called critical density, ρc) for the system with fixed strategy and
with our algorithm, respectively. Lighter color means better performance.

Table 3.1: Improvement in the network with the proposed control strategy.

Index Improvement (%)

SoD 5.5 (per entering road)
TTD 14.6

where ϕr is the flow inside the road r.

3.3 Decision–making strategy

We developed a strategy for deciding the duty cycle to be assigned to the traffic lights using a one–step–
ahead control. The optimization problem we stated can be solved by means of linear programming, and
it is therefore very suitable for practical purpose. The size of the Linear Program scales linearly (O(n))
with the number of cells in the CTM of the road network. Thanks to this efficient optimization we can
set duty cycles periodically, achieving good performance improvements for the two metrics previously
defined. The effectiveness of our algorithm was tested in software simulation and compared to a fixed–
decision strategy.

Representative results are showed in Figure 3.2 and in Table 3.1. Note that:

• Our algorithm achieves good performance regarding the optimization of the infrastructures. Fig-
ure 3.2 shows how far each road’s density is from its best working point ρc, where lighter color
means better performance;

• Table 3.1 gives the quantitative measures of the improvement, which is positive for both the
choosen indices.
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4

Distributionally Robust Classifiers

The problem of credit card fraud detection is a heavily unbalanced classification problem, since only a
small minority of transactions are fraudulent. It is well known that unbalanced data pose a challenge
for machine learning. Common state of the art solutions include over-/ under-sampling as well as the
replacement of individual data points by probability distributions, which approximate the data prior to
training. This approach has recently been extended by exploiting results from robust optimization to
create distributionally robust classifiers (Van Parys et al. (2014); Stellato (2014)). A brief summary of
the derivation of distributionally robust classifiers will be provided in the following.

4.1 Problem Formulation

Robust optimization addresses optimization problems, in which at least one of the problem parameters
is a priori uncertain and will only be revealed after a decision has been made. In robust optimization, it
is assumed that even though we do not know the value of those parameters a priori, we know that they
belong to a given set and we seek to optimize the worst case outcome.

Consider the problem to separate samples drawn from two probability distributions by a hyperplane,
such that the probability of misclassification is minimized for either side. Assume further that the mean
and the covariance of the probability distributions are known, but not the complete probability density
function. The problem of minimizing the classification error can then be formulated as a robust opti-
mization problem, in which we find a hyperplane such that we minimize the classification error for the
worst-case probability distribution that coincides with the given first and second moments. In practice,
it often seems to be unjustified to allow for entirely arbitrary probability density functions. In partic-
ular, many probability distributions encountered in practice are unimodal. Intuitively, unimodality of
the probability density function means that obtaining samples ”close” to the mean is more likely than
obtaining samples ”further away” from the mean.

Let the µ1 and µ2 denote the mean of the first and the second probability distribution, and likewise
let S1 and S2 denote the respective variances. By P ∈ P(µ, S)∩Pα we denote a probability distribution
P that has mean µ and variance S, and an α-unimodal probability density function1. The problem of

1In Van Parys et al. (2014), α-unimodality is introduced as a generalization of the concept of unimodality.
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minimizing the worst-case classification error can be formulated as:

max
a,γ,b

γ

subject to P(−a>x > −b) ≤ 1− γ, ∀P ∈ (µ1, S1) ∩ Pα
P(+a>x > +b) ≤ 1− γ, ∀P ∈ (µ2, S2) ∩ Pα

(4.1)

4.2 Results

The previously introduced optimization problem includes an infinite number of constraints, because of
the ”for all” classifier, therefore a straightforward numerical solution is impossible. However, by em-
ploying results from Van Parys et al. (2014), Stellato (2014) reformulates the problem as an equivalent,
nonlinear, but finite dimensional problem:

min
a,b

ω

subject to (−b+ a>µ1) ≥ ||S
1
2
1 a||

(−b+ a>µ2) ≥ ||S
1
2
2 a||

This problem can be reformulated into a finite dimensional Second-order Cone Problem (SOCP):

min
a

||S
1
2
1 a||+ ||S

1
2
2 a||

subject to a>(µ1 − µ2) = 1

(4.2)

Note in particular that this problem is convex. Numerical solvers for SOCPs exist, so that the resulting
optimization problem can be solved (numerically) for the optimizer a∗. The remaining quantities can be
computed as

ω∗ =
||S

1
2
1 a
∗||+ ||S

1
2
2 a
∗||

a>(µ1 − µ2)

and
b∗ = a∗µ1 − ω∗||S

1
2
1 a
∗||

Note that the objective has been the minimization of the classification error for either probability dis-
tribution. A tractable problem formulation for the objective of minimizing the overall misclassification
error is also given in Stellato (2014).

4.3 Future work

Distributionally robust classifiers have successfully been applied to relatively small benchmark prob-
lems. In order to facilitate application to big–data applications like Credit Card Fraud Detection, it
might be necessary to revise the existing codebase. An immediate follow–up question is whether the
distributionally robust classifiers can be generalized for nonlinear decision boundaries. In machine learn-
ing, this is commonly achieved by the “kernel trick”. However, the efficient application of the standard
kernel trick requires a special structure of the machine learning problem, which is not shared with the
prototype problem 4.1. It seems unlikely that the standard Kernel trick will be applicable, but alterna-
tives that approximate the benefits of standard kernel methods have recently been proposed. We intend
to address the question of whether the proposed classifiers can be extended to a kernel method in the
near future.
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5

Conclusions

In this document, we have described an initial body of decision making tools for freeway traffic control,
inner-city traffic control and credit card fraud detection:

For freeway traffic, we find simple optimality conditions that hold for all closed-loop equilibria of a
freeway controlled by independent local ALINEA controllers, thus proving that all such equilibria are
globally optimal (w.r.t. flow maximization). It is well-known that in practice, there exist effects that are
not modeled by the CTM, which require coordination and online-optimization of the decisions. Such
a coordinated, optimization based decision making algorithm that builds upon the low level feedback
control is expected to be developed during the next steps of the SPEEDD project.

For inner city traffic, we developed a strategy for deciding the duty cycle to be assigned to the traffic
lights using a one–step–ahead control. The optimization problem we stated can be solved by means of
linear programming, and it is therefore very suitable for practical purpose.

Distributionally robust classifiers (in their present form) are linear classifiers. In a next step, we
intend to assess the performance of distributionally robust classifiers on the SPEEDD use-case of Credit
Card Fraud Detection, in comparison to other classifiers. To achieve competetiveness, it might also
be necessary to explore if distributionally robust classifiers, which are linear classifiers in their present
form, can be extended to nonlinear classifiers by employing the kernel trick or an equivalent extension.

The development of decision making components is ongoing work, and future deliverables (D4.2
and D4.3) will build upon the initial results presented in this document.
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