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Executive Summary

The purpose of this document is to describe the third and final version of the decision making component,
which provides a set of proactive, event-driven decision-making tools for the SPEEDD use cases.

SPEEDD (Scalable ProactivE Event-Driven Decision making) has developed a system for proactive
real-time decision-making. The decisions will be triggered by events, which are processed on-the-fly by
monitoring extremely large noisy data streams from diverse geographical locations. Complex events that
describe the state of the system are detected or forecasted and are used to find the best decisions in accor-
dance with user-defined optimality criteria. The goal of WP4 (Real-Time Event-Based Decision-Making
Under Uncertainty) is to provide innovative techniques for proactive event-driven decision-making to
optimize the specified objective, while at the same time guaranteeing probabilistic constraint satisfac-
tion or providing worst-case guarantees even in the presence of inherent, problem-specific uncertainty
in the detected events. This goal is to be met by exploring different types of decision making algorithms,
ranging from worst-case real-time decision making to randomized, scenario-based decision-making.

This report provides a complete and concise description of the final version of the decision mak-
ing algorithms developed in WP4. As such, we do not only list the incremental changes since the last
version, but also include previously described algorithms if they are relevant to the final version. As
explained in past deliverables, the decision making algorithms are use-case specific. In the traffic use-
case, decision making takes a prominent role in comparison to event processing since even a complete
and uncertainty-free characterisation of the state of the traffic network does not render the question of
optimal decisions trivial. In this report, we extensively describe algorithms that allow for optimal or
practically efficient decision making for traffic control, while strictly following the distributed, scalable
paradigm of SPEEDD. In the use-case of credit card fraud detection, the question of reliable and accu-
rate detection of fraud is predominant and decision making is reduced to a supporting role, providing
additional detection algorithms or addressing the question of how to automate the decision tasks that in
current state-of-the-art solutions are left to human experts.

The derivation and implementation of suitable decision making algorithms is considered mostly
complete with this deliverable. Future work includes extensive testing of the developed algorithms
in real-world applications or realistic test-cases, depending on how a realistic but also controlled test
environment can best be realized. This evaluation is not work-package-specific but concerns the entire
project and the complete, integrated software. Therefore, future modification to the decision making
algorithms are expected to be restricted to adapting the interface with other components, if necessary, or
to the tuning of the underlying algorithms according to the needs of the end users.
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1

Introduction

1.1 History of the Document

Version Date Author Change Description

0.1 10/10/2016 Marius Schmitt (ETH) First Draft
0.2 20/10/2015 Marius Schmitt (ETH) Added contributions by various authors.
1.0 24/10/2015 Marius Schmitt (ETH) Contents completed, ready for internal revi-

sion.
2.0 31/10/2015 Marius Schmitt (ETH) Changes according to internal revision.

1.2 Purpose and Scope of the Document

The purpose of this document is to describe the third and final version of the Decision-Making algo-
rithms. We describe decision making algorithms for freeway traffic control, inner-city traffic control
and credit card fraud detection. The focus of this report is on the theoretical derivations of the decision
making algorithms. Typically, the description of each algorithm encompasses a description of the un-
derlying model, objective and assumptions, the description of the actual algorithm and theoretical proof
of properties like stability, robustness or optimality.

The decision making algorithms are use-case specific and thus, this report is divided into two main
chapters. The structure of each of these chapters is detailed in the respective introduction. There, we
also provide a summary of the work package tasks and indicate the individual contributions that address
each of the tasks.

1.3 Relationship with Other Documents

This document presents the final version of the decision making algorithms and extends and completes
the previous decision making deliverables D4.1 and D4.2. As the final report, this document is self
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contained, that is, relevant parts of the previous documents that are part of the final decision making
algorithms are repeated in this report. The focus of this report is on algorithms and the associated the-
ory. Implementation and interaction with other components are briefly discussed, but a more detailed
description can be found in the deliverable concerning the final, integrated prototype D6.7. The al-
gorithms described in this document are use-case specific. The system requirements for the Proactive
Traffic Management use case are described in D8.1 and the ones for the Proactive Credit Card Fraud
Management are described in D7.1. The respective final user evaluations will be presented in D7.4 and
D8.6, which will be conducted using the algorithms described in this deliverable as part of the final,
integrated prototype.

Results presented in this document have been published or submitted for publication in Schmitt et al.
(2015), Grandinetti et al. (2015b), Ramesh et al. (2015), Grandinetti et al. (2015c), Schmitt et al. (2016b)
and Schmitt et al. (2016a).
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2

DM for Traffic

This chapter describes the third and final version of the Decision Making module for the traffic use
case. In accordance with the objectives of SPEEDD, we focus on distributed, scalable and event-driven
algorithms. The initial architecture concept depicted in Figure 2.1 shows the module implemented in
a distributed manner. The final internal structure of the DM component is depicted in Figure 2.2. We
chose a hierarchical control approach, with a low-level control layer that provides local feedback in
an entirely decentralized and therefore inherently scalable manner and a high-level coordination layer,
which aims to coordinate the system. This is achieved by appropriately adapting the control targets for
the low-level controllers such that the overall system optimizes a central control objective. The DM
module is thus composed of three main parts:

(i) State Estimation and System Identification The main purpose of this component is the mitigation
of the uncertainty in events and measurements. Sources of uncertainty fall into one of three
categories: First, some forecasted, complex events might be uncertain. Quantification of this type
of uncertainty is provided by the CEP module and falls out of the scope of this report. Second,
measurements, e.g. of traffic flows, velocities or densities are typically noisy. We rely on standard
state estimation techniques like Kalman filtering to obtain accurate estimations of the true network
state. Third, traffic dynamics are inherently uncertain due to varying environmental conditions or
arbitrary driver decisions. Quantification of this type of uncertainty is directly handled by the DM
module and Sections 2.1.1 and 2.1.2 describe the chosen approaches.

(ii) Low-level Control The low-level control acts in a decentralized manner, that is, it chooses local
control actions (e.g. traffic light phases) depending on local variables (e.g. flow and occupancy),
estimates of which are provided by the State Estimation. It also directly uses the stochastic model
identified by the system identification component. Its control target, i.e. the desired state, is mod-
ified externally by the coordination algorithms described next. The corresponding algorithms are
described in Sections 2.2.1, 2.2.2 and 2.2.3.

(ii) High-level coordination The coordination algorithms ensure that the overall system behavior op-
timizes a system-wide objective. They do not decide on control actions directly but achieve their
goal indirectly by modifying the control targets of the low-level feedback laws. These algorithms
are also implemented in a distributed manner and rely on communication via events to realize
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Figure 2.1: Integration concept of DM into the SPEEDD prototype in previous versions (D4.1 and D4.2).

coordination. They also provide the option to modify the behavior externally via administrator
command from some human operator, e.g. as an emergency overwrite of the automatic control.
The corresponding algorithms are described in Sections 2.3.2 and 2.3.3. A result concerning a
particular scenario, in which no coordination is required to achieve optimality, is described in
Section 2.3.1.

The scope of this report encompasses all results regarding Decision Making (WP 4) from the entire
30 month duration of the project. This includes the intermediate results presented in the first (Deliverable
4.1) and second (D 4.2) version of the deliverables describing decision making algorithms, in so far as
they did not become outdated by later results. This work package is divided into five distinct tasks:

T4.1 Event-Driven Proactive Decision-Making This task is concerned with developing criteria for de-
termining how and when decisions should be selected in response to specific events recognized
or forecasted by the methods developed in WP3. A key finding is that in a fast-changing en-
vironment such as road traffic, small corrective decisions made with high frequency are vital in
stabilizing desirable operating conditions. This conclusion is reflected in the decomposition of
the DM algorithms into low-level feedback laws and high-level coordination algorithms Sections
2.2.1 and 2.2.3 both describe low-level, local feedback laws that are meant to be executed pe-
riodically with high frequency. These feedback laws are extended with distributed coordination
strategies (Section 2.3.3) which describe the communication pattern between local controllers.

T4.(2,3,4) Decision-Making Methods Tasks T4.2, T4.3 and T4.4 are all concerned with decision making
under uncertainty, depending on which particular approach is chosen. However, some of the de-
veloped algorithms are hard to categorize according to this scheme, since they achieve mitigation
of system or disturbance uncertainty by virtue of feedback and not by explicitly modeling uncer-
tainty in an optimization problem. This applies to the algorithms described in Sections 2.2.1, 2.2.3
and 2.3.3.
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Figure 2.2: Final concept of the Decision making module, using a distributed, scalable structure. The sections which describe
the results related to the respective (sub-) components of DM are indicated in the figure.

T4.2 Worst-Case Decision-Making Methods In this task, optimization methods for computing deci-
sions in a worst-case or robust manner are considered. This paradigm is mainly reflected in the
algorithm described in Section 2.2.1, which is provably robust to a wide range of traffic demand
uncertainty.

T4.3 Stochastic Decision-Making Methods The methods developed in this task are based on an opti-
mization over expected outcomes given an assumed model of the time-evolution of the system
and some data-based model of the uncertainty. This approach is chosen in the data-driven quan-
tification of uncertainty in traffic models via Gaussian Processes described in Sections 2.1.1 and
the control strategy building upon these models outlined in Section 2.1.2.

T4.4 Randomised Decision-Making Methods For those cases in which the models have very little ex-
ploitable internal structure, an approach entirely different from those developed in Tasks 4.2 and
4.3 is required. For such cases, Task 4.4 proposes to use optimization methods based on random-
ized optimization. This approach should be considered as a method of last resort. The algorithm
described in Section 2.3.2 describes a generic approach for randomized decision making in the
presence of uncertainty and its application to freeway ramp metering. In some sense, one could
argue that the method described in 2.3.3 also shares elements of this approach, as its convergence
to an approximate solution of a non-convex optimization problem ultimately depends on the (at
least partly random) choice of the starting point of the coordination algorithm.

T4.5 Determining the Right Level of Automation This task considers the application of the results of
Tasks 4.1-4.4 in enabling various levels of user decision support and determines which amount of
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Section Version T4.1 T4.2 T4.3 T4.4 T4.5 Freeway Inner City
2.1.1 v3 X X X
2.1.2 v3 X X X
2.2.1 v2 (X) X (X) X
2.2.2 v3 X X
2.2.3 v1 (X) (X) (X) (X) X
2.3.1 v1 X X
2.3.2 v2 X X
2.3.3 v2 X (X) (X) (X) X

Table 2.1: Overview over scientific results presented in this report and their main focus Xand partial applicability (X) to the
individual tasks and use-cases in the SPEEDD project. Also, the version of the DM-deliverable (D4.1, D4.2 or D4.3) in which
the respective algorithm was first described is stated.

automation is best suited for the user’s needs. Similar to the conclusion mentioned for T4.1, local
feedback laws as described in Sections 2.2.1 and 2.2.3 are meant to be executed fully automati-
cally since the frequency and the nature of the required decision (determining optimal values for
continuous variables like green-phase time with high precision) make them unsuitable for a human
operator. However, the implemented algorithms allows a human operator to override decisions.
This is required for safety reasons but effectively disables large parts of the algorithms.

A complete overview over all results presented in this report is given in Table 2.1.
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Figure 2.3: Data sample of real-world density-flow data pairs. These data can only poorly be represented by a single, deter-
ministic function but a stochastic model, here depicted via its mean and 90% confidence interval, seems suitable.

2.1 Uncertainty in Traffic

The main purpose of this section is to address the question of handling the uncertainty present in traffic
control problems. The importance of considering the effects of uncertainty in traffic control problems
can easily be exemplified with real-world data as depicted in Figure 2.3. These data clearly cannot
be described by a single, deterministic function but require a stochastic model instead1. Sources of
uncertainty in traffic control fall into one of three categories:

(i) Sensor measurement are almost always corrupted by noise. For example, occupancy of a loop
detector over an interval might not exactly correspond to the traffic density because of inhomo-
geneous traffic conditions or measured velocities might differ from average velocities if cars are
accelerating or slowing down. This type of uncertainty is usually modeled as additive noise such
that estimates of the true values can be obtained by a Kalman filter. This is the default approach
and therefore does not require further explanation in this report.

(ii) Forecasted, convex events are uncertain in the sense that there is no guarantee that they will
actually occur, but instead, the confidence in there occurrence is quantified in the event attributes.
The quantification of the uncertainty is carried out by the Complex Event Processing module
and out of the scope of this report. Section 2.1.2 describes how to modify control algorithms,
e.g. the low-level feedback laws presented in Section 2.2 to take this uncertainty (and the model
uncertainty described in (iii)) into account.

(iii) Traffic dynamics are inherently uncertain due to varying environmental conditions or arbitrary
driver decisions. This type of uncertainty is hard to quantify a-priori, since it might even by time-
varying in case of changing operation conditions. Therefore, we use a model-free, data-driven
approach to estimate this uncertainty during operation based on the measured data. In Section
2.1.1, we describe a suitable approach based on Gaussian Processes.

1Note that this figure does not rule out a deterministic model outright, since dependencies on other variables might exist
that explain the variance in the data in a deterministic fashion However, even higher order road traffic models, or models
considering additional independent variables, do not reduce the unexplained noise in real-world traffic data significantly.
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2.1.1 Identification of Uncertain Traffic Dynamics
M. Keller

We investigate how Gaussian Processes (GPs) can be used to represent and learn the traffic dynamics
of a freeway. The proposed approach is data-driven and builds on the popular macroscopic Cell Trans-
mission Model where we also model process noise and uncertainty. There are two main challenges:
first, process noise in traffic dynamics seems to be poorly representable by stationary kernels and sec-
ond, the abundance of data makes standard GP learning intractable. We present two approaches for the
representation and estimation of non- stationary process noise in GPs: learning parametric functions
by maximizing the data likelihood with a gradient-descent method, and learning process noise directly
from data with an approximative EM algorithm. To keep computations tractable, we use a combination
of the Hierarchical Mixture of Experts model (HGP) and reduce the data set size based on data density.
We further introduce a simple approach for the interpolation of traffic data between sensors. Our work
is the first step towards a robust control system for ramp metering based on reinforcement learning with
Gaussian Processes.

Introduction

It is commonly observed on freeways that the maximum capacity is achieved at a specific vehicle density,
the so-called critical density. If it is exceeded, speed (and with it, capacity) drops rapidly and congestion
usually ensues. To mitigate this effect, ramp-metering systems that regulate the rate at which vehicles
may enter a freeway have been installed with success around the world. They are usually implemented
as simple traffic lights at onramps that let pass only one vehicle per green phase. Designing a ramp-
metering system is a delicate task and it is desirable to have reliable models that predict the evolution
of traffic over time such that different control strategies can be evaluated. A rough distinction can be
made between microscopic and macroscopic traffic models where the former focus on the simulation
of individual vehicles while the latter consider traffic systems as a whole and express state in abstract
quantities such as densities and flows. We consider only macroscopic models. Macroscopic models
have a long history with significant work dating back to fifties and have been improved on and success-
fully applied since. Typical macroscopic models are based on a small number of parameters such as
the average speed of vehicles in light traffic, the maximum capacity, or the typical wave speed in traffic
jams, quantities that can be easily estimated. While these parametric approaches are convenient and in-
tuitive, they are also in a certain sense limited due to their simplicity. Nowadays, large amounts of traffic
data can usually be obtained comparatively cheaply which suggests using machine learning techniques
for developing more sophisticated data-based models. Gaussian Processes (GPs) can be interpreted as
distributions over functions with a continuous domain and as such are well-suited for the purpose of
learning traffic dynamics. They are nonparametric and therefore do not rely on strong prior assumptions
which means that they can truly learn the structure that is present in the data. GPs are based on Bayesian
statistics which allows us to include prior knowledge (and the uncertainty we have about it) in the our
model. With GPs, one does not obtain one single model but a probability density distribution on models.
As we will see, GPs can be extended in a natural way to represent the process noise that is inherent to
traffic systems. In short, GPs can express modelling and process uncertainty which is crucial for design-
ing robust control algorithms. The Probabilistic Inference for Learning Control framework (PILCO)
Deisenroth and Rasmussen (2011); Deisenroth et al. (2015) provides us with a suite of algorithms for
optimally controlling a system with a given performance function. Thus, there are control algorithms
that take full advantage of the properties of GPs, in particular of the uncertainty information. The goal
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is to investigate how GPs can be used to represent the dynamics of a traffic system and how these can
be learned from data. This report is structured as follows. Section 2 is dedicated to Gaussian Processes
where we focus on the representation and estimation of non-stationary process noise. In Section 3,
we give a brief introduction to macroscopic traffic modelling and discuss how we can represent traffic
dynamics with Gaussian Processes. After that, in Section 4, we illustrate the traffic dynamics that are
learned from data and highlight how we addressed some of the difficulties that we encountered. Finally,
we recapitulate and discuss our findings in Section 5.

Gaussian Processes for Regression

Gaussian Processeces (GPs) are a generalization of multivariate Gaussian distributions (MVNs) to any
finite number of stochastic variables. An MVN is fully specified by its mean vector µ and its covariance
matrix Σ:

y ∼ N (µ,Σ) . (2.1)

Similarly, a GP is fully specified by its mean function m(x) and its kernel function k(xi,xj). It is
denoted by

f ∼ GP(m, k). (2.2)

The GP above specifies the following MVN over collections of vectorsX =
(
x1, . . . ,xn

)
of any length

n:




y1

y2
...
yn


 ∼ N







m(x1)
m(x2)

...
m(xn)




︸ ︷︷ ︸
=:µ

,




k(x1,x1) k(x1,x2) · · · k(x1,xn)
k(x2,x1) k(x2,x2) · · · k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) · · · k(xn,xn)




︸ ︷︷ ︸
=:K




= N (µ,K). (2.3)

This leads us directly to the definition of a Gaussian Process:

Definition 2.1.1. A Gaussian Process (GP) is a collection of stochastic variables, any finite number of
which have a joint Gaussian distribution.

GPs can be understood as distributions over functions RD → R. This is illustrated in Figure 2.4 (a)
forD = 1. The green graph corresponds to the mean functionm(x) while the shadowed area represents
the pointwise variance expressed by the kernel function k(xi,xj). The three colored dotted lines are sets
of 75 points drawn at random from the distribution induced by the GP. Note that the sampled functions
are all very smooth. The properties of the functions are strongly influenced by the choice of the kernel
function as will be discussed later.

Figure 2.4 (b) illustrates how GPs can be used for regression. The three bold green dots indicate
noise-free observations. Applied to the prior GP in Panel (a), they induce the posterior GP illustrated in
Panel (b).

In the remainder of this section, we will look at GP regression in more detail and derive the posterior
(for which an analytical formulation exists). We will also discuss some important kernel functions and
have a look at automatic methods for learning the hyperparameters of a kernel.
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Figure 2.4: Illustration of regression with GPs. Panel (a) shows the prior GP, Panel (b) the posterior GP conditioned on
three noise-free observations (the green dots). In both panels, the green line indicates the pointwise mean and the shaded area
corresponds to the 95% confidence area (minus and plus two times the standard deviance). The dotted lines show three samples
drawn at random from the prior and the posterior distributions.

Derivation of the Posterior This section closely follows Rasmussen (2004). We start from our prior
GP:

f ∼ GP(m, k). (2.4)

Now suppose we are given a training set D = (X,y), X = (x1, . . . ,xN ), y = (y1, . . . , yN ) where
yi = f(xi) (i.e., we assume absence of noise for now). We want to compute the joint posterior distribu-
tion of the function values y∗i = f(x∗i ) evaluated a test set X∗ = (x∗1, . . . ,x

∗
m). From the definition of

a Gaussian Process, we know that the joint distribution of data and evaluation points is an MVN:
[
y
y∗

]
∼ N

([
µ
µ∗

]
,

[
K K∗
K>∗ K∗∗

])
(2.5)

where K = k(X,X) is N × N , K∗ = k(X,X∗) is N × N∗, K∗∗ = k(X∗,X∗) is N∗ × N∗,
µ = m(X) is an N -vector, and µ∗ = m(X∗) is an N∗-vector. The formula for conditioning a joint
Gaussian distribution is:
[
x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
=⇒ x1 |x2 ∼ N (µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21)

(2.6)

If we apply this to (2.5), we immediately get analytical expressions for the posterior distribution of y∗:

p(y∗ |X∗,D) ∼ N (µ∗ +K>∗ K
−1(y − µ),K∗∗ −K>∗ K−1K∗). (2.7)

Handling Measurement and Process Noise

The posterior in (2.7) assumes absence of any kind of noise and therefore, the GP only assigns positive
probability densities to functions that interpolate the data points exactly. Fortunately, it is straightforward
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to incorporate both measurement and process noise as long as they are normally distributed. We model
process noise εp and measurement noise εm as independent additive quantities:

yi = f(xi) + εm + εp.

Both εm and εp are normally distributed with zero mean. Their variance may be non-stationary, that is,
it may depend on xi. We denote by sm : RD → R and sp : RD → R the variance functions of εm and
εp, respectively, i.e., εm(xi) ∼ N (0, sm(xi)) and εp(xi) ∼ N (0, sp(xi)). Thus, the total error caused
by measurement and process noise is εm(xi) + εp(xi) ∼ N (0, sm(xi) + sp(xi)) and yi is normally
distributed:

yi ∼ N (f(xi), sm(xi) + sp(xi)). (2.8)

If we define the diagonal matrices

Kp :=



sp(x1)

. . .
sp(xN )


 , andKm :=



sm(x1)

. . .
sm(xN )


 , (2.9)

we can update the Gram matrix with process and measurement noise: C := K +Kp +Km. Kp and
Km are symmetric and positive definite, hence they are valid covariance functions. Since the sum of
covariance functions is a covariance function, we can conclude that C is a valid covariance function.
Therefore, we can rewrite (2.7) into our main formulation of the posterior. It is important to notice that
the posterior variance only encompasses uncertainty about the function, that is, process noise has to be
re-added explicitly 2:

p(y∗ |X∗,D) ∼ N (µD,KD) where (2.10)

µD = µ∗ +K>∗ C
−1(y − µ),

KD = K∗∗ +Kp,∗∗ −K>∗ C−1K∗.

The difference between process and measurement noise is illustrated in Figure 2.5. Both images
show a posterior GP conditioned on the data points. The prior GP in the left image assumes stationary
measurement noise sm(·) = 0.8 and no process noise while the prior GP in the right image assumes a
combination of measurement and process noise (sm(·) = 0.2 and sm(·) = 0.6). Note that both GPs
assume the same amount of total noise sm(·) + sp(·) = 0.8. Consequently, both posterior GPs have the
same mean but the variance is different due to the different noise models. Since the left GP assumes
absence of process noise, its posterior variance only expresses uncertainty about the true mean and this
uncertainty decreases with the number of data points which is well visible in the image. Differently, the
right GP assumes process noise which is inherent to the function and does not disappear with more data.
Note that it is not possible to distinguish between measurement and process noise just from the data.

Learning the Kernel Parameters We just discussed that we can update the prior GP with given data
and compute the posterior GP. The choice of the prior GP is of crucial importance for the quality (and,
truthfulness) of the posterior but unfortunately reliable knowledge about it is not usually available, or it
is difficult to obtain. For the sake of an example, let us introduce a first kernel function:

2 We interpret the posterior as a generative model that includes Gaussian process noise – for each input xi, it gives us a
distribution over the output yi. This is different from most formulations in the literature where GPs are used to learn functions
that are not affected by process noise.
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Figure 2.5: Fitting a GP on data with process noise. The data points in the plots were drawn from an artificial generative model.
In the left plot, a GP is fitted assuming only measurement noise, in the right plot, both measurement and process noise. Both
GPs use a squared exponential kernel. The posterior of the left GP therefore only quantifies the uncertainty we have about the
mean function (green shade) while the right GP also quantifies the uncertainty stemming from process noise (blue shade).
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Figure 2.6: Posterior mean (green) obtained by the SE kernel for varying kernel parameters. The value of σf affects the
amplitude of oscillations while λ has an influence on their frequency.
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k(xi, xj) = σ2
f exp

[
−1

2

||xi − xj ||2
λ2

]
(2.11)

This is the squared exponential kernel that is defined only for one-dimensional inputs. All example GPs
so far used this kernel. It expresses that data points that are close together in input space are highly
correlated and that this correlation decreases with distance. There are two parameters that we have to
choose here: λ and σ2

f . The impact of changing the value of those two is illustrated in Figure 2.6.
Generally speaking, increasing λ leads to slower oscillations of the predicted mean while increasing σ2

f

increases the amplitude of those oscillations.
Just from the data, it is not possible to decide which of the predictions in Figure 2.6 is best. All

three GPs above are valid models give that the prior is justifiable. If no or only little reliable prior
information is available about the function to be learned, it is often a good idea to choose a prior GP
that leads to a posterior that explains the data well. In the following, we will discuss two ways of
automatically estimating the hyperparameters of the prior GP: the maximum likelihood estimate (MLE)
and the maximum a posteriori estimate (MAP). Automatically estimating the hyperparameters is referred
to as training the GP.

Maximum Likelihood Estimate

The maximum likelihood estimate (MLE) of the hyperparameters of a GP is defined to be the set of
hyperparamters that make the training data D = (X,y) most likely:

θ̂MLE = max
θ

p(y|X,θ) =: max
θ

p(D|θ). (2.12)

p(D|θ) is referred to as the evidence or marginal likelihood. Since probabilities are non-negative and the
logarithm is a monotonous function, one usually maximizes over the logarithm of the evidence which
avoids underflows in numerical computations:

L(D|θ) := ln p(D|θ). (2.13)

L(D|θ) is called the log-evidence or log-marginal likelihood. From the definition of GPs, we know that
the data points in D are joint Gaussian distributed with mean µ and covarianceC and can consequently
write:

L(D|θ) = −1

2
ln |C| − 1

2
(y − µ)>C−1(y − µ)− N

2
ln(2π). (2.14)

Finding the MLE requires us to solve a highly non-convex optimization problem. In general, there is no
guarantee that the optimal solution can be found, but there are gradient-based methods that efficiently
find local minima.

Maximum A Posteriori Estimate

MLE provides us with an automated way of estimating the hyperparameters of a kernel. Its main disad-
vantage is that we ignore any knowledge we might have about those parameters. Say we do not know the
exact value of measurement noise, but have good reason to assume that it is stationary and we roughly
know it magnitude. In this case, we can define a hyperprior (a prior for a hyperparameter) for it.

Given hyperpriors, we can compute the posterior likelihood of the hyperparameters conditioned on
our training data:

p(θ|D,K) =
p(D|θ,K) p(θ)

p(D|K)
∝ p(D|θ,K) p(θ) (2.15)
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The maximum a posteriori estimate (MAP) is defined to be the most likely set of hyperparameters con-
ditioned on the data D:

θ̂MAP = max
θ

p(D|θ,K) p(θ) = max
θ

ln (p(D|θ,K) p(θ)) = max
θ

[
L(D|θ,K) +

∑

k

ln p(θk)

]
.

(2.16)

Note that the MAP estimate with uniform priors over R, i.e. p(θk) = U [−∞,∞], is equivalent to
the MLE. In general, we can set p(θk) = 1 = const. if we do not want to define a hyperprior for
hyperparameter θk. It is not a valid probability density function but this does not matter for the MAP
optimization problem. MAP allows us to incorporate the pre-knowledge we might have about our hyper-
paramters but still finds exact values for us. It is less prone to overfitting than MLE and is more justified
from a Bayesian point of view; however, in practice it can be very difficult to specify hyperpriors with
confidence because the interactions between hyperparameters can be highly nonintuitive and one should
therefore proceed with care.

Solving the Optimization Problem

There is no general analytical solution to finding the optimal parameters in the sense of MLE or MAP.
Fortunately, we can compute the derivative of the log-evidence w.r.t. to the hyperparameters and can
therefore apply gradient-based optimization methods such as conjugate gradients or BFGS. Using the
well known identities ∂ ln |A|/∂x = trace

(
A1 · ∂A/∂x

)
and ∂A−1/∂x = −A−1 · ∂A/∂x · A−1, we

get

∂L
∂θm

(D|θ,K) = −(y − µ)>C−1 ∂µ

∂θm
, (2.17)

∂L
∂θk

(D|θ,K) = −1

2
trace

(
C−1∂C

θk

)
+

1

2
(y − µ)>C−1∂C

θk
C−1(y − µ), (2.18)

where θm and θk are hyperparameters of the mean and covariance functions, respectively. When com-
puting the MAP, one additionally has to add the derivatives of the hyperpriors.

The MAP and MLE estimates of the kernel parameters are highly nonconvex optimization problems
and it is in general not possible to determine whether the global optimum has been found. One can
use random restarts or methods such as simulated annealing. However, optimizing the MLE or MAP is
the limiting factor that quickly renders GPs intractable since the inverse of the Gram matrix has to be
recomputed for each set of hyperparameters that is considered (which is inO(N3)). We will later discuss
two approaches to reduce the computation burden: the HGP model and density-driven subsampling of
the data.

Matrn Class Kernels The choice of the kernel function for a GP is of crucial importance because it
largely predetermines the properties of the functions that can be represented. In this thesis, we concen-
trate on one specific class of kernels, the Matrn kernels. It is one of the most popular classes of kernels
in machine learning and is applicable to a large variety of problems. A general Matrn kernel has the
following form:

kν(xi,xj) = σ2
f

21−ν

Γ(ν)

(√
2νr
)ν
Bν

(√
2νr
)

(2.19)
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where Γ(·) is the gamma function and Bν(·) is the modified Bessel function of the second kind and
r = ||xi − xj ||. We use the highly flexible Mahalanobis distance with a diagonal matrix Λ−1 =
diag[λ−2

1 , . . . , λ−2
D ]:

r2 := (xi − xj)>Λ−1 (xi − xj) . (2.20)

We already encountered the parameters σ2
f and λ above when we introduced the squared exponential

kernel in one dimension; it turns out that for ν → ∞, we obtain just the squared exponential kernel in
D dimensions (where we have one distinct λd for each dimension d).

Besides ν → ∞, we will only consider the special cases of ν = 1/2, ν = 3/2, and ν = 5/2 for
which the Matrn kernel takes a particularly simple (and therefore computationally efficient) form. The
explicit kernel functions are:

• Squared exponential kernel: ν →∞:

kSE(xi,xj) = σ2
f exp

[
−1

2
r2

]
. (2.21)

• Exponential kernel: ν = 1/2:

kE(xi,xj) = σ2
f exp

[
−1

2
r

]
. (2.22)

• Matrn kernel with ν = 3/2:

kν=3/2(xi,xj) = σ2
f

(
1 +
√

3r
)

exp
(
−
√

3r
)
. (2.23)

• Matrn kernel with ν = 5/2:

kν=5/2(xi,xj) = σ2
f

(
1 +
√

5r +
5

3
r2

)
exp

(
−
√

5r
)
. (2.24)

The parameter ν is called the order of the Matrn kernel. It can be interpreted as a measure for the
smoothness of the function. The squared exponential kernel (i.e., ν → ∞) is infinitely mean-square
differentiable and leads to the smoothest functions. It is very popular, but there are researchers who
argue that it is a ill-suited for many practical problems because the smoothness assumption is too strong.
This is the reason why we also consider the values of ν = 3/2 and ν = 5/2. For ν = 1/2, the functions
already become very rough as we will see; for values ν >= 7/2, the functions are already so smooth that
the difference to ν → ∞ is not palpable in many cases. Therefore, the three cases ν = 3/2, ν = 5/2,
and ν →∞cover all interesting cases.

Figure 2.7 illustrates the different behaviour of the three kernels on a very non-smooth function. The
kernel parameters are learned using MLE. Like one would expect, the squared exponential kernel cannot
represent the sharpness well and has to compensate it by assuming a lot of noise. Generally speaking,
Matrn kernels with high values of ν are less affected by missing data or outliers, but they suffer from
inability to express non-smooth behavior.
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Figure 2.7: Smoothness of Matrn kernels. The blue dots are drawn from a sawtooth function with a little noise. GPs with Matrn
kernels and different values for ν are then fitted to the data where the hyperparameters are learned by MLE assuming stationary
measurement noise and no process noise. It is well visible how the smoothness of the learned function (green) increases with
ν. The inability to express the very non-smooth sawtooth function is compensated by increased noise.

The Mixture of Experts Model (HGP) Gaussian Processes are generally not directly applicable to
large amounts of data because computation takes too long. One approach to tackle this issue is of course
to aggregate or sample data points in order to reduce the size of the data set. We would however like
to introduce another approach that was proposed by Ng and Deisenroth in Ng and Deisenroth (2014),
the Hierarchical Mixture of Experts Model for GP Regression (HGP). The idea is to partition the data
D = (X,y) into a set S of c subsets S = {D(1), . . . ,D(c)} where D(i) = (X(i),y(i)). Then, a
GP is trained on each of these data sets as a local expert. The predictions of the local experts are
then recombined into a global prediction. All local experts use the same kernel with the same set of
hyperparameters.

This is computationally significantly less demanding. A GP that works on the full data set of size N
has to compute the inverse of its Gram matrix which is in O(N3). If the data is evenly distributed across
c local experts, the complexity is reduced to O(c(̇N/c)3) = O(N3/c2), i.e., it decreases quadratically
in the number of local experts. Prediction speed increases linearly. A possible approach to distributing
the data among the local experts is to randomly assign it. This is fast and can work well. A more
sophisticated approach proposed by Ng and Deisenroth is to use a KD-tree to recursively split the data
into non-overlapping regions. The data is then distributed across the local experts in a manner that
ensures that each of them has data from all regions, i.e., each local expert works on data that covers the
whole input space.

Inference, Posterior, and Parameter Learning

The predictive distribution y∗ of a single data point x∗ is a Gaussian and is proportional to the product
of the distributions of the local experts:

p(y∗ |x∗,D) = N (y∗|µ∗, σ2
∗) ∝

c∏

k=1

p(y∗ |x∗,D(k)) (2.25)
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Let µk and σk be the mean and the standard deviation of the posterior of local expert k. The overall
predictive mean and variance are3:

µ∗ = σ2
∗

c∑

k=1

µk(x∗)
σ2
k(x∗)

, (2.26)

σ2
∗ =

(
c∑

k=1

1

σ2
k(x∗)

)−1

. (2.27)

Note that this formulation only gives us pointwise predictions. With normal GPs, we got a closed-form
expression for the joint posterior distribution at any number of evaluation points (Equation (2.10)). This
is sufficient for our purposes but can in general be limiting because it gives us no information about the
correlation of function values.

Training

All local experts use the same kernel. The log-marginal likelihood is approximated by

L(D|θ) ≈
c∑

k=1

L(D(k)|θ) (2.28)

Thanks to this simple structure, we immediately get an approximation for the derivative w.r.t. the kernel
or mean parameters:

∂L
∂θ

(D|θ) ≈
c∑

k=1

∂L
∂θ

(D(k)|θ) (2.29)

Consequently, we can use exactly the same setup for training HGPs that we used for regular GPs.

Some Practical Issues The basic setup of GPs is based entirely on Bayesian statistics; we specify our
prior belief and update it with data to obtain our posterior belief. Unfortunately, we cannot usually rely
on a pure Bayesian approach because we lack sufficient information to specify a prior with confidence.
This is why we use MLE or MAP to find explicit estimates of the “true” hyperparameters. This however
means that we take an explicit decision, i.e., we claim that the learned hyperparameters are the “true”
ones with a hundred percent certainty which will in reality never be the case. Since MLE and MAP
choose the parameters by maximizing a function (a performance function from a machine learning point
of view), this can lead to overfitting on the given data.

A typical indicator for overfitting are very large or very small hyperparameter values, in our case
in particular σf and the λd. As an example, consider the GPs in Figure 2.6. The GP in the first plot
has quite a high value of σf and low λ; it might be the case that it overfits by interpolating all data
points; we cannot determine this with certainty without any knowledge of the ground truth. Standard
machine-learning approaches such as crossvalidation can be used to counteract overfitting. Still, the
general problem remains that it is difficult (or impossible) to say when a model overfits. In general,
overfitting can only be assessed if some prior knowledge about the properties of the “true’ function is
available. The remainder of this section will be dedicated to the study of an example where we highlight
some of the issues that come with MLE. But before that, we introduce a measure for the dissimilarity of
GPs that will allow us to assess the quality of the learned GPs

3Equations (2.28) and (2.29) assume that σk is the uncertainty of the GP, i.e., σk does not contain process noise like in our
standard formulation of the GP posterior. If process noise is present, the computations must be done without it and it can be
added at the end.
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Comparing Gaussian Processes

The Bhattacharyya distance is a measure for the similarity of two continuous proabability density func-
tions p(·) and q(·) and is defined by

dB(p, q) = − ln

[∫ √
p(x)q(x)dx

]
. (2.30)

It is symmetric and satisfies 0 ≤ dB ≤ ∞, but it does not obey the triangle inequality (and is thus not a
metric). It takes a particularly simple form for two univariate normal distributions p ∼ N (µ1, σ

2
1) and

p ∼ N (µ2, σ
2
2):

dB(p, q) =
1

4

(µ1 − µ2)2

σ2
1 + σ2

2

+
1

2
ln

[
σ2

1 + σ2
2

2σ1σ2

]
. (2.31)

We can use the Bhattacharyya distance to define a measure for dissimilarity of GPs. Let GP1 and GP2

be two GPs that express distributions over functions RD → R. We define the distance between GP1 and
GP2 on the closed input space X ⊂ RD as

DX (GP1,GP2) :=

√
1

V (X )

∫

X
dB(GP1(x),GP2(x))2dx (2.32)

where V (X ) denotes the volume of subspace X . The dissimilarity cannot be computed exactly but it
can be estimated using MC methods. It is symmetric, satisfies 0 ≤ DX ≤ ∞ but does not satisfy the
triangle inequality.

Overfitting in GPs – an Example

We would like to give an example here which illustrates that maximizing the log-marginal likelihood can
indeed lead to overfitting. To this end, we use the generative model that is illustrated in the first image in
Figure 2.8. For each value of x, the corresponding function value is y = f(x) + ε where ε ∼ N (0, σ2

p)
is process noise (the shaded area in the image is 2σp) and f is the function illustrated by the blue graph.
We assume absence of any measurement noise. We want to learn the ground truth by fitting GPs to data
points that are sampled from it (gray crosses); since we actually know the ground truth, we can estimate
the dissimilarity of the learned GP from the true model.

The three other images in Figure 2.8 show GPs that were fit to the data. The hyperparameters
were learned using MLE. All GPs use a Matern kernel with ν = 5/2, stationary process noise and no
measurement error (i.e., sm(x) = 0 and sp(x) = σ2

p = const.). GP 1 assumes a fixed zero mean
function m(·) = 0, while the mean m(·) of GPs 2 and 3 is represented as a two-segment cubic spline
that is drawn in red in the images. The segment borders of the splines are marked with red dots. GP 1
therefore has three free hyperparameters while GPs 2 and 3 have a nine. Since the prior model of GP 2
is more expressive than the one of GP 1, we can expect its log-marginal likelihood L to be higher. This
is indeed the case:

GP 1 GP 2 GP3
Log-marginal likelihood L -285 -265 -280

Distance from ground-truth D[0,300] 0.059 0.16 0.087
Standard deviance of process variance σf 2283 0 2276

Characteristic length scale λ 101 (9454) 146
Standard deviance of process noise σp 182 185 191
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Figure 2.8: An example of overfitting caused by a complex prior model. The top left panel show the ground truth and the data
sampled from it. The other images show GPs with different setups of the prior.
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Figure 2.9: Imbalanced data and priors. The same ground truth as in Figure 2.8 applies but the data points are not evenly
distributed. The GP in the left image uses a zero-mean prior, the one in the right image a three-segment cubic spline that is
good approximation of the ground truth.

However, looking at the images it seems that GP 2, in spite of having achieved the highest value for L,
actually approximates the ground truth worst. This is backed by the dissimilarity values which show that
the more powerful model of GP 2 is more dissimilar from the ground truth.

What is going on here? Looking at the parameter values, we see that GP 2 has learned a process
variance σf of zero. From the definition of the Matrn kernel we get that σf = 0 implies k(xi,xj) = 0
– in other words, all data points are learned to be completely uncorrelated. Let us take a closer look
at the definition of the log-marginal likelihood L (Equation (2.14)) that is maximized in MLE to see
why this is. The frist term is −1/2 ln |C| = 1/2 ln |K + Km + Kp|, where Kij = k(xi,xj). C
is positive definite which means that |C| increases whenever its elements increase; therefore, for fixed
noise covariance matrices Kp and Km, the first term is maximized by k(xi,xj) = 0. The second term
of L, −1/2(y − µ)>C−1(y − µ), on the other hand, is big whenever C explains the data distribution
well. Hence, the first term of L can be interpreted as a model complexity penalty while the second
term rewards data fit. There is a trade-off between the two that is inherently contained in MLE. From a
machine-learning point of view, the first term can be interpreted as a regularizer that reduces the risk of
overfitting. Note that increasing the number of data points has a lesser impact on the first term due to
its logarithm than on the second term which implies that large amounts of data decrease the influence of
the complexity penalty and increase the tendency towards a good data fit.

In our example, the mean function in the form of a cubic spline that is used in GP 2 can explain
the shape of the ground truth function quite well. For this reason L is maximized by explaining all
deviations of the data from it as pure process noise and assuming no correlation beyond the structure
imposed by the prior mean function between nearby data points. Only large quantities of data would
overrule this behavior. Learning the hyperparameters of prior GP 2 by MLE therefore can be understood
as starting from our (learned) prior where MLE only “enhances” it by learning additional covariance
between nearby data points if the prior mean alone cannot explain the data well. This behavior makes it
difficult for us to reliably specify priors on the hyperparameter values. In GP 3, we used the same setup
as for GP 2 but additionally imposed a prior on σf that favours values comparable to the ones in GP1.
We can indeed see that the learned parameter values are similar to GP 1 – but in the image we see that
this forces the shape of the prior mean function away from the true one. This nicely illustrates that it
can be very difficult to specify hyperpriors because it the relationships between hyperparameters can be
highly complex.
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With the intuition about the behavior of mean functions obtained above, it becomes clear that com-
plex parametrized mean functions are prone to overfitting. MLE inherently trades off data fit and model
complexity for the kernel but there is no such behavior for the prior mean function. For this reason, it
does not seem a good idea to learn parametrized mean functions unless we can specify concise priors on
their expected parameter values. We’ve just seen that this is very difficult because there can be interac-
tions between hyperparameters that are difficult to understand. For this reason, we have decided not to
learn prior mean functions. However, specifying (but not learning) prior mean functions can make sense
if we have good knowledge about its shape. Prior means are particularly useful if there are areas with
no, very little, or very noisy data. This is illustrated in Figure 2.9. There, the prior mean in the right
image is not learned from data, but it is specified entirely based on prior knowledge which we have in
this case – it was taken directly from the ground truth. In practice such knowledge may be difficult to
obtain. Obviously, the GP with mean prior is a better fit and it also achieves a better values for L and
D[0,300]:

left GP right GP 2
Log-marginal likelihood L -247 -230

Distance from ground-truth D[0,300] 0.14 0.000022

In summary, we can conclude that prior mean functions, while justified from a statistical point of view,
can cause problems in practice. They have a tendency of overruling the data and when their parameters
are learned, they can overfit. They can be useful if only little data of good quality is available, but in
most cases, they lead to behavior that is at first glance counter-intuitive. Since GPs work quite well for
our purposes with zero-mean functions, we have decided not to use parametrized mean functions. This
is a very common approach in the literature.
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Figure 2.10: Examples of fundamental diagrams. Panel (a) shows two two proposals for the density-flow relationship from the
original Lighthill, Witham, and Richards paperLighthill and Whitham (1955). Panel (b) shows a fundamental diagram in the
shape of an isosceles trapezoid like used by Daganzo in the cell transmission model.

Modeling Traffic

A basic observation that can be made on stretches of highways without any nearby entries or exits is that
flow φ (vehicles per hour) and density ρ (vehicles per kilometer) seem to be closely related quantities.
The local density-flow relationship is referred to as the fundamental diagram and is characteristic for a
road. Examples of their typical shape are given in Figure 2.10. A fundamental diagram only expresses
the direct relationship between density and flow at a fixed location and a fixed point in time, but it
does by itself describe the dynamic behavior of traffic systems. Obviously, the evolution of the state of
traffic over time depends on conditions both upstream and downstream. Further important properties
that should be preserved by a model are the flow conservation law which expresses that the number of
vehicles in the system is constant (except for vehicles leaving and entering they system at either end)
and the requirement that vehicles only move in one direction. One of the most widespread approaches
to representing this behavior at a macroscopic level is the hydrodynamic model that was proposed by
Lighthill and Witham in 1955 and had originally been used for predicting flows in rivers. It treats traffic
as a compressible fluid that obeys the continuity equation

∂φ(x, t)

∂x
= −∂ρ(x, t)

∂t
, (2.33)

where x denotes location and t time. Naturally, it observes the flow conservation law and also provides
the time-space dynamics. Incorporating the fundamental diagram into the flow conservation law leads
to a partial differential equation that cannot be solved analytically. One practical approach is Daganzo’s
cell transmission model that does not explicitly solve the equation but simulates a discrete-time model
that exhibits similar properties as the hydrodynamic model, given some assumptions. In the remainder
of this section, we first give an introduction to the cell transmission model and then explain how we can
enhance it by incorporating Gaussian Processes.

Cell Transmission Model The cell transmission model (CTM) Daganzo (1994b, 1995) is a simple
discrete-time model for traffic on highways without any intermediate entrances or exits. The highway
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segment under consideration is divided into I cells numbered consecutively from 1 to I in flow direction.
The length of each cell is set equal to the distance that is traveled in light traffic by a typical vehicle in
one clock tick of length ∆t. If there is only light traffic, all vehicles in one cell will travel to the next
cell in one time interval:

ni+1(t+ 1) = ni(t) (2.34)

where ni(t) is the number of vehicles in cell i at time t. The CTM assumes that this equation holds in
all situations unless traffic is slowed down by a downstream bottleneck. To incorporate such bottlenecks
in the model, each cell i is associated with an inflow capacity Qi(t) that corresponds to the maximum
number of vehicles that can flow into it during time interval t. Furthermore, each cell has a jam density
Ni(t) which corresponds to the maximum number of vehicles that can be present in it during time
interval t – the maximum inflow into cell i is limited by the free space in it, Ni(t)− ni(t). In summary,
the CTM expresses that the flow from cell i− 1 to cell i between times t and t+ 1, denoted by yi(t), is
the smallest of three quantities:

ni−1(t), the number of vehicles in cell i− 1 at time t,
Qi(t), the inflow capacity of cell i during time interval t, and
Ni(t) −
ni(t),

the amount of empty space in cell i at time step t.

The change in number of vehicles in cell i equals inflow minus outflow:

ni(t+ 1) = ni(t) + yi(t)− yi+1(t) (2.35)

where the flows are given by

yi(t) = min {ni−1(t), Qi(t), Ni(t)− ni(t)} . (2.36)

Ni, ni, Qi, and yi are all dependent on the time step length. We now replace them by the following more
general notions:

ρi(t) [vehicles per km] density of vehicles in cell i during time step t
φi(t) [vehicles per hour] flow from cell i− 1 to cell i during time step t
ρ̄i(t) [vehicles per km] jam density of cell i during time step t
Fi(t) [vehicles per hour] inflow capacity of cell i during time step t
l [km] length of the cells
v [km per hour] free-flow speed

Note that v = l/∆t (∆t in hours). We have the following relationships:

ni(t) = l · ρi(t) = ∆t · v · ρi(t), (2.37)

yi(t) = ∆t · φi(t), (2.38)

Ni(t) = l · ρ̄i(t) = ∆t · v · ρ̄i(t), (2.39)

Qi(t) = ∆t · Fi(t), (2.40)

Hence, (2.36) can be rewritten as follows:

φi(t) = min {vρi−1(t), v(ρ̄i(t)− ρi(t)), Fi(t)} . (2.41)
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Traffic jams generally dissolve in a backward wave manner with a characteristic backward wave speed w
which is generally slower than the free flow speed v. The CTM as expressed in equation (2.41) however
assumes v = w. Fortunately, a wave speed w ≤ v can be incorporated easily by adapting the outflow
term:

φi(t) = min {vρi−1(t), w(ρ̄i(t)− ρi(t)), Fi(t)} . (2.42)

This equation is called the transfer function. Let us have a closer look at this relationship. If we assume
that v and w as well as the cell parameters Fi and ρ̄i are fixed, the flow φi is a function solely of ρi−1

and ρi. The corresponding function is illustrated in Figure 2.11 (a) with realistic parameter values. We
can see that the function is piecewise affine. The dotted blue line shows the flows at ρi−1 = ρi, and it
is re-plotted in Panel (b). It corresponds to the local fundamental diagram in the neighborhood of cells
i − 1 and i. Daganzo shows in Daganzo (1994b) that the CTM can indeed be understood as a discrete
approximation of the hydrodynamic model when a fundamental diagram of the shape of an isosceles
trapezoid like in Figure 2.10 (b) is used:

φ = min {vρ, w(ρ̄− ρ), F} . (2.43)

In other words, the function in Equation (2.41) is an approximation to the hydrodynamic model that
inherently contains both the fundamental diagram and the dynamics that follow from the continuity law
(2.33). In its standard formulation, the CTM implicitly relies on the assumption that the fundamental
diagram is given in the shape (2.43). However, the CTM can be easily adapted to different or more
complex models by replacing the transfer function by any nonnegative function fi:

φi(t) = fi(ρi−1(t), ρi(t)). (2.44)

Of course, a general nonnegative function will not preserve the properties of the hydrodynamic model,
in particular the continuity equation. However, if sufficient data is available, the transfer function can be
found with machine-learning methods. It is not a problem if some of the properties of the hydrodynamic
model are lost in this case because this behavior follows directly from data. From this perspective,
the CTM is more flexible than the hydrodynamic approach because the original assumption that traffic
behaves like a compressible fluid is lifted. In other words, the CTM is not just an approximation to the
hydrodynamic model, but it is a much more general setup that is based only on the most basic properties
of traffic and makes very few assumptions beyond this.

In the remainder of this report we discuss how the transfer function of a highway segment can be
learned as a Gaussian Process. GPs are particularly well-suited because they allow us to take a non-
parametric approach with very few assumptions about the transfer function. Most importantly, however,
GPs do not just learn one fixed transfer function but instead provide us with a distribution over transfer
functions. Also, GPs allow us to incorporate and learn process noise. All of this is very useful for
example in the design of ramp metring algorithms that are robust to uncertainty in the model.
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Figure 2.11: Illustration of the relationship between density and flow in the CTM. Panel (a) shows the flow between cells
i− 1 and i assuming a free-flow speed v of 90km/h, a backward-wave propagation speed w of 25km/h, a jam density ρ̄ of 250
vehicles/km, and the capacity flow is F of 4000 vehicles/h. The blue line is the situation where ρk = ρk+1, i.e. where the
density is the same in both cells. It is re-plotted in (b) – it corresponds to the fundamental diagram in the neighborhood of cells
i− 1 and i.
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Figure 2.12: The left panel illustrates unbalanced data for the density at sensor location 7 in October 2014. The right panel
illustrates density harmonization in 2D. The rectangles represent the cells obtained by building the KD-tree; the blue data
points are kept, the orange ones are thrown out.

Learning a Traffic Model

In Sections 2.1.1 and 2.1.1, we introduced our setup of Gaussian Process Regression and the Cell Trans-
mission Model. In this section, we discuss how we can learn the dynamics of a highway by combining
GPs and insights from the CTM. Thanks to the Grenoble Traffic Lab (GTL) we had access to detailed
traffic data from a 10.5 km stretch of a two-lane highway in Grenoble in France. A total of 130 sensors
read density, flow and average speed at intervals of 15 seconds. Unfortunately, GPs are not able to cope
with such an abundance of data directly due to their non-parameteric nature. Not only the learning of
the hyperparameters takes long, but also predictions become obstructively slow when a GP is fit to tens
of thousands of data points. This issue has received a lot of attention and many approaches to reducing
the computational burden have been proposed, but the core problem remains. One such approach is the
HGP model that we introduced in Section 2.1.1. We have found that in our case we obtain reasonable
performance by just preprocessing and selecting the data points in the right manner. We will first discuss
the preprocessing of the data and which issues we encoundered. Then, we illustrate how to learn the
fundamental diagram and eventually continue to develop our full model.

Preprocessing and Selecting the Data Each sensor measures three different quantities at 15-second
intervals. Firstly, they measure the percentage of time when a car is above the sensor. Sencondly, the
number of cars passing by in each interval is registered. And finally, the average speed is estimated from
the quantities above. We did not use the speed estimates.

For ease interpretability, we rescale the density ρ and flow φ such that they represent the number of
vehicles per kilometer and the number of cars per vehicles, respecitvely; this is the same units that we
already used in the CTM. The interval length of 15 seconds is rather short which can lead to inaccu-
rate estimates of the density and the flow. For this reason, we aggregated the data from 4 consecutive
measurement which gives us one measurement every minute.

Most of the day, there is only little or no traffic at all which means that we obtain a lot of data for
similar conditions. Traffic jams on the other hand occur only infrequently and are often of short duration,
consequently we have less data available for high densities. In spite of the high amount of data available
there are areas in data space where the density is very low. The distribution of one sensor is given in
Figure 2.12. A natural approach to reducing the data set sizeis therfore the throw out points in areas
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where the density is above some threshold d∗ while points elsewhere are kept. To this end, we can apply
the following algorithm that we call density harmonization:

1. Build a KD-tree until each leaf contains exactly one data point.

2. For each leaf l, compute the hypervolume Vl that it covers. We the density of that leaf to be
dl := 1/Vl.

3. For each leaf l and the data point pl it contains:

If dl < d∗: keep data point pl
Else: keep data point pl with probability d∗/dl.

Note that in order to determine the hypervolume of each leaf, we need a bounding box for our data.
Such a bounding box is very easy to specify for our traffic data. A two-dimensional example of density
harmonization is given in Figure 2.12.

Learning the Fundamental Diagram Before turning to the dynamics, we take a look at the static
density-flow relationship expressed by the fundamental diagram. Many of the issues that apply to the
two-dimensional case occur in the one-dimensional case as well.

Figure 2.13 shows graphical representations of four different GPs that were fit to data obtained over
one month at sensor location 3. All four GPs use a Matrn kernel with ν = 5/2 (we will discuss this
choice later) and the hyperparameters of the kernels were learned using MLE, that is, we did not assume
any prior knowledge about them. Each plot shows the pointwise mean prediction (green line) and the
2σ-interval of the process noise variance (green shadow). Furthermore, the uncertainty of the GP is
shown additionally to the process noise (in a lighter shade of green; it is only visible for high densitiy
values where there are few data points).

The plot in the top left corner assumes a fixed zero mean (i.e., m(xi) = 0) and stationary process
noise (i.e., sp(xi) = σ2

p). Like we mentioned earlier, we assume absense of measurement noise (i.e.,
sp(xi) = 0). Therefore, there are only three hyperparameters to be learned: the variance of process
noise σ2

p , the process variance σ2
f , and the characteristic length scale λ. The GP seems to fit the data

quite well and it also matches the shape that we would expect for a fundamental diagram.
One important aspect that our model cannot capture is that the process variance is probably not

stationary. We would expect more variance and this seems to be the case indeed. Therefore, we assume
non-stationary process variance in the second image in the top right corner. It is represented as a linear
spline with regular spacings; the learned values are plotted in blue.

Finally, the two images at the bottom use cubic splines with three segments as mean functions. The
same phenomenon that we already observed in Section 2.1.1 occurs; the data points are learned to be
uncorrelated because the prior mean function explains the data well by itself. We will not consider these
models further for the resons we discussed.

Learning process noise like in the top left GP seems reasonable but there seems to be an issue that
the GP learns low variance in areas with few data points. For this reason it makes sense to put a prior on
the process noise. In the following we will put a log-normal prior on it.

Learning the Transfer Function We discussed the Cell Transmission Model in Section 2.1.1. Under
it, a highway segment of interest is split into cells where each cell i is associated with a traffic density
ρi(t). The dynamics of the system is expressed as a discrete-time process. During each time step t, there
is an outflow φi(t) out of and an inflow φi−1(t) into cell i. The flow φi(t) between two cells i− 1 and i
is modeled by the transfer function fi.
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Figure 2.13: Learning GPs of different complexity. The green graph represents the pointwise mean posterior, the shaded area
is twice the standard deviation of the process noise. All hyperparameters were learned by MLE.
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Matern with ν = 5/2: Squared Exponential:
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Figure 2.14: Learning GPs of different complexity. The green graph represents the pointwise mean posterior, the shaded area
is twice the standard deviation of the process noise. All hyperparameters were learned by MLE.
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The Grenoble Traffic Lab data provides us with both flow and density at each sensor location. Un-
fortunately, this does not directly mirror the the structure that we need in the CTM: we want the flow
between two sensor locations, not at the sensor locations. That is, we do not know φk+1/2 in the fol-
lowing image (note that we’ve changed the use of indices for the flows such that flow and density at the
sensors have the same index):

ρk ρk+1

Sensor k Sensor k + 1

φk φk+1

∆φk ∆φk+1

Cell k Cell k + 1

φk − ∆ρk
2 φk+1 + ∆ρk+1

2
φk + ∆ρk

2 φk+1 − ∆ρk+1

2

φk+1/2

With the updated use of indices, the transfer function we want to learn has the shape

φk+1/2 = fk(ρk, ρk+1). (2.45)

We use a very simple approach to estimating φi−1/2. For now, we consider just one single cell i and
ignore its neighbor cells. We conceptually subdivide cell i into two subcells a and b with their border
exactly on the sensor. Therefore, the sensor reading φi is just the flow rate between cells a and b. The
inflow φ̃i,a into cell a and the outflow φ̃i,b out of cell b are unknown. However, we can calculate the net
flow φ̃i,net = φ̃i,a − φ̃i,b of cell i as a whole from the densities of two consecutive time steps:

φ̃i,net(t) =
ρi(t+ 1)− ρi(t)

li∆t
, (2.46)

where li [km] is the length of the segment and ∆t [h] is the length of the time interval between two
sensor measurements. We assume that the flows φi,a and φi,b are roughly equal to φi and only deviate to
explain the net flow which is caused partially by inflow into cell a and partially by outflow out of cell b:

φi,a = φi + αiφ̃i,net, (2.47)

φi,b = φi − (1− αi)φ̃i,net, (2.48)

where αi ∈ [0, 1]. The value of αi is unknown, we will discuss its choice in a moment.
So far, we’ve looked at individual cells in isolation, but we need to compute the flow between cells.

We approximate the flow between cells i− 1 and i by the average of φ̃i−1,b and φ̃i,a:

φi−1/2 ≈
φ̃i−1,b + φ̃i,a

2
=
φi−1 + φi

2
+

(αi−1 − 1)φ̃i−1,net + αiφ̃i,net
2

. (2.49)

What remains to be done is choose values for αi−1 and αi. We base this on the assumption that
flows show a roughly linear behavior across short distances. This is not truthful in general because
bottlenecks tend to cause shocks where density and hence flow increase very quickly. Still, in most
cases this approximation is not too bad. If shocks occur they will become apparent in sensor readings
within a couple of time steps. Hence, we choose αi−1 = αi = φi−1/(φi−1 + φi).

Learning the Propagation Function

Now that we have estimates of the intersensor flow, we can actually fit GPs to the Grenoble Traffic Lab
data. For an example, we proceed as follows to learn the propagation function of sensors 5 and 6:
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4 Learning Tra�c Dynamics
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Figure 14: Estimating the intersensor flow. The left image depicts the actual measurements of the flow
at sensor 3 (the “ground truth”), the middle image estimates of the flow at sensor 3 without time shift
(Equation (47)), and the right image estimates with time shift (Equation (48)).

• Aggregation of data points: Four consecutive measurements of 15 seconds length are aggregated
(that is, sampling time is reduced to 1 minute). The data is from October 2014; after aggregation,
there is a total of 44603 data points.

• Intersensor flows: Intersensor flows are estimated using the method we explained (with time shift).

• Number of data points: 2500 data points are used. They are obtained via density sampling (after
intersensor flow estimation).

• Noise Model: We model process noise as a bilinear spline with a 3⇥ 3 grid of support points. The
center point of the grid is located at the point (⇢5,crit, ⇢6,crit). For simplicity, we assume absence
of measurement noise. The critical densities ⇢5,crit and ⇢6,crit are estimated from the fundamental
diagrams at sensors 5 and 6.

• Managing computational complexity: We use the HGP model with 10 nodes. Each node receives
a subset of the data points of equal size, i.e., each node works on 250 data points.

• Kernel: A Matérn kernel with order ⌫ = 5/2 is used.

• Training: The hyperparameters of the kernel and the process noise are learned using MLE. The
noise at point (0, 0) is fixed to zero. There are no priors on any of the other parameters.

The first row in Figure 15 depicts the GP that is learned from data as explained above. Panels (1a)
and (1b) show the learned mean function, Panel (1c) the process noise where the white lines indicate
the rectilinear grid of the bilinear spline. The learned GP is not quite what we expect: it is too rough.
Looking at the values of the hyperparameters, we see that the characteristic length scales are particularly
short and the process variance relatively big. Both of these contribute to the non-smooth behavior. The
roughness allows the GP to fit the data quite closely which is expressed in low noise in areas where there
are only few data points. We would prefer longer length scales and bigger process variance to obtain a
smoother model.

One approach to improving the GP representing the propagation function is to use non-stationary
length scales and process variance in our kernel, but we would not like to do this because it makes the
kernel even more complex and hence the optimization problem even more non-convex. Instead, we use
the insights about the shape of the propagation function that we obtained when discussing the CTM
(compare Figure 10). The propagation function has a steeper gradient at low densities than at higher
densities. For this reason, we transform our densities to even out the length scales for the sake of learning
as follows:

⇢̃i :=

(
250

⇢i,crit
⇢i if ⇢i < ⇢i,crit

⇢i + 250� ⇢i,crit otherwise
(49)

In words, the interval [0, ⇢i,crit] is stretched to [0, 250] and the points beyond it are shifted accordingly.
The GP is then fit to the transformed data (of course, the transformation has to be reversed when
interpreting the GP). We expect the lengths scales of the kernel to be longer and the process variance

27

Figure 2.15: Estimating the intersensor flow. The left image depicts the actual measurements of the flow at sensor 3 (the
“ground truth”), the middle image estimates the flow at sensor 3 without time shift and the right image estimates with time
shift.

• Aggregation of data points: Four consecutive measurements of 15 seconds length are aggregated
(that is, sampling time is reduced to 1 minute). The data is from October 2014; after aggregation,
there is a total of 44603 data points.

• Intersensor flows: Intersensor flows are estimated using the method we explained (with time shift).

• Number of data points: 2500 data points are used. They are obtained via density sampling (after
intersensor flow estimation).

• Noise Model: We model process noise as a bilinear spline with a 3 × 3 grid of support points.
The center point of the grid is located at the point ρc5, ρ

c
6). For simplicity, we assume absence of

measurement noise. The critical densities ρc5 and ρc6 are estimated from the fundamental diagrams
at sensors 5 and 6.

• Managing computational complexity: We use the HGP model with 10 nodes. Each node receives
a subset of the data points of equal size, i.e., each node works on 250 data points.

• Kernel: A Matern kernel with order ν = 5/2 is used.

• Training: The hyperparameters of the kernel and the process noise are learned using MLE. The
noise at point (0, 0) is fixed to zero. There are no priors on any of the other parameters.

The first row in Figure 15 depicts the GP that is learned from data as explained above. Panels (1a)
and (1b) show the learned mean function, Panel (1c) the process noise where the white lines indicate
the rectilinear grid of the bilinear spline. The learned GP is not quite what we expect: it is too rough.
Looking at the values of the hyperparameters, we see that the characteristic length scales are particularly
short and the process variance relatively big. Both of these contribute to the non-smooth behavior. The
roughness allows the GP to fit the data quite closely which is expressed in low noise in areas where
there are only few data points. We would prefer longer length scales and bigger process variance to
obtain a smoother model. One approach to improving the GP representing the propagation function
is to use non-stationary length scales and process variance in our kernel, but we would not like to do
this because it makes the kernel even more complex and hence the optimization problem even more
non-convex. Instead, we use the insights about the shape of the propagation function that we obtained
when discussing the CTM (compare Figure 10). The propagation function has a steeper gradient at low
densities than at higher densities. For this reason, we transform our densities to even out the length
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Figure 15: Learning the propagation function with data from sensors 5 and 6. Row (1): Learning without
any modifications. Row (2): With rescaling. Row (3): With rescaling and added zeros along ⇢5 = 0. Row
(4): Piecewise-a�ne model from the CTM. Learning the models takes only a few minutes on a standard
laptop computer.
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Figure 2.16: Learning the propagation function with data from sensors 5 and 6. Row (1): Learning without any modifications.
Row (2): With rescaling and added zeros along ρ5 = 0. Row (4): Piecewise-affine model from the CTM. Learning the models
takes only a few minutes on a standard laptop computer.

scales for the sake of learning as follows:

ρ̃i :=

{
250
ρci
· ρi if ρi < ρci

ρi + 250− ρci otherwise

In words, the interval [0, ρci ] is stretched to [0, 250] and the points beyond it are shifted accordingly. The
GP is then fit to the transformed data (of course, the transformation has to be reversed when interpreting
the GP). We expect the lengths scales of the kernel to be longer and the process variance to be lower
because the steep gradients have been evened out. Indeed, the rescaling leads to a smoother GP as can
be seen in the second row in Figure 15 (the densities have been transformed back).

One part of the propagation function that looks slightly different from what we would expect is the
flows along the line ρ5 = 0. The learned flows along it are slightly higher than zero which is also
reflected by the data. Still, for reasons of stability (positive values at ρ5 = 0 can cause negative densities
in simulations because we have flow in spite of not registering any vehicles), we would like the values to
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Figure 16: Actual measurements of the flow at sensor 3 for di↵erent aggregation times �t for a long
stretch of freeway between sensors 2 and 4. The distance between sensors 2 and 4 is roughly 1.37km,
which means that vehicles at free-flow speed take about 55 seconds to pass it.

to be lower because the steep gradients have been evened out. Indeed, the rescaling leads to a smoother
GP as can be seen in the second row in Figure 15 (the densities have been transformed back).

One part of the propagation function that looks slightly di↵erent from what we would expect is the
flows along the line ⇢5 = 0. The learned flows along it are slightly higher than zero which is also reflected
by the data. Still, for reasons of stability (positive values at ⇢5 = 0 can cause negative densities in
simulations because we have flow in spite of not registering any vehicles), we would like the values to be
exactly zero. To achieve this, we introduce artificial data points with value zero along the line ⇢5 = 0.
The resulting GP is illustrated in the third row in Figure 15.

4.6 Comparison with the CTM

The fourth row in Figure 15 depicts the piecewise-a�ne model of the propagation function that was
used in the CTM by Daganzo. Just above it in the third row, we have the propagation function that is
represented by a GP learned from data. It is obvious that there are certain similarities between the two
models, but that there are also some major discrepancies.

We would like to emphasize here that we expect to see some di↵erences between the CTM and the
learned propagation function, mostly because the CTM is based on some very particular assumptions
that we cannot satisfy, but partly also because the piecewise-a�ne nature of the CTM is quite restricted.
We have to be careful that we do not extend intuitions obtained from the CTM directly to our GP-
based model. As an example, consider again the stretch between sensors 2 and 4. The two sensors are
about 1.4 kilometers apart and consequently, vehicles at free-flow speed require just a little more than
25 seconds to reach sensor 3 that is roughly halfway between them. Backward waves in congested tra�c
are likely to take more than one minute to propagate from sensor 4 back to sensor 3. This is a major
di↵erence to the CTM where we assume that the flow is a↵ected by the conditions in the neighboring
cells immediately. Still, the e↵ect of this behavior should not be too large in most situations because
tra�c conditions usually do not change too rapidly. We can expect the influence to be largest in cases
where the densities at the two sensors are very di↵erent. Figure 16 shows again the measurements at
sensor 3, but this time for di↵erent aggregation times. Like we anticipated, the di↵erences are largest
when ⇢4 or ⇢6 are very di↵erent. Consequently, we have to choose an aggregation time that is long
enough such that the direct relationship between upstream/downstream sensor densites and the flow at
the sensor in between is actually present in the data. On the other hand, it must not be too long because
otherwise we “average away” short-time behavior such as shocks at the end of tra�c jams. We cannot
learn the behavior over a very short period of time, simply because tra�c conditions require some time
to propagate. This is unfortunate because our model will not adequately express rapid changes in flow
as caused by shocks, but there is nothing we can do about this without making additional assumptions.

Let us return to the results in Figure 15. One di↵erence between the learned propagation function
and the piecewise-a�ne version from the CTM that is particularly interesting is the flows along the line
⇢6 = 0. According to the CTM, the flow should increase along it as the upstream density ⇢5 increases until
the capacity is reached, but this is not observed. Instead, flows close to zero are consistently obtained.
A possible explanation is that this is caused by errors in the estimation of the intersensor flow, but
this seems unlikely because the exact same phenomenon could be observed in the actual measurements
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Figure 2.17: Actual measurements of the flow at sensor 3 for different aggregation times ∆t for a long stretch of freeway
between sensors 2 and 4. The distance between sensors 2 and 4 is roughly 1.37km, which means that vehicles in free-flow
speed take about 55 seconds to pass it.

be exactly zero. To achieve this, we introduce artificial data points with value zero along the line ρ5 = 0.
The resulting GP is illustrated in the third row in Figure 15

Comparison with the CTM

The fourth row in Figure 15 depicts the piecewise-affine model of the propagation function that was
used in the CTM by Daganzo. Just above it in the third row, we have the propagation function that is
represented by a GP learned from data. It is obvious that there are certain similarities between the two
models, but that there are also some major discrepancies. We would like to emphasize here that we
expect to see some differences between the CTM and the learned propagation function, mostly because
the CTM is based on some very particular assumptions that we cannot satisfy, but partly also because
the piecewise-affine nature of the CTM is quite restricted. We have to be careful that we do not extend
intuitions obtained from the CTM directly to our GP- based model. As an example, consider again
the stretch between sensors 2 and 4. The two sensors are about 1.4 kilometers apart and consequently,
vehicles at free-flow speed require just a little more than 25 seconds to reach sensor 3 that is roughly
halfway between them. Backward waves in congested traffic are likely to take more than one minute
to propagate from sensor 4 back to sensor 3. This is a major difference to the CTM where we assume
that the flow is affected by the conditions in the neighboring cells immediately. Still, the effect of this
behavior should not be too large in most situations because traffic conditions usually do not change too
rapidly. We can expect the influence to be largest in cases where the densities at the two sensors are very
different. Figure 16 shows again the measurements at sensor 3, but this time for different aggregation
times. Like we anticipated, the differences are largest when ρ4 or ρ6 are very different. Consequently,
we have to choose an aggregation time that is long enough such that the direct relationship between
upstream/downstream sensor densites and the flow at the sensor in between is actually present in the
data. On the other hand, it must not be too long because otherwise we “average away” short-time
behavior such as shocks at the end of traffic jams. We cannot learn the behavior over a very short period
of time, simply because traffic conditions require some time to propagate. This is unfortunate because
our model will not adequately express rapid changes in flow as caused by shocks, but there is nothing
we can do about this without making additional assumptions. Let us return to the results in Figure
15. One difference between the learned propagation function and the piecewise-affine version from the
CTM that is particularly interesting is the flows along the line ρ6 = 0. According to the CTM, the
flow should increase along it as the upstream density increases until the capacity is reached, but this
is not observed. Instead, flows close to zero are consistently obtained. A possible explanation is that
this is caused by errors in the estimation of the intersensor flow, but this seems unlikely because the
exact same phenomenon could be observed in the actual measurements in Figure 16 at sensor 3. Other
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possible explanations are erroneous measurements or simply that this behavior is actually present in the
dynamics of the freeway.

Conclusions

We investigated how Gaussian Processes can be used to learn the traffic dynamics of a freeway from
data. We first introduced Gaussian Processes in general and showed how both non- stationary process
and measurement noise can be incorporated into them. We talked abut different kernels of the Matern
class and their properties, discussed their suitability for learning traffic dynamics, and we showed how
the kernel parameters can be learned using either MLE or MAP with a gradient- descent method. Fur-
thermore, we proposed two approaches for learning the process noise, one based on maximizing the data
likelihood via gradient descent, the other based on estimating the noise directly from data. To tackle the
computational complexity of Gaussian Processes, we used the approximative Mixture of Experts Model
(HGP). Moreover, we discussed some aspects of overfitting that occur with Gaussian Processes and ex-
plained why we decided to use zero-mean functions exclusively. We then continued to introduce the
LWR model and a discrete approximation to it, the Cell Transmission Model (CTM). Based on ideas
and insights from the CTM, we outlined how GPs can be used to learn traffic dynamics. In particular,
we saw that learning the fundamental diagram alone is not sufficient, but that instead we have to learn
propagation functions that link flow to traffic conditions both upstream and downstream. Thanks to the
cell-structure of the CTM, the traffic conservation law is automatically observed. Our traffic model is an
adaption of the CTM that is discrete in both time and state where the dynamics are modeled as Gaussian
Processes. Therefore, it is suitable for use with the Probabilistic Inference for Learning Control (PILCO)
framework. Thanks to the Grenoble Traffic Lab, we had access to data from the Rochade Sud freeway
in Grenoble. We proposed density harmonization and density sampling as methods to reduce the data
set size while preserving as much information as possible. A major issue that we encountered is that
the sensor distribution does not mirror the structure that we need in our model, therefore we developed
an estimation method for the traffic flow halfway between sensors. We compute these estimates based
on insights from the CTM and Newell’s principle of traffic propagation. We demonstrated that our es-
timates are reasonably accurate in a case study. Based on the data and the estimated intersensor flows,
we then showed some practical examples of propagation functions that are represented as GPs where we
highlighted some of the issues that we encountered and we provided practical solutions. In brief, our
contributions are as follows. We proposed a data-based model that expresses the traffic dynamics of a
freeway by means of Gaussian Processes with non-stationary process noise. We presented solutions to
many of the challenges that we encountered such as the computational intractability, the non-stationarity
of noise, missing data values, and the choice of the kernel. In short, we provide a box of tools for learn-
ing traffic dynamics with GPs. The models that we obtained look promising, but there are some major
differences to the piecewise- affine cell transmission model that we did not expect. This is probably not
an issue because there are some major differences between the CTM and our setup and we consequently
expect to see some discrepancies. Still, our models should be evaluated in data-based simulations in a
next step such that the predictions can be compared with actual data. The approach towards learning a
model that we proposed works well in general, but it is still far from being fully automated. Ensuring
that the quality of the learned model is satisfying in all circumstances will be the core challenge when
designing a reinforcement learning control system based on Gaussian Processes.
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2.1.2 Controller Learning for SGPs
M. Schmitt, based on a report by N. Hail

Gaussian Process (GP) Models have been proposed as a data-driven, parameter-free approach for
system identification. Based on these type of models, algorithms like PILCO (Probabilistic Inference
for Learning Control) have been derived, which optimize controller parameters for a given GP model
and a given controller structure. Although no theoretical guarantees for convergence exist to this point,
comparable or superior performance in comparison to traditional reinforcement learning techniques has
been reported for certain applications. However, training GP models for high-dimensional systems is
prohibitive so far, due to the large number of training data necessary to represent the dynamics in a
high-dimensional space. We propose a new framework for structured GP models, primarily motivated
by applications in traffic modeling and control. For traffic models, large parts of the systems dynamics
are perfectly known, but certain parts of the dynamics, between small subsets of states, are affected by
large uncertainty. In our framework, we allow to define systems as a combination of linear dynamics
(assumed to be known a-priori) and unknown, preferably low-dimensional GPs. We derive and imple-
ment the equations necessary to train controller parameters for such models in a PILCO-like setting and
demonstrate the efficiency of our approach in simulations.

Problem description

A novel reinforcement learning approach has been proposed Deisenroth et al. (2015), which uses Gaus-
sian Processes to identify system dynamics in a model-free, data-driven way. The original approach
considers nonlinear, discrete-time systems given as

xt+1 = f(xt, ut) + w, w ∼ N (0, σw)

with continuous valued states xt ∈ RD and controls ut ∈ RF . The objective is to determine controller
parameters θ such that a parametrized controller πθ : RD → RF , ut := πθ(xt) minimizes the expected
long-term cost

Jπ(θ) =

T∑

t=0

Ext [c(xt)], x0 ∼ N (µ0,Σ0)

for some suitable stage-cost c(xt). As a model-based reinforcement learning technique, the proposed
approach uses data gained by experiments to first identify a suitable model. For some mean and kernel
as described in Section 2.1.1, a GP is used to approximate a stochastic, one-step prediction model

EGP [∆t] = mGP (x̃t) = k>∗ (K + σ2
wI)−1y

varGP [∆t] = k∗∗ − k>∗ (K + σ2
wI)−1k∗

with ∆t := xt+1 − xt, x̃t := (xt, ut) and the training targets y and correlation terms k∗∗, k∗ and
K defined as in Section 2.1.1. The former section also provides detailed derivations for the posterior
distribution and a discussion of suitable prior mean and kernel functions for GPs, with a particular focus
on traffic models. These details are omitted here fore brevity.

In a second step, the identified GP model is used in order to approximate the expected long-term
costs JπGP (θ) ≈ Jπ(θ) and an optimization θ∗ = argmin

θ
JπGP (θ) is performed. The main advan-

tage of GP models is that they are nonparametric, stochastic system models while still allowing for a
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tractable approximation of the long-term cost such that the optimization over the controller parameters
can be performed efficiently. The procedure consisting of data collection, model fitting and optimization
of controller parameters is repeated until sufficient control performance is achieved. Algorithm 1, pub-
lished as PILCO (“Probabilistic Inference for Learning Control”) in Deisenroth et al. (2015); Deisenroth
and Rasmussen (2011), summarizes the approach.

Algorithm 1 PILCO

1: init: Sample controller parameters θ ∼ N (0, I). Apply random control signals and record data.
2: while task not learned do
3: Learn probabilistic (GP) dynamics model, using all data
4: while no convergence do
5: Approximate inference for policy evaluation, get Jπ(θ)
6: Gradient-based policy improvement, get dJπ(θ)/dθ
7: Update parameters θ
8: end while
9: π∗ ← π(θ∗)

10: Apply π∗ to system and record data
11: end while

Algorithm 1: PILCO algorithm

Methods

The PILCO algorithm is promising for applications in traffic control since it provides a data-driven,
model-free approach for systems that may be subject to significant uncertainty. However, the algo-
rithm cannot be applied in a straightforward manner because traffic control problems are usually high-
dimensional, making global GP models impractical.

Therefore, we present an extension in which we combine low-dimensional GP models, which ap-
proximate the dynamics between a small subset of states, with linear dynamics, which couple all states.
Let M,N and O be matrices of suitable dimensions, we define Structured Gaussian Process Models
(SGP) as

xt+1 = M ·GP (xt, ut) +N · xt +O · ut + wt, w ∼ N (0,Σw)

with

GP (xt, ut) =




GP1(xt(Ix1 ), ut(Iu1 )
GP2(xt(Ix2 ), ut(Iu2 )

...
GPm(xt(Ixm), ut(Ium)


 .

The vector valued functionGP (xt, ut) is comprised of scalar-valued, independent GPsGPk(xt(Ik), ut(Ik),
which depend ideally only on a small subset of the states and inputs denoted bye the index sets Ixk ⊆
{1, . . . , D} and Iuk ⊆ {1, . . . , F}. For ease of notation, we introduce the auxiliary variables zt :=
GP (xt, ut).

We use SGP models to obtain one-step predictions with mean

µxt+1 = M · µzt +N · µxt +O · µut
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(a) Freeway topology with traffic flows (b) Fundamental diagram

Figure 2.18: In the CTM, a freeway is modeled by a combination of conservation equations according to the freeway topology
with on- and offramps, as depicted on the left and the fundamental diagram, which characterizes the flow as a function of the
densities of upstream and downstream cells, as depicted on the right.

and variance

Σxt+1 = NΣxtN
> +O · cov(xt, ut)

>N> +M · cov(xt, zt)
>N>+

+N · cov(xt, ut)O
> +OΣutO

> +M · cov(ut, zt)
>O>

+N · cov(xt, zt)M
> +O · cov(ut, zt)M

> +MΣztM
>.

The posterior distribution of the GP variables zt is obtained as usual

µzt = mGP (x̃t) = k>∗ (K + σ2
wI)−1y

Σzt = k∗∗ − k>∗ (K + σ2
wI)−1k∗

and the covariances between xt, ut and zt can readily be computed. Following the lines of Deisenroth
et al. (2015), the long-term costs can now be approximated and the optimization of the controller pa-
rameters θ can be performed as in PILCO. We conclude this section with an example that serves to
exemplify why the structure of SGPs naturally arises for traffic control problems.

Example 2.1.1. Consider the problem of freeway ramp metering, for a single freeway with its dynamics
given by the Cell Transmission Model (CTM) Daganzo (1994b); Gomes and Horowitz (2006b). In the
CTM, the freeway is partitioned into cells of length lk. The state of the mainline is described by the
traffic density ρk(t) of cell k at time t, i.e. the number of cars per length in each cell. The density evolves
over time according to the conservation equation

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + rk(t)−

1

β̄k
φk(t)

)

with the mainline flows are denoted as φk(t) and the metering rates as rk(t). The CTM models the flow
φk(t) as a function of the traffic densities, which is represented by the so-called fundamental diagram,
depicted in Figure 2.18b.

It is easy to see that the conservation law is linear in states ρ(t), inputs r(t) and flows φ(t). The
flows, however, are nonlinear, stochastic functions of only two states each. In an SGP setting, low-
dimensional GPs are used to model the fundamental diagram, using the techniques described in Section
2.1.1 and the data that are readily available in the SPEEDD project. By contrast, the conservation law is
known without any uncertainty and can be implemented in an SGP setting without any approximations.
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7.3 SG-PILCO applied to a high dimensional Coupled Mass Spring
System with Damping and nonlinear Springs

m1 m2 mn

k12

d23

k23

d23

x1 x2 xn

u1 u2 un

Figure 7.7: Coupled N-Mass Spring System with Damping:

In order to asses the computational complexity, we extend our problem setup from Section
?? to a coupled n-mass, n/2-input problem. Again, the dampers are linear and known
while the nonlinear spring forces are unknown. For the training of the GPs, we use a
similar training set but with adapted dimensionality:

X̃ train =
�
x̃ t = [x1, v1, . . . , xn, vn, u1, . . . , un/2]

> xi 2 {�1, 0, 1}, vi = 0, uj = 0
 

In order to get an empirical evaluation of the computational load, we then proceed to mea-
sure the CPU -time for the computationally most expensive step, the gradient calculation.
We then employ the gradient calculation algorithm where we neglect the covariance terms
(following the algorithm introduced in section ??), since this approach pays tribute to the
high dimensionality of the problem. The observed values for n 2 {2, 3, . . . , 10} are then
illustrated in Figure ?? .

7.3.1 Computational Cost Assessment

In this chapter we asses the computational complexity of the SG-PILCO algorithm. There-
fore, we then train a E GPs (one for every unknown functions f), using n simulated
outputs Y train 2 R(D⇥n). Hereby D is the dimensionality of the states and F is the
dimensionality of the inputs.
To determine the complexity of the hyperparameter training we make the assumption
that the feature space of every GP consists of an equivalent number of data points n̂ and
has similar dimensionality D̂. Given these assumptions, it takes O(n̂3) calculations per
step to train the hyperparameter with iterative evidence maximization [?] [?]. In contrast
to the PILCO algorithm we only need to fit a GP for each of the E unknown functions
instead of each state space dimension D. For low-dimensional GPs i.e.: E ⌧ D, we
calculate the total computational load per evidence maximization step as:

PILCO: CFit ⇠ O(n3D) (7.13)
SG-PILCO: CFit ⇠ O(n̂3E) (7.14)
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Figure 2.19: Coupled N-Mass Spring System with Damping.

Results

In order to asses the performance of the proposed, PILCO-like algorithm based on SGPs, we conduct a
case study for a set of systems similar in structure to the CTM freeway. We consider a chain of spring-
damper coupled masses as depicted in Figure 2.19. We seek to stabilize these chain of coupled masses
via control inputs exerting a force on every second mass in the chain. We assume that the spring forces
are nonlinear and a-priori unknown, but a data set is available which can be used to approximate the
spring forces using GPs.

We first asses the computational complexity of the SG-PILCO algorithm. Therefore, we train a E
GPs (one for every unknown functions f ), using n simulated outputs Ytrain ∈ R(D×n). Here, D is the
dimensionality of the states and F is the dimensionality of the inputs. To determine the complexity of
the hyperparameter training we make the assumption that the feature space of every GP consists of an
equivalent number of data points n̂ and has similar dimensionality D̂. Given these assumptions, it takes
O(n̂3) calculations per step to train the hyperparameter with iterative evidence maximization. In contrast
to the PILCO algorithm, we only need to fit a GP for each of the E unknown functions instead of each
state space dimension D. For low-dimensional GPs with E � D, we calculate the total computational
load per evidence maximization step as:

PILCO: CFit ∼ O(n3D) (2.50)

SG-PILCO: CFit ∼ O(n̂3E) (2.51)

Once the dynamics model is fitted we can perform approximate inference steps to determine long term
predictions. The computationally most expensive step requires us to calculate the variance Σw. Calcu-
lating this variance has computational complexity O(n̂2D̂) as stated in Deisenroth et al. (2015). Again
SG-PILCO profits from (possibly) lower feature space dimensions D̂ ≤ D and n̂ ≤ n. The total
complexity of an inference step using linearization is thus:

PILCO: CInfLin ∼ O(n2D2) (2.52)

SG-PILCO: CInfLin ∼ O(n̂2D̂E) (2.53)

The most expensive operation, when calculating the analytical gradients is the calculation of derivatives
with respect to the state variance ∂Σxt+1/Σxt . They result in a E × E × D × D tensor. In one time
step and for fixed training points, they thus require at least a computational complexity of:

CGrad. ∈ ω(D2E2) (2.54)
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Figure 7.8: This plot illustrates a 2nd and 3rd order polynomial fit of the CPU-time required
for the gradient calculation in one time step. Both the 2nd and the 3rd order polynomial have
significant parameters in every entry: p3(x) = 0.0001 · x3 + 0.0016 · x2 + 0.0336 · x + 0.2488,
p2(x) = 0.0044 · x2 + 0.0031 · x + 0.3416., whereas the 3rd order fit shows a smaller residual.
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Figure 2.20: This plot illustrates a 2nd and 3rd order polynomial fit of the CPU-time required for the gradient calculation in
one time step. Both the 2nd and the 3rd order polynomial have significant parameters in every entry: p3(x) = 0.0001 · x3 +
0.0016 · x2 + 0.0336 · x + 0.2488, p2(x) = 0.0044 · x2 + 0.0031 · x + 0.3416., whereas the 3rd order fit shows a smaller
residual.

Note, g ∈ ω(f) is the Bachman-Landau notation for f dominates g asymptotically. To prevent the
computational complexity from growing to fast for large dimensional systems, we therefore propose
to only consider covariances of states that affect over the course of the next two to three time steps.
Covariance terms hat have no immediate effect on each other are neglected and set to zero. Such an
approximation would allow us to reduce the computational complexity of the gradient calculation for
one time step and for fixed training points to:

CGrad. ∈ ω(DE2) (2.55)

It remains to asses the performance of the proposed algorithms in terms of the control objective.
We demonstrate that the inclusion of the additional prior knowledge of the linear part of the dynamics
leads to a significant improvement in the predictive performance of the estimated models as is can be
concluded from Figure 2.21. This effect is not surprising at all, however, the proposed SGP approach
allows us to use this prior knowledge for the first time.

Conclusions

We have demonstrated that reinforcement learning techniques based on GPs can be extended to high-
dimensional systems such as traffic networks if the systems exhibit a distributed structure and can be
decomposed into small-dimensional, uncertain subsystems coupled by linear and known dynamics.
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Figure 7.3: The top panel shows the predicted mean development of the positions of each mass,
while their corresponding velocities are captured in the second panel. In both plots, the light
gray area surrounding the mean functions represent uncertainty at each time step. The third
panel shows the amplitude of the spring forces over time.
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(a) SGP model
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Figure 7.4: The top panel shows the predicted mean development of the positions of each mass,
while their corresponding velocities are captured in the second panel. In both plots, the light
gray area surrounding the mean functions represent uncertainty at each time step. The third
panel shows the amplitude of the spring forces over time.
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(b) Full GP model

Figure 2.21: Comparison of long-term predictions for an SGP system model using information about the linear part of the
dynamics and a full GP model without any prior information, using the same data set. It can be seen that while the SGP model
provides meaningful and accurate predictions, the variance of the full GP model grows over the horizon. Clearly, the full GP
model is not suitable for large-dimensional systems, when the amount of data available is insufficient to represent the dynamics
in a high-dimensional space.
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Knowledge of the linear coupling allows to train GPs only in small subspaces of the large state-space,
which keeps GP training computationally feasible and the amount of required data remains small. The
proposed SGP models further allow to use the known, linear parts of the dynamics directly in the iden-
tified system model while still using to the controller parameter learning methods developed for full GP
models. The developed SGP approach is especially suitable for the control of traffic network, in which
large parts of the systems dynamics are perfectly known, but certain parts of the dynamics, between
small subsets of states, are affected by heavy uncertainty.
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Figure 2.22: Sketch of a freeway with ramp metering controlled by local, decentralized controllers acting on local measure-
ments.

2.2 Low-Level Control

The low-level control algorithms act in a decentralized manner. This means that local control actions,
such as traffic light phases or ramp metering rates, are chosen only based on measurements from local,
nearby sensors, as depicted in Figure 2.22. The algorithms can be stated in terms of explicit feedback
laws as in the approach described in Section 2.2.1 or implicitly in terms of (small-scale) optimization
problems as in Section 2.2.3. The main objective of these algorithms is either optimization of some
local quantity, e.g. maximization of local flows, or stabilization of some quantity, e.g. the traffic density,
at a desired value, or both. Interaction of local controllers with others only happens indirectly via the
coordination algorithms described in Section 2.3, which may change the control targets of the local
controllers. Similarly, local controllers do not react directly to detected or forecasted events, but they
react indirectly via potential change of the control targets set by the coordination algorithms. The main
advantage of local, low-level control algorithms is their abliity to react quickly to changes in the local
state of the traffic network, estimates of which are provided by State Estimation.

The algorithms described in the following sections address both the freeway and the inner-city traffic
control scenario. We first (Section 2.2.1) consider the freeway ramp metering problem and compare the
performance of distributed, non- predictive feedback strategies to the optimal solution. We propose a
simple feedback law and derive sufficient conditions under which the distributed controller achieves
globally optimal performance. Next (Section 2.2.2), we take a more theoretical stance and consider the
class of convex, monotonic systems. We show that such systems in general, and monotone freeways
in particular, are optimally operated in steady-state, which is an important presupposition for efficient
decentralized control. Finally (Section 2.2.3), we consider the inner-city traffic optimal control problem,
which is difficult to solve exactly because of the presence of binary variables in the problem, rendering
the optimization problem nonconvex. An approximate decision-making scheme is presented, that only
relies on linear optimization and is therefore very efficient and scalable.
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2.2.1 Optimal, Distributed Freeway Ramp Metering
M. Schmitt, C. Ramesh, J. Lygeros

We consider the freeway ramp metering problem, based on the Cell Transmission Model. Assuming
perfect model knowledge and perfect traffic demand prediction, the ramp metering problem can be cast
as a finite horizon optimal control problem with the objective of minimizing the Total Time Spent, i.e.,
the sum of the travel times of all drivers. For this reason, the application of Model Predictive Control
(MPC) to the ramp metering problem has been proposed. However, practical tests on freeways show that
MPC rarely outperforms simple, decentralized feedback strategies. Until now, a theoretical justification
for this empirical observation is lacking. This work compares the performance of distributed, non-
predictive feedback strategies to the optimal solution. To do so, we propose a distributed, non-predictive
controller, and show that this controller preserves monotonicity of the closed-loop system. We exploit
this result to derive sufficient conditions under which the distributed controller achieves globally optimal
performance. In a small case study based on real-world traffic data, we also demonstrate that these
optimality conditions are rarely violated on a typical day. In addition, even in cases when they are
violated, the performance deterioration is shown to be negligibly small.

Introduction

Ramp metering refers to the active control of the inflow of cars on a freeway via the onramps, by
means of installing and controlling a traffic light at every onramp. In this work, we consider the free-
way ramp metering problem over a finite horizon, e.g. one day or one rush-hour period. Freeway ramp
metering has been established as an effective and practically useful tool to improve traffic flows on
congestion-prone freeways (Papageorgiou et al., 2003; Papageorgiou and Kotsialos, 2000). We study
the problem by adopting the Cell Transmission Model (CTM) for freeways, as introduced in the seminal
work by Daganzo (Daganzo, 1994b, 1995), which can be interpreted as a first-order Godunov approx-
imation of the continuous Lighthill-Whitham-Richards-model (LWR) (Lighthill and Whitham, 1955;
Richards, 1956). The popularity of the CTM for model-based control stems from the simplicity of the
model equations, allowing for computationally efficient solutions methods for optimal control problems
(Gomes and Horowitz, 2006b; Ziliaskopoulos, 2000) and the fact that the CTM might be regarded as
more realistic than some competing models, since it never predicts negative velocities for freeway traffic.
Modifications and generalizations of this model have since been introduced, and we consider a slight
generalization of the original, piece-wise affine CTM to a more general, concave fundamental diagram
as defined and analyzed in (Lovisari et al., 2014). Furthermore, we employ a simplified onramp model
originally introduced as the “asymmetric” CTM (Gomes and Horowitz, 2006b; Gomes et al., 2008),
which simplifies the model of onramp-mainline merges by distinguishing mainline- and onramp-traffic
demand.

While tractable model-based, optimal-control strategies have been proposed (Gomes and Horowitz,
2006b; Pisarski and Canudas-de Wit, 2012b; Alamir, 2014; Burger et al., 2013), a conceptually different
approach uses distributed or even completely decentralized feedback. In such ramp metering strate-
gies, local controllers only receive measurements from sensors in close vicinity to a particular onramp
location and only exchange limited amounts of information, preferably with adjacent controllers if at
all (Papageorgiou et al., 1991; Stephanedes, 1994; Zhang and Ritchie, 1997). Those control policies
aim at maximizing bottleneck flows locally, but have been shown to come close to the performance of
optimal ramp metering strategies in real-world evaluations (Smaragdis et al., 2004; Wang et al., 2014;
Papamichail et al., 2010b). While it is apparent that such local feedback controllers are far easier to
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implement than model-based optimal control strategies, it is not obvious why and when the performance
of distributed, non-predictive ramp metering strategies comes close to the centralized optimal control
solution. A special case for which the optimal control strategy can be explicitly constructed is analyzed
in (Zhang and Levinson, 2004). It is stated that the structure of the explicit solution “explains why
some local metering algorithms [...] are successful – they are really close to the most-efficient logic”.
However, no proof of optimality is provided.

This work addresses the question of how distributed, non-predictive ramp metering policies compare
to optimal, centralized and predictive control strategies for freeways modeled by the monotonic CTM. If
perfect model knowledge and perfect traffic demand prediction is assumed, the ramp metering problem
can be cast as a finite horizon optimal control problem with the objective of minimizing the Total Time
Spent. It is known that this problem can be reformulated as a convex optimization problem for monotonic
demand and supply functions in the fundamental diagram (Lovisari et al., 2014) and as a Linear Program
in the case of a piecewise-affine fundamental diagram (Gomes and Horowitz, 2006b). Since perfect
model knowledge and in particular perfect traffic demand prediction seem to be unrealistic (see e.g.
(Burger et al., 2013; Morbidi et al., 2014; Ojeda et al., 2013) for ongoing work to mitigate the challenges
involved), we introduce a local feedback controller for freeway ramp metering instead. This controller
performs a distributed, one step ahead maximization of local traffic flows. Exploiting monotonicity of
the CTM, we derive sufficient optimality conditions for the problem of minimizing the Total Time Spent
(TTS), which is defined as the sum of the travel times of all drivers.

We analyze performance in a case study, based on a real-world freeway described in (de Wit et al.,
2015). The study is conducted using the monotonic CTM, with freeway parameters and demand patterns
estimated from real measurements. Even though the optimality conditions are occasionally violated,
the control performance of the centralized optimal controller and the proposed ideal non-predictive,
distributed controller differ only by fractions of percents in simulations based on the CTM. Finally,
analyzing differences between the CTM and reality allows us to identify key issues that have to be
addressed by control strategies that aim at outperforming existing, distributed feedback controllers for
ramp metering in the real world.

To sum up, the main contributions of this paper are:

• We derive sufficient optimality conditions for minimal TTS ramp metering in the CTM, providing
a thorough theoretical assessment of why (and when) performance of distributed controllers and
optimal control strategies may coincide.

• We demonstrate the usefulness of these conditions by defining a suitable distributed, non-predictive
feedback controller, which achieves nearly optimal control performance for simulations of the
CTM, using real-world parameters and traffic demands.

Section 2.3.1 defines the CTM and the main problem of minimizing TTS. In Section 2.2.1, we in-
troduce a non-predictive, distributed controller for ramp metering. We also show that this controller is
not always optimal, by stating two counterexamples. In Section 2.2.1, we derive sufficient optimality
conditions that can be used to check optimality a posteriori. Section 2.3.1 introduces a case study based
on real-world freeway parameters, and we demonstrate that the performance deterioration of distributed,
best-effort control is negligibly small. Finally, in Section 4, we comment on the implications of the re-
sults, and highlight immediate consequences for the development of real-world, predictive, coordinated
ramp-metering strategies.

We adopt the following notation: The k-th component of a vector x is denoted xk. The index k
will always be used to denote the index of a cell in the CTM and hence k ∈ {1, . . . , n} with n the
number of cells in the model, unless a different range is explicitly specified. If a variable x evolves over
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Figure 2.23: Sketch of the CTM of a freeway segment controlled by ramp metering

time, the value at time t is denoted by x(t). We consider discrete time models over a horizon T , i.e.,
t ∈ {0, . . . , T}. The operators ≤,≥, <,> used with vectors denote elementwise inequalities. Also, we
write [x]ul := min {u,max {x, l}} for a saturation at an upper bound u and lower bound l.

Problem formulation

The original CTM was introduced in (Daganzo, 1994b, 1995). We consider the (asymmetric) CTM as
introduced in (Gomes and Horowitz, 2006b; Gomes et al., 2008), which employs a simplified onramp
model, as visualized in Figure 2.37. In the CTM, the freeway is partitioned into cells of length lk. The
state of the mainline is described by the traffic density ρk(t), i.e., the number of cars per length in each
cell. The metered onramps are modeled as integrators, and their state is given by the queue length qk(t),
i.e., the number of cars waiting in the queue. The evolution of the system is described by flows of cars
during discrete time intervals of duration ∆t. The mainline flow between cells k and k+1 in time interval
t is denoted by φk(t). We make the assumption of constant split ratios, which means that the outflows
from the offramps are modeled as percentages βk of the mainline flows, where βk are designated as the
split ratios of traffic at the offramp in cell k. For notational convenience, we also use β̄k := 1− βk. For
metered onramps, the inflows to the freeway are given by the ramp metering rates rk(t). The external
traffic demands wk(t), i.e., the number of cars per unit time seeking to enter the freeway from either a
ramp k ∈ {1, . . . , n} or from the upstream mainline, act as external disturbances on the system. The
evolution of the state of the CTM is described by the conservation laws

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + rk(t)−

1

β̄k
φk(t)

)
, (2.56a)

qk(t+ 1) = qk(t) + ∆t · (wk(t)− rk(t)) . (2.56b)

The metering rates rk(t) serve as control inputs to the system. The onramp model relies on the implicit
assumption that congestion does not spill back onto the onramps. In particular, the model assumes that
all cars assigned to enter the freeway in a sampling interval can indeed do so. While this assumption
might not be satisfied for an uncontrolled freeway, it was shown to be satisfied for a freeway controlled
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by ramp metering in a case study (Gomes and Horowitz, 2006b). In this study, the upper bounds on the
metering rates as determined by the mainline congestion exceeded the actual metering rates by a large
margin. Naturally, the ramp metering rates are nonnegative and also subject to a constant upper bound

0 ≤ rk(t) ≤ r̄k, (2.57)

which characterizes the finite maximal onramp flow. We will assume that the external demand is
bounded 0 ≤ wk(t) ≤ r̄k for all k and for all times t. In addition, the limited space on the onramp
0 ≤ qk(t) ≤ q̄k(t) potentially limits the allowed ramp metering rates further and using (2.56b), we
obtain bounds

1

∆t
(qk(t)− q̄k) + wk(t) ≤ rk(t) ≤

1

∆t
qk(t) + wk(t) (2.58)

in terms of the metering rates. The upper bound simply ensures that only cars seeking admission in
time interval t can be admitted to enter the freeway, while the lower bound mandates that the ramp is
operated such that the queue length on the onramp never exceeds the length of the ramp, to avoid queue
spill back4. We do not impose similar bounds on the outflows via the offramps: Effects like a spill back
of congestion from the adjacent aterials are beyond the scope of this model and a constant, upper bound
on the outflow from an offramp is redundant under the assumption of constant split ratios.

The CTM is a first order model and therefore, the mainline traffic flows φ(t) are not states but
functions of the densities. The mainline flow φk(t) depends on the traffic demand dk(ρk(t)) proportional
to the number of cars that seek to travel downstream from cell k at time t, and the supply sk+1(ρk+1(t))
of free space available downstream in cell k + 1 at time t. Demand- and supply functions are often
identified as the fundamental diagram of a cell, as depicted in Figure 2.24. In the original work of
(Daganzo, 1994b, 1995), a piecewise-affine (PWA) fundamental diagram was assumed, as it is obtained
from the Godunov discretization of the LWR-model. In practice, one might want to consider more
general shapes of the fundamental diagram and hence of the demand- and supply functions, in order
to better approximate real world data (see e.g. (Karafyllis et al., 2016; Lovisari et al., 2014) for recent
examples). In the remainder of this work, we will assume that:

Assumption 2.2.1. For every cell k, define a maximal density ρ̄k, often called the jam density, and
the critical density 0 < ρck < ρ̄k. The demand dk(x), dk : [0, ρ̄] → R+ is a Lipschitz-continuous,
nondecreasing function with dk(0) = 0 and dk(ρck) = dk(ρ̄k). Conversely, the supply sk(x), sk :
[0, ρ̄] → R+ is a Lipschitz-continuous, nonincreasing function with sk(ρ̄) = 0 and sk(ρck) = sk(0).
Furthermore, the sampling time ∆t is chosen such that it satisfies the bounds

∆t · cdk ≤ lkβ̄k ∀k, (2.59a)

∆t · csk ≤ lk ∀k, (2.59b)

with respect to the Lipschitz constants of the demand cdk and of the supply csk.

The flow

φ0(t) = w0(t), (2.60a)

φk(t) = min{dk(ρk(t)), sk+1(ρk+1(t))} ∀k ∈ {1, . . . , n− 1}, (2.60b)

φn(t) = dn(ρn(t)), (2.60c)

4The effects of congestion spill back from the onramps to the arterials is usually considered to have much worse effects
than a congestion on the freeway mainline. Thus, avoiding such a spill back takes priority over avoiding a congestion on the
mainline.
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is now given as the minimum of upstream demand and downstream supply. Note that the assumption
of monotonicity of the demand functions implies that dk(ρk) = dk(ρ

c
k) ∀ ρk : ρck ≤ ρk ≤ ρ̄k, i.e.,

the traffic demand is constant for densities larger than the critical density. Similarly, the assumption on
monotonicity of the supply function implies that the supply is constant for all densities smaller than the
critical density, i.e., sk(ρk) = sk(ρ

c
k) ∀ ρk : 0 ≤ ρk ≤ ρck. It is sometimes helpful to introduce the

maximal flow Fk := min{dk(ρck), sk+1(ρck+1)} as an additional parameter in the flow equations. The
flow equation (2.60b) can then equivalently be written as

φk(t) = min{dk(ρk(t)), Fk, sk+1(ρk+1(t))}.

We will use Fk in the flow equations only when it simplifies the presentation of a proof or of an example.
The flow equations are slightly modified for the first and the last cell. For the last cell, we assume
that the outflow from the freeway is unobstructed, i.e., no congestion exists downstream of the (part
of the) freeway that is modeled. Similarly, the inflow in the first cell is given by the external traffic
demand w0(t), which is not restricted by the supply in the first cell. The reason for this modification
is that the flow into the first cell arises from external traffic demand. The equations therefore ensure
that all external demand eventually will be served. By contrast, limiting the inflow according to the
supply of free space, as it is done for any internal flow, would amount to discarding the surplus external
demand. It is worth emphasizing that local traffic flows (2.60) are maximized at the critical density. In
particular, the flow φk into some cell k + 1 with density equal to or smaller than the critical density
ρk+1(t) ≤ ρck+1 is not constrained by the supply of free space and hence φk(t) = min{dk(ρk(t)), Fk}.
Similarly, the flow out of a cell k with density equal to or greater than the critical density ρk(t) ≥ ρck
is not constrained by the traffic demand and hence φk(t) = min{Fk, sk+1(ρk+1(t))}. A CTM freeway
model that satisfies Assumption 2.2.1 will be called a monotonic CTM. The classical, piecewise affine
fundamental diagram satisfies this assumption: Here, we have that dk(ρk) = min

{
β̄kvkρk,

wk

β̄kvk+wk
ρ̄k

}

and sk(ρk) = min
{

wk

β̄kvk+wk
ρ̄k, (ρ̄k − ρk)wk

}
with vk the free-flow speed and wk the congestion wave

speed. Monotonicity assumptions are trivially satisfied for affine demand and supply functions and
the condition on ∆t can be recognized as the stability condition vk · ∆t ≤ lk, ∀k that arises if the
CTM is derived as a discretization of the wave PDE using the Godunov scheme. Note that in practice,
the congestion-wave speed wk is significantly lower than the free-flow speed, thus the upper bound in
inequality 2.59b in Assumption 2.2.1 is not restrictive. Different shapes of the fundamental diagram
encountered in practice are depicted in Figure 2.24 for illustration.

We are now ready to formulate the main problem. Assume a freeway modeled by the CTM, subject
to a demand profile dk(t) for k ∈ {0, . . . , n} over a horizon t ∈ {0, . . . , T − 1}. By controlling the
metering rates, we seek to minimize the total time spent (TTS), given as the sum of the total travel time
(TTT),

TTT := ∆t ·
T∑

t=0

n∑

k=0

lkρk(t),

which is the sum of the travel times of all drivers on the freeway and the total waiting time (TWT),

TWT = ∆t ·
T∑

t=0

n∑

k=0

qk(t),

the sum of the waiting time of all drivers on the metered onramps. The main problem is therefore given
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Figure 2.24: Different shapes of the fundamental diagram (FD) may be desirable in order to approximate real-world data.
Figure (a) depicts the traditional PWA version. Figure (b) shows a version with monotonic and concave demand and supply
functions, satisfying Assumption 2.2.1 for suitable ∆t. Clearly, the class of monotonic, concave fundamental diagrams is
a generalization of the PWA fundamental diagram. Figure (c) shows a fundamental diagram with non-monotonic demand
function, which does not satisfy Assumption 2.2.1 for any ∆t.

as:

minimize TTS := TTT + TWT = ∆t ·
T∑

t=0

n∑

k=0

(lkρk(t) + qk(t)) (2.61a)

subject to ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + rk(t)−

1

β̄k
φk(t)

)
(2.61b)

qk(t+ 1) = qk(t) + ∆t · (wk(t)− rk(t)) (2.61c)

φ0(t) = w0(t) (2.61d)

φk(t) = min{dk(ρk(t)), sk+1(ρk+1(t))} (2.61e)

φn(t) = dn(ρn(t)) (2.61f)

0 ≤ rk(t) ≤ r̄k (2.61g)

0 ≤ qk(t) ≤ q̄k (2.61h)

ρk(0), qk(0), wk(t) given. (2.61i)

Note that the metering bounds (2.58) for time t are equivalent to (2.61h) at time t + 1. Problem (2.61)
is a standard problem in traffic control, which has been studied extensively. It is non-convex, because
of the nonlinear fundamental diagram (2.61e). In (Gomes and Horowitz, 2006b), it is shown that the
special case of a piecewise-affine fundamental diagram admits an LP reformulation and hence can be
solved efficiently. The case of a concave, but not necessarily PWA fundamental diagrams is briefly
discussed in (Lovisari et al., 2014), although in a continuous-time setting. Similarly to the PWA case, a
convex reformulation is possible.

Remark 2.2.1. In the statement of the main problem (2.61), we introduce parameters r̄k, q̄k and βk for
every cell. In practice, not every cell will be equipped with both an onramp and an offramp and many
cells might have neither. The equations (2.61) are general enough to capture all these situations and
one can simply select r̄k = q̄k = wk(t) = 0, ∀t, if no onramp is present in cell k. Similarly, choosing
βk = 0, which in turn implies that β̄k = 1, means no offramp is present in cell k.
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A distributed controller

The problem of minimizing TTS represents the global perspective, in which we optimize the whole
system over the complete horizon. By contrast, one might also seek to optimize the here-and-now
performance. This idea can be formalized by introducing the Total Travel Distance (TTD), defined as

TTD(t) := ∆t ·
n∑

k=1

lkφk(t),

which is simply the total distance traveled by all drivers on the mainline within time interval t. In this
section, we formulate an one-step look-ahead controller, which maximizes TTD for the next time step
in a greedy fashion:

maximize TTD(t+ 1) = ∆t ·
n∑

k=1

lkφk(t+ 1) (2.62a)

subject to ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + rk(t)−

1

β̄k
φk(t)

)
(2.62b)

qk(t+ 1) = qk(t) + ∆t · (wk(t)− rk(t)) (2.62c)

φ0(t+ 1) = w0(t+ 1) (2.62d)

φk(t+ 1) = min{dk(ρk(t+ 1)), sk+1(ρk+1(t+ 1))} (2.62e)

φn(t+ 1) = dn(ρn(t+ 1)) (2.62f)

0 ≤ rk(t) ≤ r̄k (2.62g)

0 ≤ qk(t+ 1) ≤ q̄k (2.62h)

ρk(t), qk(t), wk(t) given. (2.62i)

It is straightforward to show that the following distributed feedback controller provides a (non-unique)
explicit solution to this optimization problem. The explicit, feedback solution requires perfect model
knowledge, but it does not rely on any online-optimization or traffic demand prediction:

Lemma 2.2.1. An explicit solution to the one-step-ahead optimal control problem (2.62) is given by the
following feedback policy:

r∗k(t) :=

[
lk
∆t

(ρck − ρk(t)) +
φk(t)

β̄k
− φk−1(t)

]min{r̄k, 1
∆t
qk(t)+wk(t)}

max{0, 1
∆t

(qk(t)−q̄k)+wk(t)}
∀k ∈ {1, . . . , n}. (2.63)

Proof. Consider an arbitrary flow φk(t+ 1), k ∈ {1, . . . , n−1}. It is easy to see that it only depends on
the ramp metering rates in the adjacent cells k and k + 1 at time t, since we consider a one-step-ahead
control problem. More precisely, it depends on the traffic demand dk(ρk(t)) and the supply of free space
sk+1(ρk+1(t)). Consider the problem of maximizing this flow

max
r(t)

φk(t+ 1) = max
r(t)

min{dk(ρk(t+ 1)), sk+1(ρk+1(t+ 1))}

≤ min
{

max
r(t)

dk(ρk(t+ 1))

︸ ︷︷ ︸
(1)

, max
r(t)

sk+1(ρk+1(t+ 1))

︸ ︷︷ ︸
(2)

}

alone. It turns out that the policy (2.63) maximizes both terms in the previous equation. In order to show
this, we resort to a case distinction:

D4.3: Decision Making III



2.2. Low-Level Control page 50 of 138

(i) If r∗k(t) does not saturate at the upper bound, it follows that r∗k(t) ≥ lk
∆t (ρck − ρk(t)) + φk(t)

β̄k
−

φk−1(t) and hence ρk(t + 1) = ρk(t) + ∆t
lk

(
φk−1(t) + r∗k(t)− 1

β̄k
φk(t)

)
≥ ρck. Therefore,

dk(ρk(t+ 1)) = dk(ρ
c
k) and the first term is maximized.

(ii) Otherwise, recall that dk(·) is nondecreasing. Since r∗k(t) saturates at the upper bound w.r.t (2.62g)
and (2.62h) of the feasible range, the first term is maximized.

Similarly, we can analyze the effects of the metering rate at cell k + 1:

(i) If r∗k+1(t) does not saturate at the lower bound, it follows that r∗k+1(t) ≤ lk+1

∆t

(
ρck+1 − ρk+1(t)

)
+

φk+1(t)

β̄k+1
− φk(t) and hence ρk+1(t + 1) = ρk+1(t) + ∆t

lk+1

(
φk(t) + r∗k+1(t)− 1

β̄k+1
φk+1(t)

)
≤

ρck+1. Therefore, sk+1(ρk+1(t+ 1)) = sk+1(ρck+1) and the second term is maximized.

(ii) Otherwise, recall that sk+1(·) is nonincreasing. Since r∗k+1(t) does saturate at the lower bound of
the feasible range, the second term is maximized.

Since both the first and the second term are maximized, we conclude that the proposed feedback
law maximizes φk(t + 1), for all k ∈ {1, . . . , n − 1}. The case of φn(t + 1) is similar, except that the
second term is not present. Also φ0(t + 1) does not depend on the metering rates. All flows are jointly
maximized and therefore, TTD is maximized as well.

This controller aims at moving the local density to the critical density as fast as possible and in that
sense, it is very similar in spirit to many existing and practically successful ramp metering strategies,
most notably ALINEA (Papageorgiou et al., 1991). In the following, we will be referring to this one-
step-ahead optimal controller as the (distributed) best-effort controller. There has been speculation in
(Zhang and Levinson, 2004) on whether a control policy similar to the feedback law (2.63) minimizes
TTS globally and over the complete horizon. We will present two counterexamples showing that this is
not necessarily the case in all scenarios.

Example 2.2.1 (Lower bound saturation). Consider a two-cell freeway as depicted in Figure 2.25, with
a metered onramp at the second cell and an offramp with a large split ratio at the first cell, in this
example β1 = 0.8. Some traffic demand is present at the onramp in the beginning, but a spike in demand
is arriving on the mainline with some time delay. The situation is sketched in Figure 2.25a. Because
of the large split ratio at the offramp, a backlog of congestion into the first cell severely reduces the
total discharge flows and hence increases the TTT. Once the spike in demand arrives, the constraint
0 ≤ rk(t) becomes active. However, cars already admitted to the freeway from the onramp can not be
retracted to the onramp queue. For suitably chosen parameters, the optimal policy is to preemptively
reduce the density in the second cell below the critical density, as depicted in Figure 2.25b. The resulting
reduction in outflow from the mainline is more than compensated by the increased discharge from the
offramp. The demand is piecewise constant: d0(t) = 5000 for 4 ≤ t ≤ 12min, d0(t) = 0 otherwise and
d2(t) = 2200 for 3 ≤ t ≤ 4min, d2(t) = 0 otherwise. The parameters are chosen as l1 = l2 = 1km,
v1 = v2 = w1 = w2 = 100km/h, ρc1 = 100(cars)/km, ρc2 = 10(cars)/km, ρ̄1 = 200(cars)/km,
ρ̄2 = 20(cars)/km, F1 = 1000(cars) and F2 = 500(cars). Note that the parameter values have been
chosen to amplify the suboptimality of the policy for illustration purposes, without considering whether
such parameters are realistic.

Conversely, we can also construct an example in which the upper bound on the ramp metering rate
prevents optimality of the local feedback controller:
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(b) Traffic evolution

Figure 2.25: In case of a spike in demand, it might be advisable to preemptively reduce the local density at a bottleneck below
the critical density, in oder to accomodate (parts of) the traffic wave in the free space and avoid spill back of congestion. The
variablesN(t) andN∗(t) represent the total number of cars on the freeway and at the onramps, soN(t) := l1ρ1(t)+l2ρ2(t)+
q2(t) and likewise for N∗(t). Therefore, the savings, i.e., the difference in TTS between the two controllers, are proportional
to the highlighted region.

Example 2.2.2 (Upper bound saturation). Consider a one cell freeway with a metered onramp, as
sketched in Figure 2.26a. Some traffic demand is present at the onramp. A spike in mainline demand
arrives at the beginning of the considered time interval, but afterwards, the mainline demand decays to
zero. In case of local feedback, the initial spike in mainline demand causes a congestion and hence local
feedback will use ramp metering to hold cars back on the queue. But when the mainline density decays
again, ramp metering will not be able to release cars sufficiently fast to keep the density at the critical
density due to inherent limits on the flow from the onramp, which require rk(t) ≤ r̄k. The optimal strat-
egy does not use ramp metering at all and allows for a larger congestion in the beginning, as depicted
in Figure 2.26b. Since there is no offramp, spill back of congestion is not an issue in this scenario. The
demand is piecewise constant: d0(t) = 5000 for 0 ≤ t ≤ 3min, d0(t) = 0 otherwise and d1(t) = 1000
for 0 ≤ t ≤ 8min, d1(t) = 0 otherwise. The parameter values are chosen as l1 = 1km, v1 = 100km/h,
w1 = 25km/h, ρc1 = 50(cars)/km, ρ̄1 = 250(cars)/km and F1 = 5000(cars). Again, the parameter
values have been chosen such as to amplify the suboptimality of the policy for illustration purposes.

Closer inspection reveals that whether the ramp metering bounds (2.57) are active or not is essential
for deriving a certificate of optimality. Indeed, in Section 2.2.1, we derive explicit conditions relating
the activation of these constraints to the optimality of the best effort controller.
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(b) Traffic evolution

Figure 2.26: If no spill back of the congestion is possible, it might be advisable (in the monotonic CTM) to allow a congestion
to form immediately upstream of a bottleneck (highlighted in the upper plot of Figure 2.26b). The variables N(t) and N∗(t)
represent the total number of cars on the freeway and at the onramps, so N(t) := l1ρ1(t) + q1(t) and likewise for N∗(t).
Therefore, the savings, i.e., the difference in TTS between the two controllers, are proportional to the highlighted region.
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Sufficient optimality conditions

It turns out that even in the presence of controller saturation, we can find sufficient conditions that can
be used to verify optimality of a system trajectory, in a minimal-TTS sense. To derive these, we first
apply a linear state transformation to the CTM to obtain a system description better suitable for our
analysis and show that the closed-loop system comprised of the CTM in the new coordinates and the
best-effort controller is monotonic. Then, we introduce conditions that characterize the state of onramps
at individual time steps and show how these conditions, together with monotonicity of the closed loop,
ensure global minimization of TTS.

Let us introduce the throughput Φk(t), defined as

Φk(t) =: Φk(0) + ∆t ·
t−1∑

τ=0

φk(τ).

with Φk(0) :=
∑n

j=k+1
1

β̄(k+1,j−1)
(ljρj(0)) and β̄(k,j) :=

∏j
i=k β̄i if k ≤ j and β̄(k+1,k) := 1. This

constant offset accounts for the initial density of the freeway, that is cars that have entered the freeway
and travelled to cell k or further before the considered time horizon. This offset is required to express
densities in terms of throughput; it does not affect our optimality arguments.. Note that Φk(t) is dimen-
sionless and can be interpreted as the number of cars that have passed cell k. Using this insight, we can
we express the throughput directly in terms of the original system states: We first extend the model to
include an additional cell with index n+ 1 at the end of the freeway. This cell is defined to have infinite
storage capacity and collects all of the flow that leaves the freeway via the mainline. An infinite storage
capacity can be formalized by choosing sn+1(ρn+1) ≡ +∞ such that all of the upstream demand is
admitted and dn+1(ρn+1) ≡ 0 such that no car leaves the cell. The purpose of this cell is to assist in
bookkeeping of all the cars that have travelled through the freeway and it will therefore not be consid-
ered in the computation of the Total Travel Time. Note that some cars also leave the freeway via the
offramps, but because of the assumption of constant split ratios, we can reconstruct the outflows from
the densities in cells k ∈ {1, . . . , n+ 1}. Let us also define the total inflow up to and including time t as
Rk(t) := ∆t ·∑t−1

τ=0 rk(τ) and the total, external demands as Wk(t) := qk(0)+∆t ·∑t−1
τ=0wk(τ). Both

quantities are dimensionless and can be interpreted as the number of cars that have entered the freeway
or arrived at the onramp, respectively5. We can now express the throughputs

Φk(t) =

n+1∑

j=k+1

1

β̄(k+1,j−1)

(ljρj(t)−Rj(t)) . (2.64)

as linear functions of the original states and inputs of the CTM. The whole CTM can be expressed
equivalently in terms of the aggregated quantities:

Φk(t+ 1) = fk(Φ(t), R(t)) := Φk(t) + ∆t φk(t),

with: φ0(t) = w0(t),
φk(t+ 1) = min{dk(ρk(t+ 1)), sk+1(ρk+1(t+ 1))},

φn(t) = dn(ρn(t))

and: ρk(t) = 1
lk

(
Φk−1(t)− 1

β̄k
Φk(t) +Rk(t)

)
,





∀k ∈ {1, . . . , n}

(2.65)

5Note however, that the CTM is an averaged model, so neither Rk(t) nor Wk(t) are restricted to integer values.
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in which the throughputs Φk(t) are the states and the inflows Rk(t) are the inputs. Note that we in-
troduced the shorthand notation fk(Φ(t), R(t)) for the systems equations. We will also use f(·, ·) :=[
f1(·, ·) . . . fn(·, ·)

]>. We also need to translate the input constraints (2.57) and (2.58), which now read

Rk(t− 1) ≤ Rk(t) ≤ Rk(t− 1) + r̄k, (2.66a)

Wk(t)− q̄k ≤ Rk(t) ≤Wk(t). (2.66b)

We will refer to the system described by equations (2.65) and (2.66) as the aggregated CTM. Mono-
tonicity properties will facilitate the analysis of optimal control problems of the aggregated CTM.

Lemma 2.2.2. The systems equations fk(Φ(t), R(t)) for all 0 ≤ k ≤ n in the aggregated CTM are
nondecreasing in the aggregated flows Φ(t).

Proof. Using the definition of the aggregated CTM (2.65), we can write equivalently

Φk(t+ 1) = min {Φk(t) + ∆t dk(ρk(t)),Φk(t) + ∆t sk+1(ρk+1(t))}
for k ∈ {1, . . . , n − 1}. The minimum of monotonic functions is monotonic. We can therefore verify
monotonicity of the CTM by checking that both of the functions

f
(−)
k (Φk−1(t),Φk(t)) := Φk(t) + ∆t dk

(
1

lk

(
Φk−1(t)− 1

β̄k
Φk(t) +Rk(t)

))
,

f
(+)
k (Φk(t),Φk+1(t)) := Φk(t) + ∆t sk+1

(
1

lk+1

(
Φk(t)−

1

β̄k+1
Φk+1(t) +Rk+1(t)

))
,

are nondecreasing in Φk−1(t),Φk(t) and Φk+1(t).

(i) To verify monotonicity in Φk−1(t), first note that f (+)
k does not depend on Φk−1(t), so it is

trivially nondecreasing. Furthermore, ρk(t) is nondecreasing in Φk−1(t), since by assumption
lk > 0. Also, dk(·) is nondecreasing according to Assumption 2.2.1. Recalling that ∆t > 0, we
conclude that f (−)

k , which is a composition of the previously analyzed functions, is nondecreasing
in Φk−1(t).

(ii) To verify monotonicity in Φk+1(t), first note that f (−)
k does not depend on Φk+1(t), so it is

trivially nondecreasing. Furthermore, ρk(t) is nondecreasing in Φk+1(t), since by assumption
lk > 0 and β̄k+1 > 0. Also, sk+1(·) is nonincreasing according to Assumption 2.2.1. Recalling
that ∆t > 0, we conclude that f (+)

k , which is a composition of the previously analyzed functions,
is nondecreasing in Φk+1(t).

(iii) To verify monotonicity of f (−)
k in Φk(t), recall that according to Assumption 2.2.1, dk(·) is Lips-

chitz continuous, so |dk(x+ ∆x)− dk(x)| ≤ cdk|∆x|. Therefore:

f
(−)
k (Φk−1(t),Φk(t) + ∆Φ)− f (−)

k (Φk−1(t),Φk(t))

= ∆Φ + ∆t ·
[
dk

(
1

lk

(
Φk−1(t)− 1

β̄k
(Φk(t) + ∆Φ) +Rk(t)

))

−dk
(

1

lk

(
Φk−1(t)− 1

β̄k
Φk(t) +Rk(t)

))]

≥ ∆Φ−∆t · cdk ·
∣∣∣∣

1

lkβ̄k
∆Φ

∣∣∣∣

≥ ∆Φ ·
(

1−∆t · lkβ̄k
∆t
· 1

lkβ̄k

)
= 0.
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Figure 2.27: Example situations in which cell k is restrictive or nonrestrictive. A question mark indicates that the corresponding
density or ramp occupancy is not relevant for determining if cell k is restrictive or not.

In the first inequality, we use Lipschitz continuity and in the last inequality, we replace the Lips-
chitz constant for the demand function with its upper bound from Assumption 2.2.1. Monotonicity
of f (+)

k in Φk(t) can be shown in a similar way.

Also, the cases k = 0 and k = n follow along the same lines.

Similarly, the dependency of the states on the inputs is characterized by the following relationship:

Lemma 2.2.3. The systems equation fk(Φ(t), R(t)) for k fixed (1 ≤ k ≤ n − 1) is nondecreasing in
input Rk(t) and nonincreasing in input Rk+1(t). Also, f0(Φ(t), R(t)) is nonincreasing in R1(t) and
fn(Φ(t), R(t)) is nondecreasing in Rn(t).

The proof of Lemma 2.2.3 follows the same ideas as the proof of Lemma 2.2.2. Next, we will define
conditions that will be useful in deriving sufficient optimality conditions for best-effort control.

Definition 2.2.1. A cell k with onramp queue is called restrictive at time t if

(i) the onramp is not completely full and the upstream flow into the cell is limited by non-maximal
supply of free space, i.e., qk(t) < q̄k and sk(ρk(t)) ≤ dk−1(ρk−1(t)) ∧ sk(ρk(t)) < Fk−1

or

(ii) the onramp is not empty and the downstream flow out of the cell is limited by non-maximal de-
mand, i.e., qk(t) > 0 and dk(ρk(t)) ≤ sk+1(ρk+1(t)) ∧ dk(ρk(t)) < Fk

Otherwise, we call the cell nonrestrictive.

This definition formalizes the intuitive idea to operate each onramp so as to maximize local mainline
flow in the subsequent time step t + 1: In case (i), the existence of free space on the onramp indicates
that a potential congestion on the mainline, which is equivalent to the flow being restricted by the traffic
supply, might have been prevented or at least reduced by keeping additional cars on the onramp. Con-
versely, the existence of free-flow conditions on the mainline below the maximal flow, as indicated by
the restriction of the flow by the traffic demand, raises the question as to why any cars should be held
back on the onramp queue. The idea will be illustrated in the following example.

Example 2.2.3. Consider the situations sketched in Figure 2.27, which exemplify when a cell is re-
strictive. In all these examples, we assume that sk(ρk(t)) > 0 if ρk(t) < ρ̄k and dk(ρk(t)) > 0 if
ρk(t) > 0.
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(i) A completely congested cell implies sk(ρk(t)) = sk(ρ̄k) = 0. Since the upstream cell is nonempty,
it follows that sk(ρk(t)) = 0 < dk−1(ρk−1(t)). But even though cell k is completely congested,
the onramp is not completely filled qk(t) < q̄k. Therefore, cell k is restrictive.

(ii) Cell k is congested ρk(t) > ρck , but in contrast to case (i), the maximal number of cars is stored
on the onramp qk(t) = q̄k. Therefore, this cell is nonrestrictive.

(iii) Cell k is congested ρck < ρk(t) < ρ̄k and the onramp is not completely filled qk(t) < q̄k. However,
in contrast to case (i), the upstream cell k + 1 is empty, therefore, the congestion in cell k does
not obstruct the mainline flow sk(ρk(t)) > 0 = dk−1(0) and cell k is nonrestrictive

(iv) Cell k is operating exactly at the critical density. Therefore, sk(ρk(t)) = sk(ρ
c
k) ≥ Fk−1 and

dk(ρk(t)) = dk(ρ
c
k) ≥ Fk and the cell is nonrestrictive, for arbitrary upstream demand, down-

stream supply and local ramp occupancy.

Remark 2.2.2. Definition 2.2.1 characterizes cells with onramps. Proofs in the remainder of this section
will analyze pairs of adjacent cells, to determine the behavior of the flow between these cells. To avoid
unnecessary case distinctions with regard to which of these cells are equipped with onramps and which
are not, note that cells without an onramp can still be expressed in the ACTM framework by r̄k = q̄k =
Wk(t) = 0, ∀t, for all cells k without an onramp, exactly in the same way as described in Remark 2.2.1
for the CTM. Then constraints (2.66) imply Rk(t) = 0, ∀t, as desired. For such cells k, it always holds
that 0 = qk(t) = q̄k(t) and therefore, these cells are classified as nonrestrictive at all times.

It is important to note that a cell operating exactly at the critical density ρc is always nonrestrictive
in the sense of Definition 2.2.1: According to Lemma 2.2.1, both upstream and downstream flow are
jointly maximized at this density. In fact, the best-effort controller defined in said Lemma, which tracks
the critical density locally, is able to keep cells nonrestrictive under certain conditions, as explained by
the following lemma:

Lemma 2.2.4. Assume that for a freeway controlled by the best effort controller, the onramp at cell k at
time t satisfies

0 ≤
[
lk
∆t

(ρck − ρk(t)) +
φk(t)

β̄k
− φk−1(t)

] 1
∆t
qk(t)+wk(t)

1
∆t

(qk(t)−q̄k)+wk(t)

≤ r̄k,

i.e., the best-effort policy (2.63) is not affected by the constraints (2.57). Then, cell k is nonrestrictive at
time t+ 1.

Sketch of proof. Note that this condition is sufficient, but not necessary. Sufficiency can be readily
verified by plugging the feedback policy in the CTM equations and making a case distinction for each
affine piece of the control law.

We will now use monotonicity of the aggregated CTM to show that throughput is maximized over
several time periods for nonrestrictive freeways. For the upcoming analysis, it will be useful to introduce
the following notation for the maximal achievable throughput

Φ∗k(t) := max Φk(t)

subject to Φ(τ + 1) = f(Φ(τ), R(τ)) ∀τ ∈ {0, . . . , t− 1}
Rk(τ) ≤ Rk(τ + 1) ≤ Rk(τ) + r̄k ∀τ ∈ {0, . . . , t− 1}
Wk(τ)− q̄k ≤ Rk(τ) ≤Wk(τ) ∀τ ∈ {0, . . . , t− 1}
Initial state Φ(0) and R(0) = 0 given. ,
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at a particular time t and cell k.

Lemma 2.2.5. Assume that Φj(t) = Φ∗j (t) for j ∈ {k − 1, k, k + 1} and that the cells k and k + 1 are
nonrestrictive at time t. Then Φk(t+ 1) = Φ∗k(t+ 1).

Proof. For notational convenience, let us introduce a relaxation of the set of feasible metering rates

Rk(t) := {Rk : Wk(t)− q̄k ≤ Rk ≤Wk(t)} (2.67)

at time t. Note that according to this definition, the metering rates satisfy the constraints arising from
the limited space on the onramps (2.58), but not (necessarily) the additional, constant bounds (2.57).
Also note that the feasible sets for the metering rates Rk(t) are decoupled in time in the aggregated
formulation, i.e., they do not depend on the system state or previous actions. In the following, we will
also use the shorthand notationR(t) := ⊗nk=1Rk(t). Now, we can write the optimal throughputs as

Φ∗k(t+ 1) ≤ max fk(Φ(t), R(t))

subject to Φ(τ + 1) = f(Φ(τ), R(τ)) ∀τ ∈ {0, . . . , t− 1}
Wk(τ)− q̄k ≤ Rk(τ) ≤Wk(τ) ∀τ ∈ {0, . . . , t− 1}
Initial state Φ(0) and R(0) = 0 given.

= maxR∈R(t) fk(Φ
∗(t), R).

Note that we only have an inequality in the first step, since we operate with a relaxation of the feasible
set of inputs. This ensures that the constraints become decoupled in time. Then, we use monotonicity of
Φk(t+ 1) = fk(Φ(t), R(t)) in the throughputs Φ(t) to obtain the final equality. Using this preliminary
result and the fact that cells k and k + 1 are nonrestrictive at time t, we will now show that also Φk(t+
1) ≥ Φ∗k(t+ 1) and hence Φk(t+ 1) = Φ∗k(t+ 1).

Cell k is nonrestrictive by assumption and therefore, it satisfies either

(A) dk(ρk(t)) > sk+1(ρk+1(t)) ∨ dk(ρk(t)) ≥ Fk or

(B) qk(t) = 0

or both, according to Definition 2.2.1. Similarly, cell k + 1 is also nonrestrictive and satisfies either

(C) sk+1(ρk+1(t)) > dk(ρk(t)) ∨ sk+1(ρk+1(t)) ≥ Fk or

(D) qk+1(t) = q̄k+1

or both. We proceed with a case distinction, depending on which of these conditions are satisfied for
cell k and cell k + 1, respectively:

(i) Assume (A) and (C) hold, that is, the flow φk(t) is neither limited by submaximal supply or
submaximal demand. It follows that φk(t) = min {dk(ρk), Fk, sk+1 (ρk+1)} = Fk and hence

Φk(t+ 1) = Φ∗k(t) + ∆t · Fk
≥ max

R∈R(t)
fk(Φ

∗(t), R)

= Φ∗k(t+ 1).
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(ii) Assume (B) and (D) hold, that is, the onramp in cell k is empty and the onramp in cell k + 1 is
full. The first condition implies that Rk(t) = Wk(t), according to equation (2.66b). Conversely,
the second condition implies that Rk+1(t) = Wk+1(t)− q̄k+1. It follows that

Φk(t+ 1) = Φ∗k(t) + ∆t ·min {dk(ρk), sk+1 (ρk+1)}
= Φ∗k(t) + ∆t ·min

{
dk

(
ρk
(
Φ∗(t),Wk(t)

))
, sk+1

(
ρk+1

(
Φ∗(t),Wk+1(t)− q̄k+1

))}

= Φ∗k(t) + ∆t ·min

{
dk

(
ρk
(
Φ∗(t), max

R∈Rk(t)
R
))
, sk+1

(
ρk+1

(
Φ∗(t), min

R∈Rk+1(t)
R
))}

≥ max
R∈R(t)

fk(Φ
∗(t), R)

= Φ∗k(t+ 1).

Here, we use the lower and upper bounds on the aggregated ramp metering rates Rk(t) according
to the definition of Rk(t) in equation (2.67). Finally, the inequality holds because the throughput
Φk(t+ 1) function is nondecreasing in Rk(t) and nonincreasing in Rk+1(t), according to Lemma
2.2.3.

(iii,iv) In the third case, assume that (A) and (D) hold, whereas in the fourth case, assume that (B) and (C)
hold. The derivations to show that Φk(t+ 1) ≥ Φ∗k(t+ 1) can easily be constructed by combining
parts from cases (i) and (ii).

All cases compatible with Definition 2.2.1 have been verified and the proof has thus been completed.

A maximization of TTD leads to a minimization of the total discharge flows at every time instant,
which in turn corresponds to a minimization of TTS over the whole horizon, as we will show next.

Theorem 2.2.1. Assume that every cell k ∈ {1, . . . , n} of a freeway is nonrestrictive, for the entire
horizon t ∈ {1, . . . , T − 1}. Then TTS is minimized.

Proof. The initial conditions are assumed to be fixed, so Φ∗k(0) = Φk(0), for all k. Because Defini-
tion 2.2.1 holds for every cell in every time step, we can apply Lemma 2.2.5 for every cell and t = 1,
yielding Φk(1) = Φ∗k(1) for all k. Employing induction, we can proceed in the same manner to show
that Φk(t) = Φ∗k(t) over the complete control horizon. Thus, throughput is maximized jointly for every
cell and every step.

It remains to be shown that joint maximization of all throughputs implies minimization of TTS. To
do so,

TTT (t) = ∆t ·
n∑

k=1

lkρk(t) = ∆t ·
(

Φ0(t)− Φn(t) +
n∑

k=1

(
Rk(t)−

βk
β̄k

Φk(t)

))

and

TWT (t) = ∆t ·
n∑

k=1

qk(t) = ∆t ·
n∑

k=1

(Wk(t)−Rk(t))
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have to be expressed in terms of the aggregated variables. If we sum according to the definition of TTS,
we find

TTS =
T∑

t=0

TTT (t) + TWT (t)

= ∆t ·
T∑

t=0

(
Φ0(t)− Φn(t) +

n∑

k=1

(
Wk(t)−

βk
β̄k

Φk(t)

))
.

Analyzing the sign of the coefficients yields the desired result

minimize TTS = ∆t ·
T∑

t=0


Φ0(t)−max {Φn(t)}+

n∑

k=1

(
Wk −

βk
β̄k︸︷︷︸
≥0

max {Φk(t)}
)



= ∆t ·
T∑

t=0

(
W0(t)− Φ∗n(t) +

n∑

k=1

(
Wk(t)−

βk
β̄k

Φ∗k(t)
))

.

All minimizations and maximizations in the previous equations are to be understood as an optimization
over the set of feasible ramp metering patterns, with respect to the fixed initial condition and traffic
demands and the CTM system model. Note that β̄k ∈ (0, 1] for all k by definition of the split ratios. The
last equality confirms that TTS is indeed minimized by maximal Φ∗k(t) due to an entirely nonrestrictive
freeway and thus concludes the proof.

It is important to keep in mind that Definition 2.2.1 provides only sufficient optimality conditions. In
particular, it is possible that, depending on the freeway parameters and the demand profile, there does not
exist a policy which satisfies the given optimality conditions. It also becomes clear that the difficulties
in solving the main problem (2.61) hinge mainly on the ramp metering bounds (2.57), as the following
result states:

Corollary 2.2.1. Assume local ramp metering rates in cell k can be chosen as

rk(t) =

[
lk
∆t

(ρck − ρk(t)) +
φk(t)

β̄k
− φk−1(t)

] 1
∆t

(qk(t)−q̄k)+dk(t)

1
∆t
qk(t)+dk(t)

for all k ∈ {1, . . . , n} and all t ∈ {0, . . . , T}, i.e., the ramp metering bounds (2.57) are not support
constraints. Then, the local feedback policy minimizes TTS over the whole horizon.

This follows immediately from Theorem 2.2.1 and Lemma 2.2.4.

Application

We consider a congestion prone freeway in the vicinity of Grenoble, France (de Wit et al., 2015). The
total length of this freeway stretch, the so-called Rocade Sud, is 11.8km, out of which we consider
10.45km (exluding short sections in the beginning and in the end). The freeway has 7 offramps in total
and 10 onramps, which will be subject to ramp metering in the future. The topology is depicted in Figure
2.28. The freeway has been equipped with loop detectors. Traffic data are reported to a control center
every 15 seconds. In this case study, the freeway is modeled by the CTM, with one cell per mainline
sensor location.
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(a) Annotated map of the Rocade Sud, Grenoble. Cir-
cles represent the approximate location of the onramps,
offramps and sensors. Map data c©2015 Google
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(b) Topology of the CTM modeling the the Rocade
Sud, with onramps and offramps. Boxes represent the
cells of the CTM.

Figure 2.28: Topology of the Rocade Sud, Grenoble
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(a) No ramp metering
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(b) Optimal ramp metering

Figure 2.29: Partial simulation results of the Grenoble freeway and traffic demands of April, 14th, 2014. Depicted are the
mainline densities without ramp metering, and with optimal ramp metering. Because of the limited space on the onramps, it is
not possible to prevent congestion altogether, but the improvement is clearly visible.
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Since ramp metering has not yet been installed, we can obtain the traffic demand profiles simply from
the onramp- and mainline inflows to the system. For the following case study, we consider data from 5
weeks in March, April and June 2014, corresponding to 35 days in total6. For each day, we simulate the
evolution of traffic using the CTM and best-effort control and report the TTS. For comparison, we also
pose the finite horizon optimal control problem over every day, assuming perfect prediction of demand.
Employing the results of (Gomes and Horowitz, 2006b), which derives an equivalent LP reformulation
of the optimal control problem, we can compute the optimal trajectories. We are interested in two main
questions:

• How often are the (local) optimality conditions violated, i.e., how often are cells restrictive in the
sense of Definition 2.2.1, over the course of each day?

• How do the travel times under best-effort control compare to the theoretical best-case under pre-
dictive optimal control?

Performance To establish a baseline for the maximal potential improvement possible, we first com-
pare the open-loop performance, i.e., TTS without ramp metering, to the globally optimal solution. We
then analyze the trajectories obtained for best effort control, with particular emphasis on how often cells
behave restrictive and therefore, not optimal, and the differences in TTS between best-effort control and
the globally optimal solution.

Congestion patterns for a typical day (14.04.2014) are presented in Figure 2.29, for the uncontrolled
freeway and for the freeway under ramp metering. The complete results are summarized in Figure 2.31.
It can immediately be seen that (optimal) ramp metering indeed reduces TTS in most instances. This
is achieved by a reduction in congestion and the spill back thereof, thus increasing the outflows from
the offramps. On certain days, no improvement can be achieved by ramp metering. These days are
characterized by a low traffic demand, as it is typically encountered on weekends. From real traffic data,
one can verify that even the uncontrolled freeway typically does not become congested on these days,
so obviously no ramp metering is the best policy.

To quantify the benefits of ramp metering, we relate the savings in TTS to the TTS itself, over all
days and obtain average savings of

TTSnoControl − TTSoptimal
TTSnoControl

≈ 5.38%.

A large part of total TTS is caused by vehicles traveling at free-flow velocity, for which ramp metering
does not provide any benefits. Therefore, we chose a second metric and compare the savings in TTS to
the total time wasted in congestion and in onramp queues. To this end, we define the TFT (Total free-
flow time) as the TTS achieved for a hypothetical freeway in which all cars instantly enter the mainline
after arriving on an onramp and always travel at free-flow speed on the freeway itself. The relative
savings in terms of time wasted in congestion and on onramp queues, over all days, amount to

TTSnoControl − TTSoptimal
TTSnoControl − TFT

≈ 17.71%.

We note that these numbers are similar to the ones reported in (Gomes and Horowitz, 2006b).
We now simulate the system using the best-effort controller. In a first step, we verify for every cell

with an adjacent onramp and every time step if the cell is nonrestrictive according to Definition 2.2.1. It
6Data for the full three months are available, however, data from many days are incomplete due to sensor failures. To ensure

representative performance evaluation, only weeks for which data are complete for all sensors at days of the respective week
are chosen for the case-study.
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turns out that most cells are nonrestrictive for most of the timesteps. More precisely, the day on which
violations most often occur is April 09th on which some cells are restrictive at less than 0.4% of all
sampling time instances. We use April 14th, 2014 in order to visualize typical traffic patterns for the
freeway controlled by ramp metering. In particular, we highlight several time intervals in which an
increase in traffic demand occurs and outline if the optimality conditions for the best-effort controller
are satisfied or violated (Figure 2.30).

The example depicts the evolution of the traffic density in cell 4 and the evolution of the queue
length at the adjacent onramp. The morning and the evening rush hour periods are easily visible from
the data. Outside of these rush hour periods, cell 4 operates in free-flow and there is no onramp queue,
which means that the cell is nonrestrictive. The figure also provides a detailed depiction of the rush
hour periods. The intervals in which cell 4 is nonrestrictive are highlighted (A,B,C). However, there
exists a time interval D during which the mainline becomes congested, while the onramp queue is not
completely filled yet. Note that this example was specifically chosen to depict a situation during which a
cell becomes restrictive. According to Figure 2.30a the traffic demand at the onramp at cell 4 originates
from the same roundabout as the traffic demand at the next downstream onramp (cell 5). Therefore, the
traffic demand is low at both onramps (in comparison to other onramps on the freeway). Thus it takes
longer to fill up the onramp queues and cells 4 and 5 are more likely to become restrictive than other
cells in this example.

The performance achieved by best-effort control is also depicted in Figure 2.31. We can see that the
performance in terms of the savings in TWT achieved by the best-effort controller is indistinguishable
from the optimal one in a plot scaled according to the absolute values of the savings. A closer look
comparing upper- and lower bounds to the optimal solution reveals that the performance deterioration
of the best-effort controller, which amounts to

max
days

{
TTSbestEffort − TTSoptimal

TTSoptimal

}
≈ 0.178%

in terms of the time wasted in congestion, is worst on May 13th, 2014. Since the optimality of the
best-effort controller depends on the ability of the controller to keep the freeway nonrestrictive, bounds
on suboptimality in case of failure to do so are of interest. For a given initial state and demand profile,
one can use Corollary 2.2.1 to compute a lower bound on the TTS. Recall that the range of admissible
ramp metering rates rk(t), depending on the demand wk(t) and the queue length qk(t) is given as

min

{
0,

1

∆t
(q̄k − qk(t)) + wk(t)

}
≤ rk(t) ≤ min

{
r̄k,

1

∆t
qk(t) + wk(t)

}
,

i.e., the ramp metering rate is constrained by constraints on the queue length and fix bounds on the
metering rate. For the purpose of deriving a lower bound, one can formulate a relaxed minimal TTS
problem starting from the main problem (2.61), in which the constant bounds on the ramp metering
rates are removed. Employing Corollary 2.2.1, we find that the solution to this problem can be obtained
efficiently by simulating the system for the given demand pattern, using the best-effort controller.

Conversely, an upper bound on the optimal TTS can be computed efficiently by simulating the
best-effort controller and respecting all bounds on the metering rates by saturating the control actions
accordingly.

It turns out that by using only these inexpensive simulations to compute upper and lower bounds,
we can verify a posteriori that the suboptimality is smaller than 0.2%, without the need to compute the
optimal solution exactly, i.e., solve a (potentially expensive) optimization problem.
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(a) Map of the onramp at cell 4 of the Rocade
Sud, Grenoble. Note that the onramp is very
close to a second onramp, leading to cell 5.
Map data c©2015 Google

Symbol
in Figure
2.30c

Density
range

Queue
length range

Cell k non-
restrictive?

A ρk ≤ ρck qk = 0 Yes
B ρk = ρck 0 ≤ qk ≤ q̄k Yes
C ρck ≤ ρk qk = q̄k Yes
D ρck < ρk 0 < qk Frequently

not

(b) Legend to identify time intervals in which the optimality
conditions are satisfied (A,B,C) and most likely violated (D).
Note that the conditions for classifying a period in group D,
i.e., ρck < ρk and 0 < qk, are not sufficient for a cell being
restrictive, in particular if the critical density is only slightly
exceeded, as illustrated in Example 2.2.3.
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(c) Evolution of traffic density in cell 4 and the queue lengths of the adjacent onramp on April 14th, 2014.

Figure 2.30: Partial simulation results of the Rocade Sud, using the traffic demand of April 14th, 2014.
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Figure 2.31: Summary of the TTS achieved by the various controllers, for every day of our case study. In the upper plot,
the savings in TTS in relation to the total time in congestion for the uncontrolled freeway (second metric) are depicted. For
all days, the performance achieved by local feedback is indistinguishable from the performance of the optimal ramp metering
strategy. ALIENA comes close most of the times. On weekends, highlighted in grey, ramp metering does not provide any
benefits. In the second plot, we chose a much smaller scale to depict the suboptimality of local feedback, serving as an upper
bound, to the optimal TTS (normalized to zero). The performance deterioration is consistently in the range of fractions of
percent. We also plot the lower bound on TTS, computed by relaxing the ramp metering constraints, which is even closer to
the optimum.
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Comparision with ALINEA To demonstrate that the theoretical conclusions drawn from the analysis
of the best-effort controller indeed extend to practically relevant ramp metering policies, we compare
it numerically to ALINEA (Papageorgiou et al., 1991), a popular decentralized ramp metering policy.
ALINEA in its basic form consists of local, anti-windup integral feedback controllers. The metering
rates are first computed as integral feedback

r̃k(t) := rk(t− 1) +KI · (ρck − ρk(t))

in which KI := 70/(ρck · ∆t) is the integral gain recommended in (Papageorgiou et al., 1991). Then,
they are saturated

rk(t) = [r̃k(t)]
min{r̄k, 1

∆t
qk(t)+dk(t)}

max{0, 1
∆t

(qk(t)−q̄k)+dk(t)} (2.68)

in the same way as for the local feedback controller. There exists a variety of extensions to this ba-
sic controller (Papamichail and Papageorgiou, 2008; Smaragdis et al., 2004; Wang et al., 2014), that
introduce coordination between ramps or permit use of different sensor configurations. The standard
ALINEA controller requires only the critical density as a model parameter. Instead of using model
knowledge to estimate and predict traffic demand and supply, this controller uses integral feedback to
converge asymptotically to the optimal metering rates in the equilibrium, for constant boundary condi-
tions (Schmitt et al., 2015).

Comparing the TTS achieved by the best-effort controller to the freeway controlled by the basic
version of ALINEA, we find that the performance deteriorates only slightly, with an average loss of

TTSalinea − TTSoptimal
TTSoptimal

= 0.43%

in terms of TTS. A detailed comparison between the TTS achieved by the best-effort controller and
ALINEA is also provided in Figure 2.31. Indeed, for most cases both controllers not only show com-
parable performance but also show very similar trajectories (see Figure 2.32). Note that in the top-most
figure which depicts the entire rush hour period, differences between the evolution of the densities are
hardly visible. They can best be recognized at time intervals during which the controllers do not sat-
urate, i.e., when the density is stabilized at (or close to) the critical density. Here, the lack of perfect
model information in ALINEA becomes evident. Changes in upstream- and downstream mainline flow
act as disturbances and induce small oscillations in the ALINEA controlled system. By contrast, the
best-effort controller law is assumed to have perfect model knowledge and keeps the density exactly at
the critical density.

The similarity of the trajectories for both controllers suggests that we can indeed draw conclusions
about the behavior of practical ramp metering strategies from our theoretical analysis. In this sense, one
should view the slight performance deterioration of ALINEA in comparison to best-effort control as the
price one has to pay for not exactly knowing the fundamental diagram in reality.

Conclusions

In this work, we have derived sufficient optimality conditions for minimal TTS ramp metering for the
monotonic CTM. Based on the analysis, we have defined a suitable distributed, non-predictive feedback
controller motivated as a one-step-ahead maximization of local traffic flows. In simulations using real-
world parameters and traffic demands, we demonstrated that the freeway is nonrestrictive most of the
time and the controller achieves almost optimal performance. For the sake of keeping the theoretical
analysis tractable, we assumed perfect model knowledge which was subsequently used to counteract the
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Figure 2.32: Comparison between the closed-loop trajectories of the local feedback controller and ALINEA for cell 4 during
the morning rush hour period of April 14th, 2014. This is the same time interval also depicted in Figure 2.30, although we
focus on the density in this graph.

model dynamics in the best-effort controller. This assumption is certainly not satisfied in practice and
traffic models are typically subject to large uncertainties. However, we demonstrated that the behavior
of our proposed controller is very close to that of ALINEA which uses feedback to mitigate the lack
of exact model knowledge. Therefore we have verified that our analysis indeed extends to practically
successful ramp metering schemes.

We highlight again, that as long as the cells are nonrestrictive, the best-effort controller is optimal
and in the CTM framework used in this work, no additional benefit can be realized either by coordi-
nation between the ramps or prediction of the traffic demand. The fact that space on the onramps is
limited according to constraint (2.58) does not make coordination between ramps desirable, though it
does make ramp metering less effective, of course. In addition, the numerical studies in Section 2.3.1
reveal that the conditions for cells being nonrestrictive are satisfied most of the time for a case study
using realistic freeway parameters and traffic demands. We achieve results comparable to the global
optimal solution with very limited information exchange (only densities of adjacent cells) and without
any coordination between the ramps at all. These considerations provide a theoretical explanation for
part of the conclusions drawn from practical experience and heuristic considerations in (Papamichail
et al., 2010a).

However, they seem to contradict other practical experience reported in (Papamichail et al., 2010a),
which that suggests that“limited ramp storage space and the requirement of equity . . . are the main rea-
sons for coordinated ramp metering”. We can resolve this seeming contradiction by recalling that the
results on global optimality apply to the monotonic CTM. In practice, there is empirical evidence of a
capacity drop at a congested bottleneck. This effect is usually represented by higher-order model such as
MetaNet (Messner and Papageorgiou, 1990), but can also be approximated in a modified CTM (Karafyl-
lis et al., 2016) by allowing for non-monotonic demand functions, which (slightly) decrease for densities
larger than the critical density as depicted in Figure 2.24c. A congestion in such a model will reduce the
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bottleneck flow and subsequently decrease densities further downstream, which shows that the dynamic
system is no longer monotonic. In a non-monotonic setting, an incentive exists to prevent congestion of
a bottleneck, even if there is no danger of spill back of the congestion queue. An important conclusion
about the potential benefits of coordinated ramp metering can be drawn from this analysis: coordinated
ramp metering may target inefficiencies that result from limited space on the onramps in conjunction
with the nonmonotonic behavior of a congested bottleneck. Any model-based, coordinated ramp meter-
ing strategy therefore must employ a model that is able to reproduce this effect, in order to recognize and
avoid it. For example, model-predictive control based on the monotonic CTM and a maximize-TTD or
minimize-TTS objective is unlikely to provide any improvements over the presented distributed strategy
at all. A heuristic targeting the nonmonotonic effects, such as the addition of a penalty term for the
congested region, may serve the same purpose.

Based on these results, two main future research directions seem promising: First, an a-priori quan-
tification of the suboptimality incurred because of infrequent violation of the optimality conditions or
because of uncertainty in the knowledge of the fundamental diagram would be helpful. Theoretical
bounds on the suboptimality in the presence of a general, not necessarily monotonic CTM would be
very helpful, but since no convex reformulation or other efficient, global solution methods for optimal
control problems involving the nonmonotonic CTM exist, it is questionable, whether tight bounds can
be derived. Instead, the known results on the impact of nonmonotonic behavior can now be used to
design control laws for nonmonotonic, realistic freeway models in a more systematic manner by starting
from the optimal solution for the monotonic case and specifically targeting the nonmonotonicities with
modifications to this baseline control strategy.
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2.2.2 Optimal Steady-State Operation
M.Schmitt, C. Ramesh, P. Goulart, J. Lygeros

We consider a special class of monotone systems for which the system equations are also convex in
both the state and the input. For such systems, we study optimal infinite horizon operation, with respect
to an objective function that is also monotone and convex. The main results states that, under some
technical assumptions, these systems are optimally operated at steady state, i.e. there does not exist a
trajectory over an infinite horizon that outperforms stabilizing the system in the optimal equilibrium. We
draw a connection to recent results on dissipative systems in the context of Economic Model Predictive
Control, where systems that are optimally operated at steady state have already been studied. Finally,
we apply the main result to a problem in traffic control, where we are able to disprove the existence of
improving periodic trajectories involving the alternation of congestion and free flow for freeway ramp
metering.

Introduction

In this work, we consider a special class of nonlinear, monotone systems. Monotone systems are sys-
tems for which trajectories preserve a partial ordering on the states Angeli and Sontag (2003); Hirsch
and Smith (2005); Hirsch et al. (2005), a fact that is favorable for controller design and has recently been
exploited in a series of papers Rantzer et al. (2013); Ito et al. (2014); Dirr et al. (2015). Even stronger
results can be obtained for positive systems, that is, systems that are not just monotone, but also linear
Rantzer (2015); Colombino and Smith (2014, 2015). Here, we consider the more general class of nonlin-
ear, state-monotone systems, whose system equations are jointly convex in state and input. For so-called
convex-monotone systems Rantzer and Bernhardsson (2014), certain control tasks which are difficult for
general, nonlinear systems are in fact tractable. Most significantly, it has been shown that trajectories of
convex, monotone systems are convex in the control inputs, which makes certain optimization problems
over trajectories tractable Rantzer and Bernhardsson (2014).

We study the problem of optimal average, infinite horizon control of convex, state-monotone sys-
tems with respect to a convex, state-monotone cost, in the absence of any noise or disturbances and
assuming perfect knowledge of state and system dynamics. For controllable, linear systems and radially
unbounded, convex objectives, such a trajectory planning problem is not very challenging since there
exists an optimal (minimal cost) equilibrium and any controller that stabilizes the system to this equilib-
rium achieves optimal average, infinite horizon cost. However, this question is not as simple for general,
nonlinear systems. In particular, the optimal operation of systems for which the costs represent actual,
economic performance criteria like operation costs, production output or throughput of some commod-
ity through a network, is studied in the context of Ecomonic Model Predictive Control (MPC) Ellis et al.
(2014); Angeli et al. (2012). Depending on the system, the optimal operation might very well involve
the system repeating a cycle Grüne and Zanon (2014); Müller et al. (2015a). Therefore, the question of
which systems are optimally operated at steady state, that is, systems for which there does not exist a
periodic (or a nonperiodic) trajectory improving average infinite horizon cost over the cost incurred in
the optimal equilibrium, is of importance. It has been shown that, under some technical assumptions, the
class of systems that are optimally operated at steady-state is exactly the class of systems that are dissi-
pative with respect to a particular storage function Müller et al. (2015b). However, finding a certificate
that a particular system is dissipative is difficult. The main result of this work is to show that convex,
state-monotone systems are optimally operated at steady state.

We apply this theoretical result to the problem of freeway ramp metering. Ramp metering refers
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to the active control of the inflow of cars on a freeway via the onramps, by means of traffic lights
Papageorgiou et al. (2003); Papageorgiou and Kotsialos (2000). We consider a (quasi-) steady-state
situation as in Schmitt et al. (2015), in which the traffic demand cannot be completely served, a common
occurence during rush-hour periods. Using our theoretical results, we can prove that for the commonly
used monotone Cell Transmission Model (CTM) Daganzo (1994b); Gomes and Horowitz (2006b), there
does not exist a control policy that improves average demand satisfaction over the one achieved in the
optimal equilibrium. This answers a question posed in Gomes et al. (2008) regarding the possibility to
improve throughput by using time varying trajectories involving the alternation of congestion and free
flow periods.

The problem description is formalized next in Section 2.2.2. The theoretical results are derived in
Section 2.2.2. In Section 2.3.1, we apply the results to the ramp metering case and we provide concluding
remarks in Section 4.

We will use the following notation: All inequalities that involve vectors are to be understood component-
wise. We use subscripts to index components of a vector or elements of a scalar-valued sequence, that is,
xk ∈ R can denote the kth component of a vector or the kth element of a sequence. We exclusively con-
sider systems in discrete time t ∈ Z+

0 and for quantities that evolve over time, like the state of a system,
we write x(t). For a given discrete-time system and the input sequence u = (u(0), u(1), . . . , u(T − 1))
of finite or infinite length, we denote the system trajectory for the input u starting at x(0) as xu(t, x(0)),
if we want to emphasize that it is valid trajectory. If we are interested in the value at a particular time t,
we also use shorthand notation x(t) = xu(t, x(0)). The average cost over any finite trajectory will be
denoted c (xu(t, x(0))) := 1

T

∑T−1
t=0 c (x(t), u(t)).

Problem statement

Consider a nonlinear, discrete time dynamical system with state x(t) ∈ X ⊆ Rn and input u(t) ∈ U ⊆
Rm given as

x(t+ 1) = f(x(t), u(t)). (2.69)

with f : X× U→ X. In this work, we study systems with convex and monotone dynamics:

Definition 2.2.2. A system is state-monotone if the system equations f : X × U → Rn are component-
wise nondecreasing in the state, i.e. in its first n arguments. A system is convex if the system equations
f(x, u) are jointly continuous and jointly convex in x and u and the sets X and U are closed and convex.
We write convex, state-monotone (CSM) system for systems that satisfy both properties.

The standard definition of a monotone system as used in Angeli and Sontag (2003); Hirsch and Smith
(2005); Hirsch et al. (2005) is equivalent to the system equation f being component-wise nondecreasing
in all its arguments, whereas we only require monotonicity in the states. In that sense, our problem
setup is a generalization of the notion of convex-monotone systems, as introduced recently in Rantzer
and Bernhardsson (2014).

We will analyze the performance of controlling CSM systems with respect to the minimization
of a lower-semicontinuous CSM cost c : X × U → R ∪ {+∞}. The definition of a CSM cost is
analogous to Definition 2.2.2, except that the cost may become infinite and therefore, we only require
lower semicontinuity instead of continuity.

Assumption 2.2.2. We assume that sets X and U and the cost function c satisfy the following conditions:

(i) The set X is contained in a translation of the positive cone: X ⊆ Rn+ − {x} for some finite x.

(ii) The set X is positively control invariant for all u ∈ U.
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(iii) The set U is compact.

(iv) The cost is unbounded in positive directions, that is, for every c ≥ 0, there exists x̄ such that for
every x : x ≥ x̄, it follows that c(x, u) ≥ c (∀u ∈ U).

(v) The minimum c∗ = min
x∈X, u∈U

c(x, u) s.t. x = f(x, u) is attained.

Under assumption (v), there exists a (potentially non-unique) minimizer (x∗, u∗) = argmin
x∈X, u∈U

c(x, u) s.t. x =

f(x, u) that we will call the optimal equilibrium. Conditions (i,ii,iii,iv) imply that that there do not exist
cost-optimal trajectories for which certain states diverge. In practice, divergence of the states is hardly
ever a desired outcome7. These conditions can be relaxed in certain cases, for example, control invari-
ance is not necessary if the system is exponentially stable and the cost on actuation is “sufficiently large”.
Also, conditions (i,iv) can be omitted if X is compact.

In Section 2.2.2, we show that the systems of interest are in fact dissipative with respect to a specific
supply function and that this is a crucial property to explain optimal operation of the systems in infinite
horizon. The literature on dissipative systems, e.g. Müller et al. (2015a); Angeli et al. (2012), provides
different sets of criteria for determining when dissipativity of a system is equivalent to the system being
optimally operated at steady state and parts of these criteria are interchangeable with the ones presented
here.

Theory

We seek to compare the long-term performance achievable by stabilizing the system at the optimal
equilibrium with the minimal infinite horizon average cost of any feasible trajectory. To this end, we
first need to show an intermediate result that will be helpful in constructing cost-efficient equilibria.

Lemma 2.2.6. Given a CSM system with CSM cost satisfying Assumption 2.2.2, assume there exists
x ∈ X and u ∈ U such that x ≥ f(x, u). Then, there exists an equilibrium x′ = f(x′, u′), x′ ∈ X,
u′ ∈ U with c(x′, u′) ≤ c(x, u).

Proof. Consider the fixed point iteration

x(t+ 1) = f(x(t), u) , x(0) := x.

From the inequality above, we know that x(1) = f(x, u) ≤ x(0) = x. Because of monotonicity of
the system, we can conclude that x(t + 1) ≤ x(t) inductively. The iterates x(t) can be interpreted
as the system trajectory xu(t, x(0)) for constant control inputs u ∈ U. By Assumption 2.2.2, the set
X is positively control invariant and any x(t) ∈ X is bounded below by x ≤ x(t). Boundedness and
monotonicity of the sequence imply that the fixed point iteration converges to some x∞ = f(x∞, u).
Note that x∞ ∈ X because X is closed and furthermore, x∞ ≤ x which implies, by monotonicity of the
objective in the states, that c(x∞, u) ≤ c(x, u).

Using this intermediate result, we first restrict our attention to periodic trajectories. If a finite trajec-
tory returns to the initial state, i.e. xu(T, x(0)) = x(0), we call it a cycle. The following result shows
how to construct improving equilibria from cycles.

7Note that the assumption of radially unbounded state costs, which is often invoked to exclude such a behavior, is not
suitable in this case, because of the assumption of monotonicity of the cost in the states.
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Theorem 2.2.2. Let f be a CSM system with c a CSM cost satisfying Assumption 2.2.2. The average
cost of any cycle xu(t, x(0)) of finite, but arbitrary length T is lower bounded by the cost in the optimal
equilibrium.

Proof. For notational convenience, let us define the average state x̄ := 1
T

∑T−1
t=0 xu(t, x(0)) and average

input ū := 1
T

∑T−1
t=0 u(t) over the cycle. Then

x̄ =
1

T

T−1∑

t=0

xu(t, x(0)) =
1

T

T∑

t=1

xu(t, x(0))

=

T−1∑

t=0

1

T
f (xu(t, x(0)), u(t)) ≥ f (x̄, ū)

by convexity of f . Moreover, by convexity of c

c̄ := c (xu(t, x(0))) ≥ c(x̄, ū).

Now, Lemma 2.2.6 implies the existence of a feasible equilibrium x′, u′ improving over the cost of
the average state and input c(x′, u′) ≤ c(x̄, ū). Hence c(x′, u′) ≤ c(x̄, ū) ≤ c̄, which is the desired
result.

Note that this result does not require Assumption 2.2.2 (iv). In a next step, we show that the system is
optimally operated at steady-state, that is, that the average infinite horizon cost of any feasible trajectory
is lower bounded by the cost in the optimal equilibrium. To do so, let us first introduce the set of all
feasible state-action pairs that lead to an (incremental) cost that is less than or equal to the cost incurred
in the optimal equilibrium:

Yc∗ := {(x, u) ∈ X× U : c(x, u) ≤ c∗}

Also, the following technical lemmas will be useful:

Lemma 2.2.7. The set Yc∗ is compact.

Lemma 2.2.8. For any infinite sequence c with

c̄ := lim inf
T→∞

1

T
·
T−1∑

t=0

c(t) = c∗ − δ < c∗

and δ > 0, there exists a subsequence with indices T := (t1, t2, t3, . . . ) such that for all k ∈ Z+

(i) c(tk) ≤ c∗ and

(ii) 1
tk+1−tk ·

∑tk+1−1
τ=tk

c(τ) ≤ c∗ − δ
2 .

The proofs are provided in Schmitt et al. (2016a). We are now ready to state the main result:

Theorem 2.2.3. CSM systems with CSM objectives satisfying Assumption 2.2.2 are optimally operated
at steady-state, that is, the minimum average infinite horizon cost achievable is equal to the cost in any
optimal equilibrium

c∗∞ := inf
x(0),u

lim inf
T→∞

c (xu(t, x(0))) = c∗
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Proof. By definition, c∗∞ ≤ c∗. Assume for the sake of contradiction that there exists an initial state
x(0) ∈ X and a sequence u(t) ∈ U, such that

inf
x(0),u

lim inf
T→∞

c (xu(t, x(0))) = c∗ − δ < c∗

for some δ > 0. The proof relies on partitioning the trajectory into suitable segments, such that the
system converges towards a limit point at the end of each of these intervals. Then, a procedure to
construct an improving equilibrium from the trajectory during these intervals similar to the proof of
Theorem 2.2.2 is described.

Consider the sequence c = (c(x(0), u(0)), c(x(1), u(1), . . . ) and let T := (t1, t2, t3, . . . ) be a se-
quence of indices in accordance with Lemma 2.2.8. Since Yc∗ is compact, the sequence (x(tk), u(tk))
has a limit point (x∞, u∞) ∈ Yc∗ . Therefore, one can define new time indices S := {s1, s2, s3, . . . } ⊆
T such that x(sk)

k→∞−→ x∞. These new indices induce a partition of the time into segments {sk, . . . , sk+1−
1} and we will study the average state and input over each of these segments:

x̄(k) :=
1

sk+1 − sk
·
sk+1−1∑

τ=sk

x(τ),

ū(k) :=
1

sk+1 − sk
·
sk+1−1∑

τ=sk

u(τ).

Because of convexity of the cost function c and Lemma 2.2.8, it follows that

c(x̄(k), ū(k)) ≤ 1

sk+1 − sk
·
sk+1−1∑

τ=sk

c(x(τ), u(τ)) ≤ c∗ − δ

2
(2.70)

and therefore, (x̄(k), ū(k)) ∈ Yc∗ . Summing over each interval {sk, . . . , sk+1 − 1}, we find

x̄(k) =
1

sk+1 − sk
·
sk+1−1∑

τ=sk

x(τ)

=
x(sk)− x(sk+1)

sk+1 − sk
+

1

sk+1 − sk
·

sk+1∑

τ=sk+1

x(τ)

=
x(sk)− x(sk+1)

sk+1 − sk
+

1

sk+1 − sk
·
sk+1−1∑

τ=sk

f (x(τ), u(τ)) .

Using εk := (x(sk)− x(sk+1))/(sk+1 − sk) and convexity of the system equations,

x̄(k) = εk +
1

sk+1 − sk
·
sk+1−1∑

τ=sk

f (x(τ), u(τ))

≥ εk + f (x̄(k), ū(k))

(2.71)

Again, since Yc∗ is compact and (x̄(k), ū(k)) ∈ Yc∗ , it follows that the sequence (x̄(k), ū(k)) has a limit
point (x̄∞, ū∞) ∈ Yc∗ . Therefore, one can yet again define new indices K := {k1, k2, k3, . . . } ⊆ Z+

0

such that x̄(ki)
i→∞−→ x̄∞.
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Taking the limit as all indices go to infinity we note that x(sk)
k→∞−→ x∞, x̄(ki)

i→∞−→ x̄∞ and

εk
k→∞−→ 0. It follows that (x̄(ki), ū(ki))

i→∞−→ (x̄∞, ū∞) ∈ Yc∗ . In the limit, equation (2.71) turns into

x̄∞ ≥ f (x̄∞, ū∞)

Now, Lemma 2.2.6 implies the existence of an equilibrium x′, u′ improving over the cost c(x̄∞, ū∞),
i.e. c(x′, u′) ≤ c (x̄∞, ū∞). Using the bound derived in (2.70), it follows that

c(x′, u′) ≤ lim
k→∞

c (x̄(k), ū(k)) ≤ c∗ − δ

2

which contradicts the initial assumption that c∗ is the cost incurred in the optimal equilibrium and there-
fore completes the proof.

In the context of economic MPC Ellis et al. (2014); Angeli et al. (2012); Grüne and Zanon (2014);
Müller et al. (2015a), systems that are optimally operated at steady-state have been of particular interest
and a connection between these systems and dissipative systems has been established: A system (2.69)
is dissipative on a set X × U ⊂ Rn+m with respect to the supply rate s : X × U → R if there exists a
storage function λ : X→ R+

0 such that

λ(f(x, u))− λ(x) ≤ s(x, u) ∀(x, u) ∈ X× U.

In fact, by combining results from Angeli et al. (2012); Müller et al. (2015b,a) it has been shown
that under some technical assumptions (closely related to Assumption 2.2.2), dissipativity with respect
to the supply rate s(x, u) = c(x, u)− c∗ is a necessary and sufficient condition for optimal steady state
operation. From Theorem 2.2.3, it therefore immediately follows:

Corollary 2.2.2. Let system (2.69) be a CSM system and c(x, u) a CSM cost, satisfying Assumption
2.2.2. Then, system (2.69) is dissipative on X×U with respect to the supply rate s(x, u) = c(x, u)− c∗.

Before proceeding to an application of our main result, it is worth studying the applicability and
limitations of the results. Recall, that in contrast to the general definition of a monotone system, we do
not require monotonicity of the system dynamics in the control inputs. On the other hand, the standard
definition of monotone systems is only concerned with the system dynamics, but not the objective,
whereas we restrict ourselves to control objectives that are monotone in the state. In fact, quadratic
objectives of the form ||x(t) − x∗||2Q with Q � 0 and x∗ being the desired steady state are a common
choice in control. But if the state is not constrained to x(t) ≥ x∗, such an objective is not monotone in
the state and the presented results do not apply as demonstrated by the following counterexample.

Example 2.2.4. Consider the system with state x ∈ R2
+ and input u ∈ [0, 2] with system dynamics

x(t+ 1) =

(
u

x1(t)2

)

and cost

c(x(t), u(t)) :=

∥∥∥∥x(t)−
(

0
1

)∥∥∥∥
2

It is easy to verify that the system dynamics are CSM (in X × U) and that the cost is convex, but not
monotone in the state. We can parametrize all equilibria as x1 = u, x2 = u2 with steady state costs
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(a) Freeway topology with traffic flows (b) Fundamental diagram

Figure 2.33: In the CTM, a freeway is modeled by a combination of conservation equations according to the freeway topology
with on- and offramps, as depicted on the left and the fundamental diagram, which characterizes the flow as a function of the
densities of upstream and downstream cells, as depicted on the right.

of
√
u2 + (1− u2)2 ≥

√
3

2 . But the cycle xu(t, x(0)) with x(0) = (1 0)>, u(0) = 0 and u(1) = 1
achieves a better average cost of

c (xu(t, x(0))) =
1

2

(√
1 + 1 + 0

)
=

√
2

2
<

√
3

2

Therefore, this system is optimally operated off steady state.

A second counterexample illustrates the role of the state constraints in potentially causing a system
to not be optimally operated in steady state.

Example 2.2.5. Consider the system with state x ∈ R2
+ and input u ∈ [0, 4]2 with system dynamics

x(t+ 1) = x(t) +

(
−2 + u1(t)2

−2 + u2(t)2

)
,

and cost

c(x(t), u(t)) := ‖u(t)‖1 .

It is easy to verify that this is a CSM system with a CSM cost. However, note that the set X is not
control invariant and therefore violates Assumption 2.2.2. Any equilibrium requires u1 = u2 =

√
2 with

steady-state cost c(x, u) = 2 ·
√

2. But the cycle xu(t, x(0)) with x(0) = (4 0)>, u(0) = (0, 2)> and
u(1) = (2, 0)> achieves the average cost of

c (xu (t, x(0))) =
2 + 2

2
= 2

Therefore, this system is optimally operated off steady-state. Without state constraints, the cost optimal
trajectory makes the system diverge.

Application

We consider the problem of freeway ramp metering Papageorgiou et al. (2003); Papageorgiou and Kot-
sialos (2000), for a single freeway with its dynamics given by the asymmetric, monotone Cell Transmis-
sion Model (CTM) Daganzo (1994b); Gomes and Horowitz (2006b). In the CTM, the freeway is parti-
tioned into cells of length lk. The state of the mainline is described by the traffic density ρk(t) of cell k
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at time t, i.e. the number of cars per length in each cell. The density is constrained to 0 ≤ ρk(t) ≤ ρ̄k,
with the jam density ρ̄k. The density evolves over time according to the conservation equation

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + rk(t)−

1

β̄k
φk(t)

)
.

Here, the mainline flows are denoted as φk(t) and the metering rates as rk(t). The metering rates are
equivalent to the inflow to the freeway from the onramps.

The CTM models the flow φk(t) as a function of the traffic densities, which is represented by the
so-called fundamental diagram, depicted in Figure 2.33b. The fundamental diagram for each cell can
be decomposed in the concave, monotone nondecreasing traffic demand dk(ρk(t)), i.e. the number
of cars that seek to travel downstream, and the concave, monotone nonincreasing supply of free space
sk(ρk(t)) in a cell. The flow φk(t) is then given as the minimum of upstream demand and downstream
supply φk = min {dk(ρk(t)), sk+1(ρk+1(t))}. The equations are slightly adapted for the first φ0(t) =
min{d0, s1(ρ1(t))} and last cell φn(t) = dn(ρn(t)). Here, d0 is a constant, external traffic demand.
We make the assumption of constant split ratios, which means that the outflows from the offramps are
modeled as percentages βk (often called the split ratios) of the mainline flows at the offramp in cell k.
For notational convenience, we also use β̄k := 1− βk.

The metering rates rk(t) are obviously limited by the traffic demand r̄k at the respective onramp
rk(t) ≤ r̄k. The external demands r̄k are assumed to be constant, since we are ultimately interested in a
(quasi-) steady state setting. We also allow for a lower bound rk ≤ rk(t) modeling a minimal flow that
has to be admitted at all times.
We seek to maximize the (average) demand served, given as a nonnegative, linear combination of the
cars admitted to enter the freeway c>r(t), c ≥ 0. This is equivalent to minimizing c(ρ(t), r(t)) :=
−c>r(t). We note that the Total Travel Distance (TTD), commonly used as a short-term objective in
ramp metering, is in fact equivalent to using the demand served as the objective in any equilibrium
of the CTM. This is because the equilibrium flows can be expressed in terms of the metering rates as
φk = β̄1..kd0 +

∑k
i=1 β̄i..krk, with β̄i..k :=

∏k
j=i β̄i, because of the conservation equations and vice

versa. The same holds if the infinite horizon average case is considered, because of the finite storage
capacity of the freeway.

It has been shown that for concave demand functions dk(·) and concave supply functions sk(·), finite
horizon optimal control problems can be cast as convex optimization problems Gomes and Horowitz
(2006b). It has also been shown that monotonicity of the systems equations plays a role in this Gomes
et al. (2008). However, this observation also raised the possibility of the existence of a “free-lunch
opportunity” in ramp metering for constant boundary conditions, wherein throughput is improved by
repeating a congestion-decongestion cycle.

The theory for CSM systems now allows us to refute such a result:

Corollary 2.2.3. There does not exist a periodic or aperiodic trajectory that improves infinite horizon
average demand satisfaction in the monotone CTM over the optimal equilibrium, i.e.

inf
ρ(0),r

lim inf
T→∞

c(ρr(t, ρ(0))) =





min c(r, ρ)
s.t. ρ = f(ρ, r)

r ≤ r ≤ r̄

Proof. Although the CTM in the presented form is monotone, it is easy to verify that it is not convex.
Therefore, the results cannot be applied immediately. Instead, we study the following relaxation of the
CTM.
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We define a system with state xk(t) and controlled inputs rk(t) and ϕk(t), given by the CSM systems
equation

xk(t+ 1) = xk(t) +
∆t

lk
·

(
ϕk−1(t) + rk(t) +

1

β̄k
max {−dk(xk(t)),−ϕk(t)}

)

with CSM objective

c̃(x(t), r(t), ϕ(t)) = −c>r(t) + χxk(t)≤ρ̄k(t) + χϕk(t)≤sk+1(xk+1(t)).

Here, χA denotes the characteristic function that is zero, if x ∈ A and (positive) infinity otherwise.
Checking convexity and state monotonicity of the objective is straightforward. For the system equations,
note that the demand functions dk(·) is concave, therefore, −dk(·) is convex. Also, the max{·} operator
preserves convexity of its arguments. The feasible state set is chosen as X := Rn+ in accordance with
Assumption 2.2.2 and the compact, convex input set as U := {u(t) = (r(t), ϕ(t)) : rk ≤ rk(t) ≤
r̄k, 0 ≤ ϕk(t) ≤ max{sk+1(0), dk(ρ̄k)}. The bounds on rk(t) are taken from the original model, the
bounds on ϕk(t) are bounds on the range of φk(t) in the original model and are needed to make the
input set U bounded.

In the following, let c∗ denote the cost in an optimal equilibrium of the CTM and c∗∞ the minimal
infinite horizon average cost. We use c̃∗ to denote the cost in an optimal equilibrium of the relaxation
and c̃∗∞ as the minimal infinite horizon average cost in the relaxation. From Theorem 2.2.3, it follows
immediately that the relaxed system is optimally operated in steady state. In comparison to the CTM,
the controlled inputs ϕk replace the flows φk of the original CTM and provide us with additional degrees
of freedom, but any trajectory of the original CTM can be replicated in the relaxed system with the same
costs. Thus, we have that

c∗∞ ≥ c̃∗∞ = c̃∗. (2.72)

It remains to be shown that the cost of the optimal steady state of the relaxed system can also
be achieved by the CTM. To do so, we construct a suitable equilibrium of the CTM starting from an
optimal equilibrium of the relaxation (x∗, r∗, ϕ∗). Note that for every equilibrium min{ϕ∗k, dk(x∗k)} =
β̄k ·

(
ϕ∗k−1 + r∗k

)
. We keep the optimal inflows r∗k and propagate the flows through the freeway

φ∗0 := ϕ∗0 , φ
∗
k+1 := β̄k+1

(
φ∗k + r∗k+1

)
≤ ϕ∗k+1

By construction, the flows φ∗ and metering rates r∗ satisfy the conservation equations. We then proceed
by computing the equilibrium densities as

ρ∗k := d−1
k (φ∗k)

with the pseudo-inverse of the demand function defined as d−1
k (φ) := min {ρ : dk(ρ) = φ}. It remains

to be checked that φ∗k ≤ sk(ρ
∗
k). Since φ∗k = dk(ρ

∗
k) ≤ dk(x

∗
k) and by monotonicity of the demand

function, it follows that ρ∗k ≤ x∗k and by monotonicity of the supply function φ∗k ≤ sk+1(x∗k+1) ≤
sk+1(ρ∗k+1), as desired. Therefore, (ρ∗, r∗) is indeed an equilibrium of the original CTM, achieving the
same cost as the equilibrium of the relaxation, since the metering rates have not been modified. This
implies

c̃∗ = c∗ (2.73)

By definition c∗ ≤ c∗∞, and by combining this inequality with equations 2.72 and 2.73, we conclude that

c∗∞ = c̃∗∞ = c̃∗ = c∗.

which completes the proof.
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It shall be noted that the construction of a feasible equilibrium starting from the metering rates
follows the lines of Gomes et al. (2008) which provides a detailed characterization of all equilibria of
the piecewise-affine CTM. The generalization to the monotone CTM studied here is straightforward.

Conclusions

In this work, we have shown that convex, state monotone systems are optimally operated at steady-state.
The question about which systems are optimally operated at steady state has so far mostly arisen in the
context of economic MPC, in which costs are motivated by the actual operating costs/benefits instead
of merely being a tuning tool for the control designer. Identification of classes of (nonlinear) systems
which are optimally operated at steady state helps to facilitate controller design for the systems that fall
into these classes. In particular, any stabilizing controller that makes a convex, state-monotone system
converge to an optimal equilibrium is optimal with respect to the average, infinite horizon costs. Such a
controller may be much easier to design and to certify than an economic MPC that stabilizes (optimal)
cycles.

We applied our theoretical results to a problem in freeway ramp metering, for freeways modeled
by the monotone CTM. By identifying a suitable, convex and state monotone relaxation of the systems
dynamics, we were able to disprove a conjecture about the existence of a “free-lunch opportunity” by
operating the system off steady-state. This result serves to reinforce trust in the CTM as a suitable tool
for modeling freeway traffic since practical experience seems to contradict the existence of improving
cycles for freeway ramp metering.

Based on these results, two main future research directions seem promising: On one hand, efforts
should focus on identifying further classes of systems that are optimally operated at steady state. One the
other hand, even though the importance of exploiting monotonicity and in particular, the combination of
monotonicity and convexity in controller design has been stressed Rantzer (2015), it seems that results
in literature are not fully developed yet.
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2.2.3 One-Step-Ahead Optimal Urban Traffic Control
P. Grandinetti, F. Garin, C. Canudas de Wit

Our contribution to the Real-time event-based decision-making under uncertainty work package consists
in the design of a novel algorithm for optimization of large–scale urban traffic network Grandinetti et al.
(2015b).

The steadily increasing traffic demands have given rise to the need for efficient network operations.
In this sense, traffic lights assume a fundamental role, since they are the major control measure in urban
scenario.

Urban traffic control strategies are classified as fixed–time techniques and model–based algorithms.
The main drawback of the former ones is that their settings are based on historical rather than real–time
data, while the latter ones basic problem is the presence of discrete variables that require exponential
complexity algorithms for a global optimization.

We have instead developed a decision–making scheme that can be implemented via linear opti-
mization, and it is therefore computationally very efficient and scalable. This technique is based on a
dynamical representation of traffic flow inside the newwork.

Traffic flow model

Traffic evolution in time and space is a complex system which strongly affects security and pollution;
hence, effective and easy–to–handle models are needed to represent and control its behaviour.

The scientific community relies on macroscopic models of time–space evolution of the traffic. Such
models describe traffic as a fluid, and are based on a mass conservation law . With respect to microscopic
models, macroscopic ones are preferred due to their simplicity and accuracy in characterizing vehicles’
flows and densities. The Cell Transmission Model (CTM) is an example, widely used, of this kind of
representation.

We have build a model for large signalized traffic network based on the CTM, where flows at inter-
section of roads are regulated by traffic lights, and we have introduced the concept of averaged CTM, a
more effective characterization of the system by means of control purpose. The averaged CTM evolu-
tion, tested in software simulation within a network with 40 roads, results to also have a good precision
in terms of reliability with respect to the actual CTM network, as figure 2.34 shows.

Traffic performance

Traffic behaviour needs to be evaluated and assessed with respect to performance indices properly de-
fined. There exist several metrics in literature to address performance evaluation; we focused on the
following two features:

Service of Demand An urban traffic network is an highly dynamical environment that continously re-
ceives demand from outside. This demand cannot be ignored just to favour the inner quality of
the system, because the external request will end up growing with several undesired effects, due
to the bigger and bigger queues arising outside.

For this reason we define as service of demand the number of vehicles (users) served:

SoD(t) =

∫ t

0
ϕin
r (τ)dτ

D4.3: Decision Making III



2.2. Low-Level Control page 79 of 138

100 200 300 400 500 600 700

5

10

15

20

25

30

35

40

time step

ro
ad

in
de

x
density

(a)

100 200 300 400 500 600 700

time step

density

ρ = 0

ρ = ρmax

(b)

Figure 2.34: Precision of the averaged CTM approved via software simulation. In 2.34a (regarding the actual system) and in
2.34b (regarding the averaged system) each row shows the density of a road evolving in time.

where ϕin
r is the flow at the network boundary which enters in road r. The Service of Demand is

a quantity that we would like to maximize.

Optimization of the infrastructures In urban networks some roads are preferred than others by the
users. The infrastructure holder would like to set traffic lights as to diminish this usage disparity,
to guarantee a more equilibrate diffusion of vehicles, thus reducing hard congestions in main
streets as well as the possibility of accidents.

A standard metric that takes into account this behaviour is the Total Travel Distance, a cumulative
index here defined as:

TTD(t) =

∫ t

0

( ∑

r∈network

ϕr(τ)
)
dτ

where ϕr is the flow inside the road r.

Decision–making strategy

We developed a strategy for deciding the duty cycle to be assigned to the traffic lights using a one–step–
ahead control. The optimization problem we stated can be solved by means of linear programming, and
it is therefore very suitable for practical purpose. The size of the Linear Program scales linearly (O(n))
with the number of cells in the CTM of the road network. Thanks to this efficient optimization we can
set duty cycles periodically, achieving good performance improvements for the two metrics previously
defined. The effectiveness of our algorithm was tested in software simulation and compared to a fixed–
decision strategy.

Representative results are showed in Figure 2.35 and in Table 2.2. Note that:

• Our algorithm achieves good performance regarding the optimization of the infrastructures. Fig-
ure 2.35 shows how far each road’s density is from its best working point ρc, where lighter color
means better performance;

• Table 2.2 gives the quantitative measures of the improvement, which is positive for both the
choosen indices.
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Figure 2.35: Application of the proposed decision–making strategy. Figures 2.35a and 2.35b show the distance from the best
working point (called critical density, ρc) for the system with fixed strategy and with our algorithm, respectively. Lighter color
means better performance.

Table 2.2: Improvement in the network with the proposed control strategy.

Index Improvement (%)

SoD 5.5 (per entering road)
TTD 14.6

.
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(a) Freeway congestion caused by ramp overflow of bottleneck-adjacent ramp.

CoordinationCoordination

(b) Prevention of ramp overflow and hence freeway congestion by ramp coordination.

Figure 2.36: Benefits of coordination exemplified on the example of freeway ramp metering.

2.3 High-Level Coordination

The main objective of the high-level coordination algorithms is to ensure the optimization of a system-
wide performance criterium or control objective. In traffic control, this objective is usually either flow
maximization, maximization of demand satisfaction or travel time minimization. The necessity for
global coordination can be exemplified via an intuitive example from freeway ramp metering. Consider
a freeway segment as depicted in Figure 2.36. Assume furthermore that, during a limited period of
time, the traffic demand exceeds the bottleneck (in red) capacity such that the demand cannot be served
completely. In case of entirely uncoordinated local ramp metering as described in previous sections, the
onramp immediately upstream of the bottleneck will solely attempt to prevent a congestion forming at
the bottleneck. In practice, this situation will usually lead to ramp overflow quickly and a congestion
spreading upstream from the bottleneck is the result as depicted in Figure 2.36a. By contrast, coordina-
tion between the ramps allows to distributed the control burden onto multiple ramps thereby preventing
ramp overflow without causing a congestion on the mainline (Figure 2.36b. A similar case for the need
of coordination can be made in the case of inner-city traffic control, where local maximization of traffic
flows might cause more severe congestion downstream.

The algorithms described in the following sections address both the freeway and the inner-city traf-
fic control scenario. We first (Section 2.3.1) present a case in freeway ramp metering, in which explicit
coordination is not required in order to maximize flows and characterize the local feedback laws that
achieve this. However, this case depends on monotonicity of the freeway traffic dynamics and next
(Section 2.3.2), we present a generic algorithm for model-free learning of coordination patterns in the
presence of disturbances. This algorithms is applied to the case of freeway ramp metering in the presence
of non-monotonic effects and improvements resulting from the coordination are reported. Finally (Sec-
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tion 2.3.3), we consider the inner-city traffic optimal control problem. We pose a global optimization
problem that is then decomposed into local problems similar to the ones described in previous sections.
Then, an iterative coordination scheme is described that allows to approximate the solution to the global
problem by iterating over solving the local problems and resolving conflicts in an averaging step.
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2.3.1 Convergence to Flow-Optimal Equilibria
M. Schmitt, P. Goulart, A. Georghiou, J. Lygeros

We consider the freeway ramp metering problem, based on the Cell Transmission Model. This
work addresses the question of how well distributed control strategies, e.g. local feedback controllers at
every onramp, can maximize the traffic flow asymptotically under time-invariant boundary conditions.
We extend previous results on the structure of steady-state solutions of the Cell Transmission Model
and use them to optimize over the set of equilibria. By using duality arguments, we derive optimality
conditions and show that closed-loop equilibria of certain distributed feedback controllers, in particular
the practically successful “ALINEA” method, are in fact globally optimal.

Introduction

Active traffic control schemes have been established as an effective and practically useful tool to improve
traffic flows on congestion-prone road networks Papageorgiou et al. (2003). This work concentrates on
the freeway ramp metering problem, where we can actively control the number of cars that enter the free-
way using a specific onramp. A survey of ramp metering strategies can be found in Papageorgiou and
Kotsialos (2000). To model the freeway traffic dynamics, we make use of the Cell Transmission Model
(CTM), which was originally derived as a first-order Godunov approximation of the kinematic wave
partial differential equation Daganzo (1994b, 1995). More precisely, we adopt the “asymmetric” CTM
Gomes and Horowitz (2006b); Gomes et al. (2008), which simplifies the model of onramp-mainline
merges in comparison to the originally proposed formulation. Its popularity for model-based control
stems from the simplicity of the model equations, allowing for computationally efficient solutions meth-
ods for optimal control problems Gomes and Horowitz (2006b); Ziliaskopoulos (2000).

A variety of local feedback strategies, i.e., ramp metering controllers that only receive measurements
from sensors in close vicinity of the onramp location, have been described in literature, e.g. Papageorgiou
et al. (1991); Stephanedes (1994); Zhang and Ritchie (1997). These strategies have been shown to
come close to the performance of optimal control strategies in practical applications, even though they
only aim to maximize bottleneck flows locally Smaragdis et al. (2004); Wang et al. (2014). While
it is apparent that such local feedback controllers are far easier to implement and to configure than
centralised, model-based optimal control strategies, it is not obvious why the former tend to come close
in performance to the latter in practice Papamichail et al. (2010b). An explanation is given in Zhang
and Levinson (2004), which explicitly constructs the optimal control strategy for a special case – it
is assumed for example that there are no internal freeway queues – and states that the structure of the
explicit solution “explains why some local metering algorithms [...] are successful – they are really close
to the most-efficient logic.”

In this work, we address the question of how distributed control strategies, such as local feedback
controllers at every onramp, compare to optimal control strategies asymptotically under time-invariant
boundary conditions. The idea to focus on traffic controllers which are only required to achieve con-
vergence to an optimal equilibrium (instead of solving the far more challenging problem of optimizing
the transient behavior) has recently received attention in a series of papers on traffic density balancing
Pisarski and Canudas-de Wit (2012a, 2013, 2012b). It is well known that the problem of maximizing
the flow over the set of equilibria of the CTM can be posed as a linear program (LP). By using dual-
ity arguments, we derive simple optimality conditions for flow-maximizing equilibria. We show that
all closed-loop equilibria of certain local feedback controllers, in particular the practically successful
ALINEA method Papageorgiou et al. (1991), are in fact globally optimal in the idealized CTM.
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Figure 2.37: Sketch of the cell transmission model

The paper is organized as follows: Section 2.3.1 introduces the CTM. In Section 2.3.1, we extend
previous results on the structure of equilibria of the CTM. In Section 2.3.1, we optimize over the set
of equilibria of the CTM and derive optimality conditions. Section 2.3.1 demonstrates the results on a
simple example and Section 4 comments on the main results and discusses practical implications.

Problem formulation

In this section, we motivate and introduce the (asymmetric) Cell Transmission Model (CTM) Gomes
and Horowitz (2006b); Gomes et al. (2008). Throughout this work, we consider a freeway section as
depicted in Figure 2.37. The CTM admits the following intuitive explanation: The freeway is partitioned
into n sections or cells of length lk. The state of the highway is described by the traffic density ρk(t)
in each cell k at sampling time t. Since the CTM is a first order model, the velocity is not part of the
state. The evolution of the traffic is described by the traffic flows φk(t), i.e., the number of cars that
move from cell k to cell k+ 1 in one time interval ∆t. We model the off-ramp flows rk(t) = βk

β̄k
φk(t) as

a proportion of the mainline flow φk(t) with the (constant) split ratios βk and β̄k := 1 − βk. The flow
entering the freeway via an onramp at cell k is denoted uk. The flow entering the considered freeway
section on the mainline is denoted u0. We can thus formulate the conservation law for each cell as:

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + uk(t)−

φk(t)

β̄k

)
.

The road conditions are described by the so-called free-flow velocity vk, the congestion-wave velocity
wk and the jam density ρ̄k. The flows φk(t) are limited by the number of cars in the origin cell that
want to travel downstream (β̄kvkρk(t)), the capacity of the highway Fk and the available free space
((ρ̄k+1 − ρk+1(t))wk+1) in the receiving cell:

φk(t) = min
{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
.

This relationship can be visualized with the so-called fundamental diagram as depicted in Figure 2.38.
The critical density ρck = wk

vk+wk
ρ̄k is the density value at which the fundamental diagram is maximized.

The peak value of both the sending as well as the receiving cell determine the values of the capacities
Fk, which are defined as Fk := min

{
β̄kvkρ

c
k, (ρ̄k+1 − ρck+1)wk+1

}
8 . This equation is slightly adapted

8Note that some authors allow for capacities 0 < Fk ≤ min
{
β̄kvkρ

c
k, (ρ̄k+1 − ρck+1)wk+1

}
which leads to a fundamental

diagram of trapezoidal shape.
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Figure 2.38: Sketch of the fundamental diagram for uniform freeway conditions, i.e., parameters and densities that do not
differ between consecutive cells.

Symbol Name/Definition Unit

V
ar

ia
bl

es





φk flow 1/h
ρk density 1/mile
uk onramp flow 1/h

Pa
ra

m
et

er
s





βk split ratio 1
β̄k 1− βk 1
lk cell length mile
vk free-flow velocity mile/h
wk congestion-wave velocity mile/h
ρ̄k jam density 1/mile
∆t sampling time interval h

Table 2.3: Summary of symbols

for the first and the last cell, where we define F0 = (ρ̄1 − ρc1)w1 and Fn = min
{
β̄nvnρ

c
n, φ̄n

}
. Here,

u0 ≥ 0 models the mainline traffic demand and φ̄n ≥ 0 is some arbitrary, constant bound on the outflow
from the highway. All parameters and variables of the CTM are summarized in Table ??. Note that
all parameters of the CTM are positive and all states are nonnegative. Furthermore, the split ratios
are limited to the interval 0 ≤ βk < 1 and the sampling time ∆t is restricted to ∆t ≤ lk

vk
to ensure

convergence.
For a given initial state ρk(0) and ramp metering rates uk(t) for 1 ≤ k ≤ n and t ∈ N, the evolution

of the highway is described by the following equations:

ρk(t+ 1) = ρk(t) +
∆t

lk

(
φk−1(t) + uk(t)−

φk(t)

β̄k

)
,

φ0(t) = min {u0, F0, (ρ̄1 − ρ1(t))w1} ,
φk(t) = min

{
β̄kvkρk(t), Fk, (ρ̄k+1 − ρk+1(t))wk+1

}
,

φn(t) = min
{
β̄nvnρn(t), Fn, φ̄n

}
.

Note that this model includes the implicit assumption that congestion does not spill back onto the on-
ramps. While this assumption might not be satisfied for an uncontrolled highway, it was shown to
be satisfied by a large margin for a highway controlled by ramp metering in a field study Gomes and
Horowitz (2006b), since such a controller will limit inflows and mainline congestion by design.
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Equilibria of the CTM

In this work, we are mainly interested in optimal steady-state solutions to the CTM equations. We start
by deriving some general properties in the form of three lemmas that characterize equilibria of the CTM,
which will be important tools in the analysis of optimality of such equilibria in the following sections.
In the following, if the time index is omitted for some variable, e.g. φk instead of φk(t), the variable is
to be understood as a steady-state value.

The equations describing steady-state solutions or equilibria of the CTM can be derived by imposing
ρk(t+ 1) = ρk(t) =: ρk (and removing the time index t from all variables), which yields:

φk = (φk−1 + uk) β̄k, 1 ≤ k ≤ n,
φ0 = min {u0, F0, (ρ̄1 − ρ1)w1} ,
φk = min

(
β̄kvkρk, Fk, (ρ̄k+1 − ρk+1)wk+1

)
, 1 ≤ k < n,

φn = min
{
β̄nvnρn, Fn, φ̄

}
.

(2.74)

We call u the (traffic) demand, which consists of the mainline demand u0 and the onramp inflows uk,
1 ≤ k ≤ n (as introduced earlier). Note that the onramp flows can be changed by ramp metering and
thus serve as control inputs, whereas the mainline demand is fixed. For ease of notation, we define the
equilibrium set E(u) as

E(u) = {(φ, ρ) : For fixed demand u, (φ, ρ) satisfy (2.74)}.

We call a section k a bottleneck if φk = Fk. The locations of the bottlenecks are important in the
analysis of the CTM equilibria Gomes et al. (2008). Assuming that there are m − 1 bottlenecks
b1, b2, . . . , bm−1, these bottlenecks partition the highway into m segments S1 = {0, . . . , b1}, S2 =
{b1 + 1, . . . , b2}, . . . , Sm = {bm−1 + 1, . . . , n}, as depicted in Figure 2.39. Note that the first and the
last segment may be empty if φ0 or φn are bottleneck flows. For a constant demand u, define the induced
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Figure 2.39: Segments, defined according to the bottleneck locations, in a CTM representation of a freeway.

flows ϕ as:

ϕ := u0,

ϕk := (ϕk−1 + uk)β̄k, 1 ≤ k ≤ n,

i.e., the induced flows are the flows that result in steady-state if the complete traffic demand can be
accommodated by the freeway.

We can categorize traffic demands for a particular freeway according to whether or not they can be
served: The traffic demand u is called feasible if the induced flows are equal or smaller than the local
capacities in every section ϕk ≤ Fk ∀k. It is called strictly feasible if the induced flows are strictly
smaller than the capacity in every section ϕk < Fk ∀k and it is called marginally feasible if it is feasible,
but not strictly feasible. Using these definitions, we are now ready to characterize equilibria of the CTM.

Lemma 2.3.1. For a feasible traffic demand u, the unique equilibrium flows of the CTM are equal to
the induced flows φk = ϕk. Equilibrium densities are as follows:
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(i) For strictly feasible demands, the unique equilibrium is the uncongested equilibrium with densities
ρk = φk

β̄kvk
< ρck.

(ii) For marginally feasible demands, the equilibrium densities are no longer unique. One particular
equilibrium is the uncongested equilibrium with densities ρk = φk

β̄kvk
≤ ρck.

Proof. This result follows immediately from Theorem 4.1 in Gomes et al. (2008).

Note that Theorem 4.1 in Gomes et al. (2008) also states the complete set of equilibrium densities for
case (ii) explicitly. For our purposes, it is sufficient to know that a non-empty set of equilibrium densities
exists for every feasible demand. We also need to consider situations in which the mainline demand
cannot be completely served and a congestion on the mainline spills back outside of the considered part
of the freeway. If the demand u = {u0, u1, . . . , un} is infeasible, but the demand ũ = {0, u1, . . . , un}
is feasible, we call the demand u onramp-feasible. Onramp-feasible demands exceed the capacity of the
freeway, but the capacity is sufficient to accommodate the onramp flows alone, assuming zero mainline-
flow.

Lemma 2.3.2. For onramp-feasible demands, the unique equilibrium flow is given as ϕ0 = max{x ≥
0 : (x, u1, . . . , un) is feasible}) and ϕk := (ϕk−1 +uk)β̄k for 1 ≤ k ≤ n. The equilibrium densities are
not unique in general. One particular equilibrium is given as a congested first segment ρk = ρ̄k− φk

wk
≥

ρck, ∀k ∈ S1 and the remaining freeway operating in free-flow ρk = φk
β̄kvk

≤ ρck, ∀k /∈ S1.

Proof. See Appendix.

In an equilibrium, some cells in a segment might be congested while other cells operate in free-flow.
The order of congestion and free-flow conditions is not arbitrary, but follows a specific pattern instead.
Let cell qj be the last cell within segment Sj which is not congested, i.e. qj := argmaxk{k ∈ Sj : ρk ≤
ρck}. If all cells within a segment j are congested, define qj := bj + 1.

Lemma 2.3.3. All cells downstream of cell qj within a segment are congested: ρk > ρck, k ∈ Sj , k > qj .
All cells upstream of cell qj within a segment operate in free-flow: ρk < ρck, k ∈ Sj , k < qj .

Proof. The first assertion holds by definition of qj . The second assertion can be proven by contradic-
tion: Assume some cell(s) upstream of cell qj , but within the same segment are congested. Let nj :=
argmaxk{k ∈ Sj , k < qj : ρk ≥ ρck} be the most downstream one of those cells. By definition, cell nj is
congested, but cell nj+1 is not. It follows that φnj = min

{
β̄njvnjρnj , Fnj , (ρ̄nj+1 − ρnj+1)wnj+1

}
≥

min
{
β̄njvnjρ

c
nj
, Fnj , (ρ̄nj − ρcnj

)wnj

}
= Fnj , i.e. cell nj + 1 is a bottleneck. This is a contradiction

to the assumption that there are no bottlenecks within a segment.

Intuitively, this means that there exists only one congestion queue per segment9, which starts in cell
qj . Furthermore, there can at most be one cell within a segment (cell qj) in which the density actually
equals the critical density. The resulting congestion/ free-flow pattern is visualized in Figure 2.40.

Remark 2.3.1. Note that the equilibrium flows as a function of the traffic demand φ(u) can be written
as

φ0 = max{ϕ : ϕ ≤ u0, (ϕ, u1, . . . , un)},
φk = (φk−1 + uk)β̄k, 1 ≤ k ≤ n,

for both feasible demands, yielding simply φ0 = u0, and onramp-feasible demands, by definition.
9A similar result is stated in Lemma 4.3 in Gomes et al. (2008). The cases ρk < ρck and ρk = ρck are not distinguished,

however, but this distinction will be crucial in our further analysis.
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Figure 2.40: Pattern of the highway state within one segment. Note that there is not necessarily a cell in which the critical
density is exactly achieved (ρk = ρck). In this case, cell qi is the last cell in free flow: ρk < ρck.

Having established various properties of the equilibrium flows and densities for fixed onramp inflows
u, we are now ready to address the problem of finding the optimal ramp metering rates u to maximize
traffic flows.

Optimal Equilibria

In this section, we will address the problem of optimizing over steady-state equilibria of the CTM. To
this end, we will first state the (nonconvex) main problem, show the equivalence of this problem with a
suitable linear relaxation and then use duality arguments to derive optimality conditions.

Consider a highway modeled by the CTM and controlled by ramp metering. We want to find the
equilibrium that maximizes a positive combination of all flows c>φ (c ∈ Rn+1

+ ) by choosing appropriate
(steady-state) ramp metering rates uk. The ramp metering rates are assumed to be constrained by box
constraints uk ≤ uk ≤ ūk. In the simplest case, the lower limit might be equal to zero to prevent negative
flows and the upper bounds will reflect the maximal number of cars that want to enter the freeway at
a certain onramp per time period. We assume that the lower bounds (u0, u1, . . . , un) on the inflows
are onramp-feasible, guaranteeing the existence of a feasible solution. Thus we consider the following
optimization problem over equilibria of the CTM:

maximize
u,φ,ρ

c>φ

subject to uk ≤ uk ≤ ūk, 1 ≤ k ≤ n,
(φ, ρ) ∈ E(u).

(2.75)

Note that Problem (2.75) includes the maximization of the Total Travel Distance TTD :=
∑n

k=0
φk
β̄k

or

the total discharge flows rtot := φn +
∑n

k=1
βk
β̄k
φk as special cases. Also note that Problem (2.75) is

nonconvex, due to the nonlinear flow constraints that make the set of equilibria E(u) a nonconvex set.
Even though the flow-constraints are nonconvex, it is well-known that there exists an uncongested,

flow-maximizing equilibrium for freeways under fairly general conditions Wattleworth (1965); Chen
et al. (1974). One can find this solution by solving a suitable Linear Program, for example by intro-
ducing a condition that restricts the highway to free-flow conditions (which does not introduce any
conservativeness in terms of the objective value, as long as the problem remains feasible). We want to
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avoid this explicit restriction and consider the following relaxation:

maximize
u,φ

c>φ

subject to uk ≤ uk ≤ ūk, 1 ≤ k ≤ n,
φk = (φk−1 + uk) · β̄k, 1 ≤ k ≤ n,
φk ≤ Fk, 1 ≤ k ≤ n,
φ0 ≤ F̃0 := min{F0, u0},

(2.76)

in which the nonconvex flow-constraints have been relaxed and the constraints involving the densities
have been removed altogether.

Proposition 2.3.1. Let c ∈ Rn+1
+ . Then problem (2.75) is equivalent to the relaxation (2.76), in the sense

that the objective values are equal. Furthermore, given a maximizer (u∗, φ∗) of the relaxed problem
(2.76), we can compute densities ρ∗ such that (u∗, φ∗, ρ∗) is a maximizer of (2.75).

Proof. Since (2.76) is a relaxation of (2.75), it is sufficient to show that for any optimizer φ∗, u∗ to
(2.76), we can find ρ∗ such that φ∗, u∗, ρ∗ are feasible for (2.75). Assume u∗, φ∗ are solutions of the
relaxed problem (2.76). Then φ∗ is also the solution of φ∗ = argmax

φ
{c>φ : φ ∈ F} with:

F :=

{
φk = (φk−1 + u∗k) · β̄k 1 ≤ k ≤ n
φk ≤ Fk 0 ≤ k ≤ n .

For fixed onramp flows, all flows φk can be expressed as affine functions of φ0, thus we can rewrite:

φ∗ = argmax
φ
{c>φ : φ ∈ F} = argmax

φ
{aφ0 + b : φ ∈ F}

= argmax
φ
{φ0 : φ ∈ F} = φ(u∗)

for suitable a, b ∈ R+. We see that the flows φ∗ equal the equilibrium flows for the fixed traffic demands
u∗ as stated in Remark 2.3.1. We have previously established that the set of equilibrium densities is
nonempty in every case, according to Lemmas 2.3.1 and 2.3.2. Therefore, we can always find feasible
equilibrium densities ρ∗ and equivalence of the optimization problems holds.

Note that in general, the optimal solution set for the densities includes equilibria in which some cells
are congested. While optimizing over free-flow conditions will yield a global optimum, the CTM also
allows for (partly) congested equilibria, which achieve the same objective value.

We will now derive sufficient optimality conditions for the maximal flow problem (2.75). Theses
optimality conditions will be tailored for the analysis of distributed control approaches and are based
on the following consideration: Assume a distributed controller with the objective of moving the local
density at every controlled onramp (as close as possible) to the critical density. It is easy to check
that each individual flow will be maximal if ρk = ρck is achieved in every cell, which is the main
idea behind this control approach. However, this will in general not be the case due to saturation of
the available control inputs (the ramp metering rates), in particular if multiple local controllers interact
while controlling a freeway. Therefore, the performance of such closed-loop equilibria in terms of flow
maximization is not clear a priori. The following theorem presents sufficient optimality conditions, by
imposing only local constraints on the ramp metering rates, dependent only on the local densities:
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Theorem 2.3.1. Let u, φ, ρ be an equilibrium of the CTM and assume the equilibrium ramp metering u
rates satisfy:

“free-flow”: uk = ūk ∀k : ρk < ρck,

“critical density”: uk ≤ uk ≤ ūk ∀k : ρk = ρck,

“congestion”: uk = uk ∀k : ρk > ρck.

(2.77)

Then u, φ, ρ solve the maximal flow problem (2.75).

Proof. Feasibility of the primal problem (2.75) holds by assumption. To verify optimality, it is suffi-
cient to show that the equilibrium flows solve the LP-relaxation (2.76), according to Proposition 2.3.1.
Consider the dual of problem (2.76) which is given as:

minimize
µ.ν,ξ,λ

ν>u− ξ>ū− λ>F

subject to µk + νk − ξk = 0 1 ≤ k ≤ n
−ck + µk

β̄k
− µk+1 + λk = 0 0 ≤ k ≤ n

µ0 = µn+1 = 0

µ ∈ Rn+2, ν ∈ Rn+, ξ ∈ Rn+, λ ∈ Rn+1
+

(2.78)

To simplify notation, we have introduced µ0 := 0 and µn+1 := 0. We will show that for any solution to
the primal problem which satisfies (2.77), we can construct a complementary dual solution, thus proving
that the primal solution is indeed optimal. The complementarity conditions are given as

0 ≤ (u− u) ⊥ ν ≥ 0,

0 ≤ (u− ū) ⊥ ξ ≥ 0,

0 ≤ (φ− F ) ⊥ λ ≥ 0.

For ease of notation, we define the following index sets: The set of all bottlenecks B := {k : Fk = φk},
the set of all congested cells C := {k : ρk > ρck}, the set of all cells in free flow F := {k : ρk < ρck}
and the set of all cells in which the critical density is achieved D := {k : ρk = ρck}. By combining
the constraints for dual feasibility and the complementarity constraints, we end up with the following
optimality conditions:

φ, ρ ∈ E(u), u, ρ satisfy (2.77), (2.79a)

−ck +
µk
β̄k
− µk+1 + λk = 0, (2.79b)

µk = 0 if k ∈ D, λk = 0 if k /∈ B, (2.79c)

µk ≥ 0 if k ∈ F , µk ≤ 0 if k ∈ C, (2.79d)

λk ≥ 0 if k ∈ B. (2.79e)

We will now find an explicit solution to the dual problem, by constructing a solution to every segment
Sj . Define

µqj := 0.

Then feasible multipliers µk for all other cells in segment Sj can be computed by iterating in up-
stream/downstream direction, starting from the cell bj + nF :

µk := β̄k (µk+1 + ck) , bj−1 < k < qj ,

µk :=
µk−1

β̄k−1
− ck−1, qj < k ≤ bj ,
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Figure 2.41: Dual variables corresponding to the congestion/ free-flow pattern of the freeway within one segment.

and the multipliers λ are computed as

λk := ck −
µk
β̄k

+ µk+1, k ∈ B,

λk := 0, k 6∈ B.

The resulting pattern within one segment is depicted in Figure 2.41.
We will now verify that the proposed solution indeed solves the optimality conditions (2.79). Note

that condition (2.79a) is satisfied by assumption. Conditions (2.79b) and (2.79c) are satisfied by con-
struction. Conditions (2.79d) and (2.79e) remain to be checked.

We will first show that conditions (2.79d) hold for a generic segment Sj . For this we need some
intermediate steps:

• Recall that the parameters β̄k and ck are nonnegative. We claim that the multipliers of all cells
upstream of cell qj , but within segment Sj , are nonnegative. This can be verified by induction:
µqj = 0 by definition. Assume now that µk ≥ 0. Then µk−1 = β̄k−1 (µk + ck−1) ≥ 0 for all
cells with indices bj−1 < k < qj .

• Conversely, the multipliers of all cells downstream of cell qj , but within segment Sj , are nonpos-
itive. This can again be verified by induction: µqj = 0 by definition. Assume now that µk ≤ 0.
Then µk+1 = µk

β̄k
− ck ≥ 0 for all cells with indices qj < k ≤ bj .

Recall now that according to Lemma 2.3.3, the congestion pattern within a segment is ordered. In
particular, all cells bj−1 < k < qj operate in free-flow and all cells qj < k ≤ bj are congested.
Satisfaction of conditions (2.79d) immediately follows.

We can also conclude from the previous analysis that for every bottleneck bj , it holds that µbj ≤ 0
(since cell bj is located downstream of cell qj) and also µbj+1 ≥ 0 (since cell bj + 1 is located upstream

of cell qj + 1). Therefore λbj := cbj −
µbj
β̄bj

+ µbj+1 ≥ 0 and conditions (2.79e) follow.

It is interesting to note that the result does not depend on the choice of the weights for the individual
mainline flows c (as long as all are non-negative), so all such objectives will be jointly maximized by
an equilibrium satisfying the optimality condition (2.77). This is a consequence of the assumption of
constant split rations βk, under which it is impossible to trade off the mainline flow at some part of the
freeway with the mainline flow at another place.

Application

To demonstrate the practical relevance of the previously derived optimality conditions, we use them
to analyze the well-known distributed ramp-metering strategy ALINEA Papageorgiou et al. (1991).
ALINEA is in essence an integral controller that aims at stabilizing the local densities at the critical
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Figure 2.42: Simulation results using the CTM. Note that the flows are normalized such that a flow of “1” means that the
optimal steady-state flow (computed separately) is achieved. Similarly, the densities are normalized by the respective critical
densities. Note the different timescales.

density. It is easy to verify that every closed-loop equilibrium of a freeway controlled by local ALINEA
controllers satisfies the optimality conditions (2.77).

We implement the standard ALINEA anti-windup integral controller

uk(t) := ũk(t− 1) +KI · (ρck − ρk(t))

in which ũk(t − 1) is the saturated inflow ũk(t) := max(uk,min(uk(t), ūk)) and KI := 70/ρck is the
integral gain chosen as recommended in Papageorgiou et al. (1991). Closed-loop simulation results of
this controller operating on simple freeways represented by the CTM are depicted in Figure 2.42. In
both examples, the closed-loop system converges to the optimal closed-loop equilibrium, as predicted.
In the first example, the controller converges to the unique uncongested equilibrium. In fact, all densities
converge to the respective critical densities. In the second example, however, the controlled onramp and
the bottleneck are two sections apart. We observe convergence to a partly congested equilibrium, also
the convergence is slow and heavy oscillations occur. These effects have already been described Wang
et al. (2014), nevertheless, the optimal flows are achieved in the limit as long as we use the CTM for
simulations.

Conclusions

This work analyzes flow-maximizing equilibria of the CTM. We find simple optimality conditions that
are tailored to distributed control approaches, since only constraints between local ramp metering rates
and the densities in the adjacent cells are imposed. In particular, the optimality conditions are satisfied
for all closed-loop equilibria of a freeway controlled by independent local ALINEA controllers, thus
proving that all such equilibria are globally optimal (w.r.t. flow maximization).

It is important to keep in mind that this result holds only under the assumptions made in the CTM. In
particular, the equilibrium may contain congested bottlenecks, which lead in practice to an empirically
observed reduction of the bottleneck capacity. Such effects are not described by the simplistic CTM. In
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this sense, the simulations described in the previous section are not meant to be a realistic assessment
of the real-world traffic behavior, but rather a way to demonstrate the properties of the idealized CTM.
Note however, that the equilibrium densities are not unique and techniques described in Gomes et al.
(2008) or Wang et al. (2014) can be employed to steer the system to the preferred equilibrium (usually
the unique, least congested equilibrium) in order to avoid the aforementioned capacity drop.

D4.3: Decision Making III



2.3. High-Level Coordination page 94 of 138

2.3.2 Model-Free Coordination Strategy
C. Ramesh, M. Schmitt, J. Lygeros

We consider a problem where multiple agents must learn an action profile that maximises the sum
of their utilities in a distributed manner. The agents are assumed to have no knowledge of either the
utility functions or the actions and payoffs of other agents. These assumptions arise when modelling
the interactions in a complex system and communicating between various components of the system
are both difficult. In Marden et al. (2014), a distributed algorithm was proposed, which learnt Pareto-
efficient solutions in this problem setting. However, the approach assumes that all agents can choose
their actions, which precludes disturbances. In this paper, we show that a modified version of this
distributed learning algorithm can learn Pareto-efficient solutions, even in the presence of disturbances
from a finite set. We apply our approach to the problem of ramp coordination in traffic control for
different demand profiles.

Introduction

In complex systems, modelling the interactions between various components and their relationship to
the system performance is not an easy task. This poses a challenge while designing controllers for such
systems, as most design methods require a model of the system. Even when considerable effort has
been expended in identifying suitable models for such systems, utilising these models to design online
controllers is not always easy. This is because collecting measurements of a complex system, computing
control signals using complex algorithms and applying these controls to actuators across the system is
communication intensive and computationally demanding. The resulting delays are not well suited to
the control of real-time complex systems.

An example is the real-time control of freeway traffic, where often traffic models are highly nonlinear
and methods to design controllers using these models do not scale well Allsop (2008). Furthermore, to
use these models, the traffic flow from every segment of the freeway must be measured and collected,
and the control signals must be delivered to the ramps on the freeway. To reduce the communication and
computation burden, distributed controllers that act on mostly local information are required.

One approach is to use a distributed randomised algorithm to explore the policy space and learn the
optimal actions. Recently, a distributed learning algorithm has been proposed in Marden et al. (2014)
where agents learn action profiles that maximise the system welfare. This algorithm is payoff-based,
and the agents require no prior knowledge of either the utility functions or the actions and payoffs of
other agents. An implicit assumption in this approach is that every agent that influences the utility can
choose its actions. In reality, there might always be disturbances which cannot be chosen in a desired
manner. In this paper, we extend this approach to include the effects of disturbances.

Our main contribution is a modification to the algorithm in Marden et al. (2014) to deal with distur-
bances. We show that agents learn Pareto-efficient solutions in a distributed manner using our algorithm,
even in the presence of disturbances from a finite set. We verify the theoretical results on a small ex-
ample. In this case, all assumptions can be verified and strong convergence guarantees can be given.
To demonstrate versatility of the approach, we also apply the results to a realistic coordination problem
motivated by freeway traffic control. We use our newly developed algorithm to learn a high-level coor-
dination strategy for a ramp metering problem with promising results, using simulation parameters and
traffic demand data from a real-world use case.

The learning rule used in this paper is related to the trial and error learning procedure from Young
(2009) and its cognates Pradelski and Young (2012); Marden et al. (2014). These papers proposed
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algorithms that learnt Nash equilibria Young (2009), Pareto efficient equilibria Pradelski and Young
(2012) and Pareto-efficient action profiles Marden et al. (2014), respectively. Convergence guarantees
for the latter were presented in Menon and Baras (2013a). Restrictions on the payoff structure, which
are required for the result in Marden et al. (2014) to hold, were eliminated through the use of explicit
communication in Menon and Baras (2013b). We also draw on the analysis of deliberate experimentation
using the theory of regular perturbed Markov processes from Young (1993).

This paper is organised as follows: We describe the algorithm in Section 3.1.1, and present known
results in Section 2.3.2. Our main result is presented in Section 2.3.2 and illustrated on a few examples
in Section 2.3.2. The conclusion is in Section 2.3.2.

Problem Formulation

We consider a set of agentsN := {1, . . . , n}, each with a finite action setAi for i ∈ N . The disturbance
is modelled as an independent and identically distributed (i.i.d.) process wk, which takes values from
a finite set W according to a probability distribution Pw that is fully supported on W. Given an action
profile a ∈ A, where A := A1 × · · · × An, and a disturbance w ∈ W, the payoff for each agent is
ui(a,w). The payoffs are generated by utility functions Ui : A ×W → [0, 1) whose functional forms
are unknown to the agents. The welfare of the network of agents isW(a,w) =

∑
i∈N Ui(a,w).

The agents play a repeated game; in the kth iteration, each agent chooses its action ai,k with proba-
bility pi,k ∈ ∆(Ai), where ∆(Ai) is the simplex of distributions overAi. The strategy pi,k is completely
uncoupled or pay-off based, i.e., pi,k = ψi({ai,τ , ui,τ (aτ , wτ )}k−1

τ=0). In other words, an agent does not
know the actions or payoffs of any other agent in the network.

Each agent maintains an internal state zi,k := [āi,k, ūi,k,mi,k] in the kth iteration, where āi,k ∈ Ai
is the baseline action, ūi,k is the corresponding baseline utility that lies in the range of Ui and mi,k ∈
{C,D} is the mood variable that connotes whether the agent is content or discontent. The state zk :=
{z1,k, . . . , zn,k} lies in the finite state space Z.

The algorithm is initialised with all agents setting their moods to discontent, i.e., mi,0 = D for
i ∈ N . An experimentation rate 0 < ε < 1 is fixed and a constant c > n is selected. Then, each agent
selects an action ai,k according to its mood and the corresponding probabilistic rule:

mi,k = C : pi(ai,k) =

{
εc

|Ai|−1 ai,k 6= āi,k

1− εc ai,k = āi,k

mi,k = D : pi(ai,k) =
1

|Ai|
∀ ai,k ∈ Ai

(2.80)

The agents choose their strategies based on their moods. A content agent selects its baseline action with
high probability and experiments by choosing other actions with low probability. A discontent agent
selects an action with uniform probability.

Each agent plays the action it has selected and receives a payoff ui,k(ak, wk), which it uses to update
its state as

zi,k+1 =





zi,k
mi,k = C, ai,k = āi,k,
|ui,k − ūi,k| ≤ ρ

zC w.p. pC
zD w.p. 1− pC

}
otherwise

(2.81)

where zC = [ai,k, ui,k, C], zD = [ai,k, ui,k,D], pC = ε1−ui,k and ρ is the maximum deviation in the
payoffs due to the disturbance process w, as defined in (2.82). The state update also depends on the
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mood of the agent. A content agent that chose to play its baseline action and received a payoff within
the interval ui,k ∈ [ūi,k−ρ, ūi,k +ρ] retains its state. In all other cases, the state is updated to the played
action and received payoff, and the mood is set to content or discontent with high probabilities for high
or low payoffs, respectively. Thus, a content agent must receive a payoff outside an interval ±ρ of its
baseline payoff to reevaluate its mood or change its state. This interval rule renders an agent insensitive
to small changes in the payoff.

The variable ρ is defined as the maximum deviation in the payoffs received by any agent i ∈ N for
every action profile a ∈ A and every pair of disturbances w1, w2 ∈W, i.e.,

ρ := arg min
r∈R

{|ui(a,w1)− ui(a,w2)| ≤ r}

∀ i ∈ N, ∀ a ∈ A and ∀ w1, w2 ∈W .
(2.82)

We are interested in identifying the set of states the above algorithm converges to. A necessary
condition for this algorithm to function as desired is the interdependence property, stated below.

Definition 2.3.1. An n-person game is interdependent if for every action profile a ∈ A, every distur-
bance w ∈ W and every proper subset of agents J ⊂ N , there exists an agent i ⊂ N \ J , a choice of
actions a′J ∈

∏
j∈J Aj and a disturbance w′ ∈W, such that

∣∣Ui(a′J , a−J , w′)− Ui(aJ , a−J , w)
∣∣ > ρ (2.83)

This property ensures that the set of agents cannot be divided into two mutually non-interacting
groups, and that a discontent agent always has recourse to actions that influence the utilities of other
content agents despite the algorithm’s insensitivity to the interval [ūi − ρ, ūi + ρ] in (2.81).

Remark 2.3.2 (A remark on the state space Z: ). The state zk is an aggregation of the states zi,k :=
[āi,k, ūi,k,mi,k] of each of the agents. Thus, one would expect the cardinality of the state space to be
|Z| = 2N |A||W|, because the payoffs obtained are completely determined by the choice of the actions
and the disturbance. However, the interval rule in (2.81) results in more states becoming reachable and
|Z| ≤ 2N |A|2|W|. The exact number of states depends on the payoffs. For the proofs presented in this
paper, we define the state space in terms of the states reachable from the initial point of our algorithm,
i.e., Z := {z : ∃τ > 0 s.t. P(zτ = z|z0) > 0}, where z0 is any state where all agents are discontent.

Preliminaries

We briefly outline Young’s result on regular perturbed Markov processes Young (1993). Consider the
Markov processes on a state space X with transition matrices P0 and Pε, where a finite-valued ε > 0
measures the noise level. The Markov chain induced by P0 describes some basic evolutionary process
such as best response dynamics, while the chain induced by Pε represents the perturbed process obtained
by introducing mistakes or experiments. This notion is formalised as follows.

Definition 2.3.2. A family of Markov processes Pε is called a regular perturbation of a Markov chain
with transition matrix P0 if it satisfies the following conditions:

1. Pε is aperiodic and irreducible for all finite ε > 0.

2. limε→0 Pε
xy = P0

xy, ∀x, y ∈ X.

3. If Pε
xy > 0 for some ε, then ∃ r(x, y) ≥ 0, called the resistance of the transition x→ y, such that

0 < lim
ε→0

ε−r(x,y) Pε
xy <∞ (2.84)
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Property i ensures that there is a unique stationary distribution for all finite ε > 0. Property ii ensures
that the perturbed process converges to the unperturbed process in the limit as ε→ 0. Property iii states
that a transition x→ y is either impossible under Pε or it occurs with a probability Pε

xy of order εr(x,y)

for some unique, real r(x, y) in the limit as ε→ 0. Note that r(x, y) = 0 if and only if P0
xy > 0. Thus,

the transitions of resistance zero are the same as the transitions that are feasible under P0.

Definition 2.3.3. A state x ∈ X is said to be stochastically stable if µ0
x > 0, where µ0 is a stationary

distribution of P0.

We are interested in characterizing the limiting distribution µ0 of P0 through its support, or the set
of stochastically stable states. To do this, we define two directed graphs. The first graph G := (X,EG)
has as vertex set the set of states X, and as directed edge set EG := {x → y | Pε

xy > 0, x, y ∈ X}.
Thus, a directed edge exists in G only if a single transition under Pε gets us from state x to y, for all
values of ε ≥ 0. Finally, r(x, y) in (2.84) defines the weight or resistance of this directed edge in G.

To define the second graph, we first enumerate the recurrence classes of P0 as X1, . . . , XL. Then,
we can define the resistance between two classes as the minimum resistance between any two states
belonging to these classes, i.e.,

r`1`2 := min
x∈X`1

,y∈X`2

r(x, y), for `1, `2 ∈ {1, . . . , L} . (2.85)

Note that there is at least one path from every class to every other because Pε is irreducible. We now
define the second graph as G := ({1, . . . , L},EG). This graph has as vertex set the set of indices of the
recurrence classes of P0, and as edge set the set of directed edges between members of the recurrence
classes. Also, r`1`2 defines the resistance or weight of this directed edge.

Definition 2.3.4. Let an `-tree in G be a spanning sub-tree of G, such that for every vertex `′ 6= `, there
exists exactly one directed path from `′ to `. Then, the stochastic potential γ` of the recurrence class X`

is defined as
γ` := min

T∈T`

∑

(a,b)∈T
rab (2.86)

where T` is the set of all `-trees in G.

We can now state Young’s result for perturbed Markov processes Young (1993).

Theorem 2.3.2 (Theorem 4 from Young (1993)). Let P0 be a time-homogenous Markov process on the
finite state space X with recurrence classes X1, . . . , XL. Let Pε be a regular perturbation of P0, and
let µε be its unique stationary distribution for every small positive ε. Then,

1. as ε→ 0, µε converges to a stationary distribution µ0 of P0,

2. the recurrence class X`∗ , with stochastic potential γ`∗ := min`∈{1,...,L} γ`, contains the stochas-
tically stable states {x ∈ X : µ0

x > 0}.

Learning Pareto-efficient solutions

We begin by establishing that Young’s result applies to our system, resulting in a distributed algorithm
for Pareto-efficient learning in the presence of disturbances. To prove this result, we enumerate the
recurrence classes of P0 and the resistances between the classes. We use these values to identify the
structure of the tree with minimum stochastic potential.
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Main Result For ε = 0, the transition matrix P0 corresponds to an unperturbed Markov process, and
we begin by showing that Pε is a regular perturbation on P0.

Lemma 2.3.4. The Markov process with transition matrix Pε is a regular perturbation on P0.

The proof is presented in Ramesh et al. (2015). Next, we use Young’s result from Theorem 2.3.2 to
obtain the distributed learning outcome stated below.

Theorem 2.3.3. Let G be an interdependent n-person game on a finite joint action space A, subject
to i.i.d. disturbances from a finite set W. Under the dynamics defined in (2.80)–(2.81), a state z =
[ā, ū,m] ∈ Z is stochastically stable if and only if the following conditions are satisfied:

1. The action profile ā maximises the network welfare, i.e.,

(ā, w̄) ∈ arg max
a∈A,w∈W

W = arg max
a∈A,w∈W

∑

i∈N
Ui(a,w) (2.87)

2. The benchmark actions and payoffs are aligned for the maximising disturbance, i.e., ūi = Ui(ā, w̄).

3. The mood of each agent is content.

We present the proof for this theorem in the next section.

Recurrence Classes The states z ∈ Z can be classified into three categories: states where all agents
are content or discontent and states where some agents are content and others discontent. By inspecting
the algorithm in (2.80)–(2.81), it is easy to see that as ε → 0 the former states can be recurrent, but not
the latter. We formalise this notion below, by defining the recurrence classes D and Cm for 0 ≤ m < n
and showing that there are no other recurrence classes.
Discontent ClassD: The states in this recurrence class correspond to those where all agents are discon-
tent.

D :=
{
z ∈ Z

∣∣ mi(z) = D, ∀i ∈ N
}

(2.88)

Note that the payoffs and action profiles are aligned, i.e., ūi(z) = Ui(ā(z), w), ∀z ∈ D, ∀i ∈ N and for
some w ∈W. Also, corresponding to each action profile and disturbance pair (a,w) ∈ A×W, there is
a discontent state in this recurrence class.

States containing only content agents can be categorised further into n classes, Cm for 0 ≤ m < n,
as follows.
0th-Content Class C0: This recurrence class contains singleton states where all agents are content, and
where the payoffs of all agents are aligned with the action profile for some value of the disturbance
w ∈W, while satisfying the interval rule in (2.81) for all other values of the disturbance. Let Bi denote
the set of states that satisfy these conditions on the payoffs of the ith agent:

Bi :=
{
z ∈ Z

∣∣ūi(z) = Ui(ā(z), w), for some w ∈W,

|ūi(z)− Ui(ā(z), w̃)| ≤ ρ, ∀ w̃ ∈W
}
.

(2.89)

Then, the recurrence class C0 is defined as

C0 :=
{
z ∈ Z

∣∣ mi(z) = C, z ∈ Bi,∀i ∈ N
}
. (2.90)
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From the definition of ρ in (2.82), we know that corresponding to each action profile and disturbance
pair (a,w) ∈ A×W, there is a state in this recurrence class with payoffs satisfying (2.89).

There might also be states where the payoffs of all agents are not aligned with the action profile for
any single value of the disturbance w ∈ W. Some of these states can be recurrent, and belong to the
classes defined below.
1st-Content Class C1: Suppose that a proper subset of agents J1 ⊂ N from a state z′ ∈ C0 experiment
with different actions despite being content, and become content with their new utilities. If the rest of
the agents j0 ∈ J0 = N \ J1 do not notice this change, because their new utilities lie within the interval
[ūj0(z′)− ρ, ūj0(z′) + ρ] for all values of the disturbance, then the agents find themselves in a state z in
a recurrence class C1.

C1 :=
{
z ∈ Z

∣∣ mi(z) = C, ∀i ∈ N,
∃(J0, J1) s.t. J0 ·∪ J1 = N,

z ∈ Bj1 , ∀ j1 ∈ J1,

∃z′ ∈ C0 s.t. zj0 = z′j0 ,

|ūj0(z′)− Uj0(ā(z), w̃)| ≤ ρ,
∀ w̃ ∈W, ∀ j0 ∈ J0

}
,

(2.91)

where the symbol ·∪ denotes a disjoint union of the subsets.
A subset of agents from a state in C1 could experiment and find themselves in a state in a recurrence

class C2. In general, states in the recurrence class Cm can be reached from a state in Cm−1, following a
similar procedure. The recurrence class Cm is defined below.
mth-Content Class Cm: These recurrence classes contain singleton states where all agents are content,
and where the agents can be divided into m+ 1 mutually disjoint subsets J0, . . . , Jm, such that the utili-
ties of the agents within each subset are aligned with an action profile for some value of the disturbance.

Cm :=
{
z ∈ Z

∣∣ mi(z) = C, ∀i ∈ N,
∃(J0, . . . , Jm) s.t. ·∪ml=0 Jl = N,

z ∈ Bjm , ∀ jm ∈ Jm,
∃z′ ∈ Cm−1 s.t. zj` = z′j` ,

|ūj`(z′)− Uj`(ā(z), w̃)| ≤ ρ,
∀ w̃ ∈W, ∀ j` ∈ N \ Jm

}
.

(2.92)

There can be at most n disjoint subsets from a set of n agents, and hencem < n. Clearly, there might be
many states in Z, where the baseline payoffs and actions satisfy some, but not all, of the above conditions
for classes Cm, 1 ≤ m < n. These states are not recurrent, as we show below.

Lemma 2.3.5. The recurrence classes corresponding to the n-person interdependent game described
by (2.80)–(2.81) are D, and the singletons in C0 and Cm, for 0 < m < n, as defined in (2.88)–(2.92),
respectively.

The proof of this result is presented in Ramesh et al. (2015).

Resistances and Trees Transitions can occur between all three recurrence class types, namely D →
C0 and vice versa, D → Cm and vice versa, and Cl → Cm for 0 ≤ l,m < n and l 6= m. In addition,

D4.3: Decision Making III



2.3. High-Level Coordination page 100 of 138

Table 2.4: Resistances Between Recurrence Classes

No. Path Resistance Relationship

1 D→ C0 rdz0 =
∑

i∈N 1− ūi(z0)

2 D→ Cm
rdzm =

minz0∈C0 rdz0 + rz0zm

3 C0 → D rz0d = c

4 Cm → D rzmd = c

5 C0 → C0 c ≤ rz0
1z

0
2
≤ 2c

6 Cm → Cm c ≤ rzm1 zm2 ≤ r̄m

7 Cl → Cm,
0 ≤ l,m < n, m 6= l

|m− l|c ≤ rzm1 zm2 ≤ r̄m

the singleton states in C0 and Cm can transition to other singleton states within the same classes. All
these transitions are enumerated along with the corresponding resistances in Table 2.4. In this table, we
use d ∈ D, z0

· ∈ C0 and zm· ∈ Cm to denote states in the respective recurrence classes. Some of the
entries contain the term r̄m, which is given by

r̄m = mc2 +
4 +m−m2

2
c− m(m+ 1)

2
, 0 < m < n . (2.93)

The calculations for the entries in Table 2.4 are presented in Ramesh et al. (2015). We can now compute
the stochastic potential of a state in C0 and show that a minimum potential tree is rooted at a singleton
in C0.

Lemma 2.3.6. The stochastic potential of a state z0 ∈ C0 is

γ(z0) = c

(
n−1∑

m=0

|Cm| − 1

)
+
∑

i∈N

(
1− ūi(z0)

)
. (2.94)

Lemma 2.3.7. The states in the recurrence class D and the singletons Cm, for 0 < m < n, are not
stochastically stable.

The proofs for both Lemmas are presented in Ramesh et al. (2015).

Proof of the Main Result We now present the proof of Theorem 2.3.3.

Proof. The stochastically stable states are contained in the recurrence class of P0 with minimum stochas-
tic potential (from Theorem 2.3.2). From Lemma 2.3.7, we also know that the recurrence class with
minimum stochastic potential is rooted at a singleton in C0.

Lemma 2.3.6 gives us the minimum stochastic potential as

γ(z0,∗) = min
z0∈C0

c(
n−1∑

m=0

|Cm| − 1) +
∑

i∈N
(1− ūi(z0))

Thus, the action profile corresponding to the state z0,∗ must satisfy ā(z0,∗) ∈ arg maxa∈A,w∈W
∑

i∈N Ui(a,w).
From the definition of the recurrence classC0 in (2.90), we obtain statements ii and iii of the theorem.
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Table 2.5: Payoffs in Example 2.3.1

{a1, a2, w} u1 u2 {a1, a2, w} u1 u2

{0, 0, 0} 0.30 0.40 {1, 1, 0} 0.80 0.90

{0, 0, 1} 0.40 0.30 {1, 1, 1} 0.90 0.80

{0, 1, 0} 0.20 0.10 {2, 0, 0} 0.65 0.55

{0, 1, 1} 0.10 0.20 {2, 0, 1} 0.55 0.65

{1, 0, 0} 0.60 0.50 {2, 1, 0} 0.75 0.85

{1, 0, 1} 0.50 0.60 {2, 1, 1} 0.85 0.75

Examples

We present a simple example of a two-agent interdependent game to illustrate the results of Theo-
rem 2.3.3, and then apply this method to the ramp coordination problem.

Example 2.3.1. Consider a simple game G2 with n = 2 agents. The action sets, disturbance set and
payoffs are given in Table 2.5. The disturbance process is uniformly distributed on {0, 1}. It is easy
to verify that ρ = 0.1 (from (2.82)), and that the interdependence property (from Definition 2.3.1) is
satisfied, for G2.

We simulated 106 iterations of the algorithm (2.80)–(2.81) in Matlab, with a time-varying ε-sequence,
and c = 2. The experimentation rate was modified by setting εk+1 = 0.99995εk, with an initial value
of ε1 = 0.1. In a typical sample run of our simulation (presented in Ramesh et al. (2015)), the state
corresponding to the action profile {1, 1} with payoff 1.7 was visited 95.32% of the time, thus validating
the results of Theorem 2.3.3. The average welfare over all the iterations was 1.6937.

The average welfare obtained from playing the optimal action profile(s) will, in general, be different
from W∗, the maximum welfare in (2.87). This is because the optimal action profile maximises the
welfare for the most favourable value of the disturbance as per Theorem 2.3.3. When averaged over all
possible values of the disturbance, the welfare will lie in the interval [W∗ − nρ,W∗ + nρ], depending
on Pw. For the above example, the average welfare equalsW∗, which may not always be the case as we
see in the next example.
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Figure 5. Sensor disposition in the south ring. (a) Location of the collection points, blue flags

(Image courtesy of Google Maps); (b) Graphical representation of road interconnections: the

cyan disks correspond to the collection points and the arrows to the lanes (fast, slow, on-ramp,

off-ramp, etc.) equipped with magnetometers, see Table I.

single-vehicle speed, inter-vehicle time gap and vehicle length. The latter piece of information

can be used, for example, for safety or vehicle-class distribution analyses: however, for the

sake of simplicity, in the rest of this article we will exclusively deal with macroscopic data.

9

Figure 2.43: Map of the Grenoble South Link as depicted in de Wit et al. (2015) and the corresponding free-
way topology. Also shown is a particular coordination pattern between onramps, corresponding to the action profile
[COR,LOC,COR,COR,LOC,LOC,COR,COR,COR,LOC]>.

Example 2.3.2. In freeway traffic control, one seeks to estimate the occupancy of a freeway, usually via
loop detectors Gibbens and Saatci (2008), and subsequently adjust speed limits Hegyi et al. (2005) or
traffic lights on the onramps Papageorgiou and Kotsialos (2000), a technique known as ramp metering,
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to improve traffic flow. However, popular freeway traffic models such as the cell transmission model Da-
ganzo (1994a, 1995) or the Metanet model Messner and Papageorgiou (1990) are highly nonlinear and
methods to design controllers for traffic networks often do not scale well. To reduce the communica-
tion and computation burden, distributed controllers that act on mostly local information are required.
Model-based approaches for decomposition exist Dunbar and Murray (2006); de Oliveira and Cam-
ponogara (2010), but in fact, local feedback Papageorgiou et al. (1991) and the combination of local
feedback and heuristic, high-level coordination Papamichail et al. (2010b) are among the most popular
and practically successful strategies. To demonstrate its versatility, we will evaluate the efficacy of our
method in learning a ramp coordination pattern, for given local controllers.

Consider a freeway with a number of onramps. The idea of ramp metering is to control the traffic
inflow from the ramps via traffic lights so as to avoid congestion on the mainline. Both theoretical Gomes
and Horowitz (2006b) and practical Papageorgiou et al. (2003) studies have demonstrated that this
approach can potentially avoid traffic breakdown in congestion and reduce the sum of travel times of all
drivers (TTS, Total Time Spent). An effective metering strategy is to control the inflow such that the local
traffic density does not exceed the threshold to congestion, the so-called critical density Papageorgiou
et al. (1991). However, there are limits to this strategy. Multiple ramps, each controlling the local traffic
densities, are coupled by the mainline flow as traffic travels downstream and congestion queues can spill
back upstream. If no control action of a single ramp is sufficient to prevent congestion of an adjacent
bottleneck, then coordination between ramps may hold the answer Papamichail et al. (2010b).

In this example, we aim to learn a coordination pattern, while the low-level metering policy remains
fixed. We consider ten ramps on a freeway located in Grenoble, as presented in de Wit et al. (2015)
and depicted in Figure 2.43. We allow for ramps either to control only the local traffic density (LOC)
or to coordinate with downstream ramps (COR) and control the ramp occupancy, i.e. the queue length
divided by the ramp length, according to the occupancy of the next downstream ramp. Therefore, the
action set for every agent, i.e., every ramp i is Ai = {LOC,COR}. The utility is computed by simula-
tions of the freeway using the modified cell-transmission model as described in Karafyllis et al. (2014),
which uses a non-monotonic demand function to model the capacity drop empirically observed in a
congested freeway. The local utility for agent i is computed as the sum of the total travel time of all
cars in the adjacent section of the freeway and the total waiting time in the onramp queue, which is
then mapped to the interval [0, 1] via a linear transformation. The utilities do not only depend on the
action profile but also on the traffic demand, which acts as an external disturbance. We consider real
traffic demands during peak hours of the weekdays May 11th - May 15th, and hence, the disturbance set
is W = {Mon,Tue,Wed,Thu,Fri}.

We do not try to identify ρ as per (2.82) or verify the interdependence property in this example.
Instead, we simply choose ρ to be sufficiently large to ensure convergence of the algorithm within a
reasonable number of iterations. We ensure that interdependence holds by complimenting the interaction
graph with a communication graph, as suggested in Menon and Baras (2013b). Each agent broadcasts
the mood it computes in (2.81). It then receives all the other agents’ moods and performs the following
update step to finalize its own mood, as per

mi,k+1 =





D m̃i,k+1 = D
C m̃j,k+1 = C, ∀j ∈ N
C w.p. εβ

D w.p. 1− εβ
}

otherwise

(2.95)

where m̃i,k+1 is the mood of the ith agent updated locally as per (2.81). The above update compliments
the interaction between the agents by coupling the moods, and is controlled by the parameter β. If each
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agent broadcasts its mood to all other agents, this update alone will suffice to ensure the interdependence
property, irrespective of the utility functions. Thus, all the results in this paper, including Theorem 2.3.3,
can be shown to hold for this modified algorithm, for ρ chosen as per (2.82). However, in a real-
world setting it might be difficult to compute a suitable bound on ρ beforehand. Instead, we chose ρ
empirically to facilitate quick convergence, sacrificing the guarantees that come with Theorem 2.3.3.
The performance is then checked a posteriori.

We simulated 1000 iterations of the algorithm (2.80)–(2.81), (2.95), in Matlab, with ε = 0.0001, c =
10, β = 0.00005 and ρ = 0.6. The algorithm explored 36 different action profiles before settling on the
ramp coordination schedule [COR, LOC, LOC,COR,COR,COR, LOC, LOC,COR, LOC]>. The corresponding
baseline utility was 9.6 and the algorithm spent 890 out of 1000 iterations in the above state. The
average utility obtained over the entire simulation run was 8.72, in comparison to an average utility
of 6.30 for the uncontrolled case. In terms of travel times, this corresponds to savings of 31% over
the uncoordinated case. Note that we compute the savings just for the rush-hour period and therefore
this value might exceed the savings typically reported for ramp metering field trials, which are usually
computed for the entire day Papageorgiou and Kotsialos (2000).

Conclusions

We presented a distributed learning algorithm, based on the algorithm in Marden et al. (2014), that can
be used to learn Pareto-efficient solutions in the presence of disturbances. Our algorithm learns efficient
action profiles corresponding to the most favourable disturbance, and specifies a range for the average
welfare. In general, the approach outlined in this paper is particularly well suited to problems where the
disturbances can be modelled as a finite set of small perturbations from a nominal model. Our examples
validated the main result in our paper, and also illustrated the potential of this randomised approach. In
many applications, the average welfare is an important performance metric. In future work, we wish to
explore randomized approaches that optimize the average welfare obtained.
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2.3.3 Towards Optimal, Scalable Traffic Control
P. Grandinetti, F. Garin, C. Canudas de Wit

The problem of traffic congestion has always been a crucial aspect for the design of efficient infras-
tructures, but it is particularly in the second half of the last century that this phenomenon has become
predominant, due to the quickly increasing traffic demand and the more frequent congestions. Conges-
tions appear when too many vehicles try to use a common transportation route, which, due to physical
reasons, has limited capacity. If it happens, they lead to queueing phenomena or, even worse, to a severe
degradation of the available infrastructure’s usage. Hence, congestions result in reduced safety, increased
pollution and excessive delays. Economic implication of such events are recently widely discussed (He
and Zhang, 2015; Sweet, 2015).

Traffic in urban scenarios is mainly regulated by the traffic lights installed at intersections of roads.
Even though these devices were first conceived to guarantee avoidance of collision, with steadily increas-
ing traffic demands it was soon realized that they may lead to more or less efficient network operation.
Therefore, the idea to increase the efficiency of the infrastructure using smart traffic lights policies has
constantly been employed in academic and industrial research.

Moreover, a crucial aspect of the today traffic management policies is the huge amount of data avail-
able to the decision maker (e.g., sensors installed at every urban intersection) and the heavy number of
decision it has to take (e.g., one for each urban intersection). Modern traffic control policies, therefore,
have to take into account such vital aspects. Overloading the decision maker can lead to the most neg-
ative consequences, like failure and crushes. As such, control strategies have to come with some key
features, among which capability to handle big data and scalability to any network size. These goals
are, in some way, in contrast with the optimality objective. In general scenarios, it is very hard to pro-
duce scalable algorithms that also ensure optimality of the result. The work presented in this deliverable
addresses these topics, developing a decentralized decision making scheme, that has low computational
prize and achieves good performances with respect to a global optimum that would practically be too
expensive to calculate in real time. Also, the strategy we elaborated is based on the receding horizon
philosophy; this choice is due to the fact that in traffic scenarios demands are continuously changing
and, therefore, proactive decisions are needed. Our control scheme is able to accomplish such require-
ment, i.e., it may improve the quality of the system in the upcoming future taking into account external
demands.

Some existing strategies, called fixed–time techniques (Robertson, 1969), have limitations due to
their settings, which are based on historical, rather than real–time, data. A survey about the existing
techniques can be found in Papageorgiou et al. (2003). More advanced schemes have been presented
recently and they refer to different models for the network and for the chosen control actions, such as max
pressure control (Varaiya, 2013) and cooperative green lights policies (Savla et al., 2014). Concerning
the control action, we will instead contribute focusing on a more realistic representation of traffic lights,
whose mathematical abstraction often produces problems difficult to solve, due to the binary (green-
red) nature of these signals. Because of that, scientific works often consider optimization that takes
into account either bandwith maximization via phase shift selection (Little, 1966; Gartner et al., 1991)
or duty cycle design (Grandinetti et al., 2015a). The control of both parameters is a very challenging
problem still open in transportation optimization environments. In this work, we indeed decided to deal
with the most general and difficult problem: the control of traffic lights, in urban networks, parametrized
by two degrees of freedom: such representation (i.e., their description with two variable time instants)
includes the most generic scenario, being able to embody phase shift as well as duty cycle.
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Figure 2.44: Traffic lights described as a time trajectory with two degrees of freedom, represented by the timed-controlled
variables σ(1)
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Traffic network description In this section we first motivate the mathematical representation of traffic
lights and, then, describe the network’s model and our chosen measures of traffic performance.

Traffic lights model

Traffic lights are electronic devices installed at the end point (w.r.t. the flow direction) of roads for the
purpose to avoid any collision between vehicles. A traffic light can either allow of forbid vehicles to
continue their route, therefore it can be mathematically described as a map from the set of time instants
to the set {0, 1}.

In a typical urban environment a fixed cycle length T is assigned for the traffic lights. This cycle
is a slot of time during which every traffic light can switch from green to red (or viceversa) at most
once. Several physical reasons justify such a behavior: faster switching may, in fact, give unfavourable
consequences regarding pollution generation and drivers comfort, since in this case vehicles will have
to stop–and–go with higher frequency. Typical values for T are from 90 seconds up to 2 minutes.

To fully capture the above mentioned dynamics we decide to describe the time trajectory of traf-
fic lights with a two-degree-of-freedom trajectory (see Fig. 2.44), given by the vector of two natural
numbers σr =

[
σ

(1)
r σ

(2)
r

]
∈ {Ts, 2Ts, . . . , T}2, where Ts is the sampling time used to discretize the

dynamics, such that T/Ts ∈ N. Hence, σr represents the raising and falling time instants of the signal
ur:

ur(t, σr) =

{
1 if σ(1)

r ≤ t ≤ σ(2)
r

0 otherwise,
(2.96)

where t has to be intended modulo T .

Traffic dynamics on signalized networks

To describe traffic’s time evolution we use the description given by a mass conservation law (Lighthill
and Whitham, 1955; Richards, 1956) and by its discrete-time representation widely known as Cell Trans-
mission Model (CTM) (Daganzo, 1994a). In particular, we consider an extension of the CTM for net-
works with FIFO policy at intersections, similar to the one we already introduced in Grandinetti et al.
(2015a). A urban network is a collection of roads entering it (Rin), internal roads (R), and exiting
roads (Rout). We use the word intersections to identify locations where two or more roads merge. Such
intersections have no capacity storage and they are signalized, in the sense that the traffic flow exiting
each road r ∈ Rin ∪ R is regulated by a traffic light whose value at time instant t will be denoted by
ur(t, σr) ∈ {0, 1}. Whether two roads r and q are connected to the same intersection in such a way that
flow can exit r and enter q we use the notation r _ q (q is downstream w.r.t. r). Furthermore, to every
road q is associated a value βq ∈ (0, 1) (split ratio) that expresses the percentage of the flow upstream q
which actually wants to turn in q.
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In urban scenarios we consider every road r as a cell of the CTM, hence the value of vehicles’
density in it, indicated as ρr (which we consider as normalized w.r.t. the length Lr of the roads itself)
depends on the flows f in

r and fout
r , entering and exiting r, respectively.

Inflow and outflow values are given according to the demand and supply paradigm (Lebacque, 1996).
Given a road r its demand Dr is the flow of vehicles that want to exit r; its supply Sr is the flow that r
can receive according to its storage capacity.

Every road r is characterized by given parameters: the maximum speed in free flow vr, the speed
in congestion phase wr, the maximum density allowed ρmax

r and the maximum flow ϕmax
r . Whether the

system is sampled with step size Ts, to ensure stability it must hold Tsvr/Lr < 1, for every road.
Finally, external traffic demand for every road r entering the network is indicated by Din

r , and exter-
nal supply for every road q exiting the network is indicated by Sout

q .
The model is given by the following set of equations:

ρr(t+ Ts) = ρr(t) + Ts

(
f in
r (t)− ur(t, σr)fout

r (t)
)

(2.97a)

f in
r (t) =

{
min{Din

r (t), Sr(t)}, r ∈ Rin

βr
∑

q:q_r uq(t, σq)f
out
q , oth.

(2.97b)

fout
r (t) =





min{Dr(t), S
out
r (t)}, r ∈ Rout

min

{
Dr(t),

{
Sq(t)
βq

}

q:r_q

}
, oth.

(2.97c)

Dr(t) = min{vrρr(t), ϕmax
r } (2.97d)

Sr(t) = min{ϕmax
r , wr(ρ

max
r − ρr(t))} (2.97e)

ur(t, σr) =

{
1 if σ(1)

r ≤ t ≤ σ(2)
r

0 otherwise.
mod T (2.97f)

Urban traffic performance metrics

Traffic behavior needs to be evaluated and assessed with respect to properly defined performance indices.
There exist several metrics in literature to address traffic performance evaluation; in this paper we focus
mainly on two features of the urban network.

Service of demand (SoD) A urban traffic network is an highly dynamical environment that conti-
nously receives demand from outside. This demand cannot be ignored just to favour the inner quality of
the system, because the external request will end up growing with several undesired effects, due to the
bigger and bigger queues arising outside.

For this reason we consider as quality of the service for a road r ∈ Rin the number of vehicles
(users) served by that road:

SoDr(t) = f in
r (t)|r∈Rin =

= min
{
Din
r (t), ϕmax

r , wr(ρ
max
r − ρr(t))

}
,

(2.98)

To improve performance we would like to maximize the sum of (2.98) over all roads inRin.

Optimization of the infrastructures usage In urban networks there are roads preferred by the users.
The civil authority would like to set traffic lights as to diminuish this usage disparity, to guarantee a more
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equilibrate diffusion of vehicles, thus reducing hard congestions in main streets as well as the possibility
of accidents.

A standard metric that takes into account this behavior is the Total Travel Distance (Gomes and
Horowitz, 2006a), defined as follows:

TTDr(t) = min
{
vrρr(t), wr(ρ

max
r − ρr(t))

}
. (2.99)

We want to maximize the sum of (2.99) over all roads inR∪Rout (because boundary flows are considered
by SoD).

Centralized optimal control The control strategy we designed consists in solving an optimization
problem at the beginning of every cycle (i.e., every t0 = kT , k ∈ N), in order to decide the optimal
traffic lights in the upcoming cycle. Such procedure optimizes the traffic behavior using a receding
horizon philosophy that predicts densities ρ(t0 + nTs), n = 1, . . . , T/Ts. Predictions are carried out
assuming that a measure of densities ρ(t0) is available for the controller.

The optimal values σ∗, i.e., the optimal activation time instants for the traffic lights, are given by:

σ∗ = arg max
σ

T/Ts∑

n=1

(
a1

∑

r∈R∪Rout

TTDr(t0 + nTs)+

+ a2

∑

r∈Rin

SoDr(t0 + nTs)
)

under network dynamics (2.97)

∀ t = t0 + nTs, n = 1, . . . , T/Ts,

(2.100)

where a1, a2 ∈ R are weights for the two involved objectives.
In the rest of this section we show that equations (2.97) and the objective function can be reformu-

lated using logical constraints and variables, obtaining a mixed integer linear problem (MILP). To this
aim, we use the reasoning outlined in Bemporad and Morari (1999). At the end of the reformulation, the
problem’s constraints, instead of (2.97), will be given by (2.102)–(2.106),(2.109),(2.111)–(2.113).

Such final formulation of the problem is more convenient because MILPs are extensively studied,
and there exist good numerical solvers to deal with them, e.g. Gurobi Optimization (2015).

Traffic lights constrained trajectory

Introducing the binary variables δ(1)
r (t), δ(2)

r (t), the constraint expressed by (2.96), for a given time
instant t, is equivalent to the following:

[
δ(1)
r (t) = 1

]
←→

[
σ(1)
r ≤ t

]
(2.101a)

[
δ(2)
r (t) = 1

]
←→

[
t ≤ σ(2)

r

]
(2.101b)

[
ur(t) = 1

]
←→

[
δ(1)
r (t) = 1 ∧ δ(2)

r (t) = 1
]
. (2.101c)
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Let M (1) and m(1) upper and lower bounds10 such that m(1) < σ
(1)
r − t < M (1), for every σ(1)

r ; then
(2.101a) is equivalent to the following constraints:

σ(1)
r − t ≤M (1)(1− δ(1)

r (t)) (2.102a)

σ(1)
r − t > m(1)δ(1)

r (t). (2.102b)

Similarly, let M (2) and m(2) such that m(2) < σ
(2)
r − t < M (2), for every σ(2)

r ; then (2.101b) is
equivalent to the following constraints:

σ(2)
r − t ≤M (2)(1− δ(2)

r (t)) (2.103a)

σ(2)
r − t > m(2)δ(2)

r (t). (2.103b)

Finally, the constraint (2.101c) is equivalent to the following:

ur(t)− δ(1)
r (t) ≤ 0 (2.104a)

ur(t)− δ(2)
r (t) ≤ 0 (2.104b)

δ(1)
r (t) + δ(2)

r (t)− ur(t) ≤ 1 (2.104c)

δ(1)
r (t), δ(2)

r (t) ∈ {0, 1}.

Depending on the physics of system it may be useful to impose another constraint: we can require that
the rising instant σ(1)

r and the falling one σ(2)
r are sufficiently separated in time, so ensuring that too

short green slots are avoided. This can be obtained with the following constraints:

σ(1)
r + σmin

r ≤ σ(2)
r (2.105a)

Ts ≤ σ(1)
r , σ(2)

r ≤ T, (2.105b)

where σmin
r are consistently assigned to every traffic light.

Collision avoidance constraints

To guarantee the safe crossing we impose an hard constraint such that at every time instant only one
among roads entering the same intersection has the right of way. This condition is expressed by the
following linear constraint: ∑

r:r_q

ur(t, σr) ≤ 1, (2.106)

for every road q. Notice that constraint (2.106) let the further freedom to assign red to all traffic lights
at the same intersection, if it is required.

State constraints

The dynamics defined in (2.97) is non linear due to the min operator and to the product between flows
and traffic lights’ values. Our aim is to show how such a dynamics may be reformulated with mixed
integer linear constraints.

10Here and in what follows the numerical values for these bounds are omitted. Notice that flows in the network are always
in [0, ϕmax], while time instants indicated by σ are in [Ts, T ]. Bounds can be manually set even if some software, like Yalmip
(Lofberg, 2004), is able to determine them while parsing the problem formulation.
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Let σ be a vector containing σr’s for every road r, and let f̄ in
r (t, σ) and f̄out

r (t, σ) be the following
modified flows:

f̄ in
r (t, σ) =

{
βr
∑

q:q_r f̄
out
q (t, σ), r ∈ R ∪Rout

f in
r (t), r ∈ Rin (2.107a)

f̄out
r (t, σ) =

{
ur(t, σr)f

out
r (t), r ∈ Rin ∪R

fout
r (t), r ∈ Rout.

(2.107b)

We now show a scheme to rewrite (2.107b), i.e., min of several functions multiplied by a binary variable.
For every road r ∈ Rin∪R let d(r)(t) ∈ {0, 1}h be a vector of binary variables, where h = 1+#{q :

r _ q}. Then the definition of outflow (2.97c) is equivalent to the following constraints:
[
d(r)

0 (t) = 1
]
−→

[
fout
r (t) = Dr(t)

]
(2.108a)

[
d(r)
q (t) = 1

]
−→

[
fout
r (t) =

Sq(t)

βq
∀ q : r _ q

]
(2.108b)

[
d(r)

0 (t) = 1
]
−→

[
Dr(t) ≤

Sq(t)

βq
∀ q : r _ q

]
(2.108c)

[
d(r)
i (t) = 1

]
−→

[
Sq(t)

βq
≤ Si(t)

βi
∀ i 6= q

]
(2.108d)

h∑

i=1

d(r)
i (t) = 1. (2.108e)

Given the following upper and lower bounds: l0 < fout
r (t)−Dr(t) < L0, lq < fout

r (t)−Sq(t)/βq < Lq,
ψ0 < Dr(t) < Ψ0, ψq < Sq(t)/βq < Ψq, logical constraints (2.108a)–(2.108d) are equivalent to the
following linear ones:

fout
r (t)−Dr(t) ≥ l0(1− d(r)

0 (t)) (2.109a)

fout
r (t)− Sq(t)

βq
≥ lq(1− d(r)

q (t)) (2.109b)

fout
r (t)−Dr(t) ≤ L0(1− d(r)

0 (t)) (2.109c)

fout
r (t)− Sq(t)

βq
≤ Lq(1− d(r)

q (t)) (2.109d)

Dr(t) ≤
Sq(t)

βq
+ (Ψ0 − ψq)(1− d(r)

q (t)) (2.109e)

Sq(t)

βq
≤ Si(t)

βi
+ (Ψq − ψi)(1− d(r)

q (t)) (2.109f)

∀ q : r _ q, ∀ i 6= q

d(r)(t) ∈ {0, 1}h,

for every road i and j 6= i.
Finally, given ur(t, σ) ∈ {0, 1} setting

f̄out
r (t, σ) = ur(t, σ)fout

r (t) =

{
fout
r (t) if ur(t, σ) = 1

0 otherwise
(2.110)
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is equivalent to

g(1− ur(t, σ)) + f̄out
r (t, σ) ≤ fout

r (t) (2.111a)

−G(1− ur(t, σ))− f̄out
r (t, σ) ≤ −fout

r (t) (2.111b)

−Gur(t, σ) + f̄out
r (t, σ) ≤ 0 (2.111c)

gur(t, σ)− f̄out
r (t, σ) ≤ 0, (2.111d)

where g < fout
r (t) < G.

Objective functions

The metrics illustrated in Section 2.4.2 are nonlinear functions of roads’ density. Therefore, we use the
same technique previously employed, which allows us to transform their expression as linear constraints.

SoD Using the scheme illustrated by (2.108)–(2.111), expression (2.98) is equivalent to:

π1(1− b1(t)) ≤ SoDr(t)−Din
r (t) ≤ Π1(1− b1(t)) (2.112a)

π2(1− b2(t)) ≤ SoDr(t)− ϕmax
r ≤ Π2(1− b2(t)) (2.112b)

π3(1− b3(t)) ≤ SoDr(t)− wr(ρmax
r − ρr(t)) (2.112c)

SoDr(t)− wr(ρmax
r − ρr(t)) ≤ Π3(1− b3(t)) (2.112d)

Din
r (t) ≤ ϕmax

r + (P1 − p2)(1− b1(t)) (2.112e)

Din
r (t) ≤ wr(ρmax

r − ρr(t)) + (P1 − p3)(1− b1(t)) (2.112f)

ϕmax
r ≤ Din

r (t) + (P2 − p1)(1− b2(t)) (2.112g)

ϕmax
r ≤ wr(ρmax

r − ρr(t)) + (P2 − p3)(1− b2(t)) (2.112h)

wr(ρ
max
r − ρr(t)) ≤ Din

r (t) + (P3 − p1)(1− b3(t)) (2.112i)

wr(ρ
max
r − ρr(t)) ≤ ϕmax

r + (P3 − p2)(1− b3(t)) (2.112j)

b(t) ∈ {0, 1}3,

where Π, P (π, p) are upper (lower) bounds consistently chosen.

TTD Similarly, expression (2.99) is equivalent to the following:

γ1(1− c1(t)) ≤ TTDr(t)− vrρr(t) (2.113a)

TTDr(t)− vrρr(t) ≤ Γ1(1− c1(t)) (2.113b)

γ2(1− c2(t)) ≤ TTDr(t)− wr(ρmax
r − ρr(t)) (2.113c)

TTDr(t)− wr(ρmax
r − ρr(t)) ≤ Γ2(1− c2(t)) (2.113d)

vrρr(t) ≤ wr(ρmax
r − ρr(t)) + (Θ1 − θ2)(1− c1(t)) (2.113e)

wr(ρ
max
r − ρr(t)) ≤ vrρr(t) + (Θ2 − θ1)(1− c2(t)) (2.113f)

c(t) ∈ {0, 1}2,

where Γ,Θ (γ, θ) are upper (lower) bounds consistently chosen.
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Decentralized suboptimal control The control strategy illustrated in the previous section, while pro-
viding the optimal values for traffic lights, requires to solve an intractable (NP–hard) problem. In this
section we therefore propose a decentralized realization of such strategy, which reduces the computa-
tional burden substantially. It is based on two main ingredients: suboptimal solutions for local problems
and agreement policy between local solutions.

Local problems

The optimization procedure is decentralized among intersections, each of which solves a local MILP.
For every local problem, i.e., over intersection A, a receding horizon approach is used and the predicted
densities belong to the set

RA =
{
r ∈ Rin ∪R ∪Rout : r entering or exiting A

}
, (2.114)

while the optimization variables are all traffic lights in the following set:

ΩA =
{
σr : r ∈ RA

}
∪
{
σq : q _ r, r entering A

}
. (2.115)

Furthermore, densities for roads in Rin ∪ R ∪ Rout \ RA are considered constant (equal to the last
measured values). This is the main reason of suboptimality, since the objective function maximized in
every subproblem is computed over the setRA, i.e.,

JA =

T/Ts∑

n=1

(
a1

∑

r∈RA\Rin

TTDr(t0 + nTs)+

+ a2

∑

r∈RA∩Rin

SoDr(t0 + nTs)
)
.

(2.116)

As illustrative example look at Fig. 2.45, where we consider the optimization solved by intersection
A. In such a scenario density predictions are carried out only for roads 1–4, and the problem is solved
with respect to the variables σ1, . . . , σ8 (notice that σ5, . . . , σ8 are needed to compute inflows for roads
1 and 2).

It is worth to note that, among all σ’s considered by an intersection, only a subset of them fulfills hard
constraints for collision avoidance within the local optimization: referring again to Fig. 2.45, intersection
A guarantees such fulfillment only for σ1 and σ2. For the other variables considered by A (marked in
red in the figure) there might be some hard constraint which is not included within the local problem
(in Fig. 2.45 this happens for σ3 and σ4); Therefore, the values computed by A for these variables can
be interpreted only as suggestions that A would like to advice its neighbor intersections, to optimize its
own objective. How such suggestions are considered is explained in the next section.

Agreement policy

To let local problems taking care of advices provided by neighbors we save the result of every local
optmization. For instance, when A solves its subproblem, we save the variables σr,A, for every r involved
in such problem. Once these informations are available we can identify, for every road r, the set Sr of
all intersections whose local problem involves σr. Then the average suggestion given by intersections
about σr is computed as:

σ̂r =
1

|Sr|
∑

I∈Sr
σr,I. (2.117)
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Figure 2.45: Illustrative example of local subproblems.

We now use the values σ̂r to modify the cost function of every local problem, as the following:

ĴA = JA − a3

∑

σr∈ΩA

‖σr − σ̂r‖1 , (2.118)

where a3 is a real number used to weight neighbors’ suggestions w.r.t. A’s own objective. Notice also
that the 1–norm can be turned in a mixed integer linear formulation adding two binary variables for every
σr ∈ ΩA. This is the computational prize to pay in order to take into account suggestions by neighbors,
rather then ignoring them; the problem, however, is still significantly numerically more efficient than
its centralized version. This idea can be iterated Nit times, in order to let suggestions spread among
intersections. The scheme we implemented is the following:

0. Let Nit be assigned;

1. For every intersection A solve the local MILP with cost function JA and save the resulting σr,A;

2. If Nit = 0 then stop;

3. For every signalized road r compute the average suggestions σ̂r;

4. For every intersection A solve the local MILP with cost function ĴA, and use the result to update
σr,A;

5. If for every r and for every A there was no update in σr,A then stop;

6. Decrement Nit by 1, goto 2.

Whenever the algorithm stops, the value assigned to every traffic light is

σ∗r = σr,A, where r enters A, (2.119)

since every intersection guarantees the fulfillment of collision avoidance (hard) constraints only over
roads entering it.

Notice that if Nit = 0 is given, this means that suggestions from neighbors are ignored. An impor-
tant feature of our scheme is that the subproblems’ complexity does not depend on the network size;
therefore the algorithm complexity is linear in the number of intersections and in the chosen number of
iteration, which is a tunable parameter. Our numerical results, presented in the next section, show that
the algorithm stops already after three iterations as no changes appear in the solution.

Another benefit of this decentralized strategy is that step 1 (the same applies to step 4), requires
to solve a set of optimization problems that are completely indipendent of each other. Therefore the
procedure can be implemented even more efficiently in a parallel architecture, where there is a controller
at every intersection that exchanges σ’s values with the others.
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Figure 2.46: Networks used for simulations and comparisons.

Simulations and comparisons The strategies illustrated in the previous sections have been tested
via software simulations in MatLab environment, using software (Gurobi Optimization, 2015; Lofberg,
2004) to solve the mixed integer linear programs. The simulated scenario is the following: all roads in
the network have same physical properties (v,w,ϕmax,ρmax). Each simulation is run for a virtual time
of 45 minutes, when traffic lights’ cycle is 90 seconds and sampling time is 10 seconds. As explained
in Section 2.3.3, the optimization problem is solved at the beginning of each cycle, therefore in this
set-up the control values are computed 30 times. The constant σmin is set equal to 2 sample steps, so
the minimum green slot is 20 seconds. Outside the network, time-varying demands and supplies are
randomly uniformly generated in the interval [0.5, 1]ϕmax for the entire simulated time; by doing so, the
network’s state changes during the simulation (from overall free to overall congested, and viceversa),
and the controllers are then tested in different circumstances. The numerical results here presented are
obtained as mean values over the entire simulation time.

We would like to stress the fact that the centralized strategy we propose is able to solve a very general
problem, despite the computational inefficiency. The proposed traffic lights’ representation, along with
the numerical optimization, guarantees optimal behavior by means of the chosen objective index, as it
may cleverly choose phase shifts between lights as well as green time for each of them. Therefore,
the results obtained applying this techinique are considered as benchmark (upper bounds) to evaluate
performances of the decentralized strategy, from traffic and computational performance point of view.
We generate the afore mentioned scenario for two sample networks, shown in Fig. 2.46.

Representative results of the simulations are reported in Table 2.6. Our numerical results are encour-
aging:

• The decentralized strategy obtains performance around 80-85% of the ones obtained by the cen-
tralized optimization;

• Computational time is dramatically reduced, especially with growing network’s size (as expected
from the NP–hardness of the problem). Notice also that in these simulation we did not make use
of possible multithread implementation.

Conclusions and future works We presented an optimal control scheme for urban signalized traffic
networks that schedules traffic lights taking into account upcoming external demands. This strategy, on
one hand, ensures optimal performances, on the other, requires to solve a mixed integer linear program.
To overcome the hardness of this problem, we proposed a decentralized realization of the same decision
making scheme, that allows parallel computation and scalabiility to any network size. This approach
guarantees effective handling of large amount of data coming from traffic sensors and scalability to any
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Table 2.6: Normalized performance comparison between the centralized strategy (MILP), considered as benchmark, and the
decentralized one (Dec–MILP).

Network 2.46a Network 2.46b

MILP Dec–MILP MILP Dec–MILP

TTD 1 0.82 1 0.83
SoD 1 0.86 1 0.85

cpu time 1 0.6 1 0.03

network size. Our software simulations have shown that the computational load is extremely reduced by
the decentralized scheme, which moreover achieves quite good performances from traffic point of view.

Future work will aim to investigate the scalability properties of the depicted techniques, combined
with improvements on the gap with the upper bound provided by the centralized algorithm.
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Event Relative frequency

PredictedCongestion 10%
Congestion 5%

ClearCongestion 10%

setMeteringRateLimits 5%

CoordinateRamps 5%

PredictedRampOverflow 5%
ClearRampOverflow 5%

AverageOnRampValuesOverInterval 20%
AverageDensityAndSpeedPerLocation 35%

Table 2.7: Relative frequency of events in the test case used to obtain the timings in Figure 2.47.

2.4 Performance Evaluation

In this section, we provide an overview of the component evaluation of the DM algorithms. We perform
the evaluation with respect to two main criteria: In the next section 2.4.1, we analyze computation
times of the algorithms, implemented in an event-driven framework as outlined in the corresponding
deliverable (D 6.1). This serves to demonstrate real time capabilities of the algorithms. In the following
section 2.4.2, we compare the performance of the algorithms in terms of traffic metrics to quantify the
improvement over the state of the art.

2.4.1 Real-time Decision Making
A detailed evaluation of the time needed to process individual events by DM is summarized in Figure
2.47. To ensure perfect control over the type of events processed as well as the attribute values, this
test is run outside of the SPEEDD cluster architecture on a local computer (MacBook Pro with OSX El
Capitan, 2.3 GHz Intel Core i7). The events used in this experiment have been chosen such as to overrep-
resent “difficult” cases, i.e. attribute values are more often close to the margins than one might expect in
reality, congestion events are reported more often and user commands are sent frequently. In addition, up
to 20% (depending on the event type) of the events are sent with invalid attributes, to test code stability
and exception handling. The individual events are chosen with relative frequencies as reported in Table
2.7. In total, 106 events are processed in 362s. Note that this time and all the other times reported in this
section, only account for the computation time of DM once the event has been received by DM, as we
only intend to show real time capability of the DM algorithms. For example, the overhead incurred
to send, transmit and emit events is not included. A summary of the computation times is displayed in
Figure 2.47. It should be highlighted that Figure 2.47 shows a multimodal distribution of computation
times. Many events are processed in less than 3µs (e.g. almost 90% of AverageDensityAndSpeedPer-
Location events), but certain events take between 10µs and 0.1ms to be processed, (e.g. the remaining
AverageDensityAndSpeedPerLocation events). The most computationally expensive events on the other
hand take up to 10ms to be processed.

This multimodal distribution with three distinct modes results from the type of action required to
process each event. For certain events, no immediate action by DM is necessary or advisable. The
processing of such events can be as simple as updating certain variables, and is often accomplished
in less than 1µs. In contrast, other events require immediate action. An example is a reevaluation of
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Figure 2.47: The percentage of events of a certain type processed by the DM module for the freeway use case as a function of
the execution time.

the ramp metering policy, which requires at least a recomputation of the metering rates. Most effort is
required for predicted events, for which often a re-estimation of the GP system model (Section 2.1.1) is
necessary. We provide a comprehensive explanation for the observed results for different types of events
next.

(i) AverageDensityAndSpeedPerLocation, AverageOnRampValuesOverInterval: These events
contain aggregate information about the system state. For most such events, processing is as
simple as performing one (linear) update of the internal state of the DM. Therefore, almost 90%
of these events are processed within 3µs. Only a small fraction of these events of about 10%
(more precisely: measurements from a sensor on a metered onramp) is also used as a trigger for
recomputing ramp metering rates. The additional time required to perform these computations
increases the time to process the events to 10µs and 0.1ms.

(ii) ClearCongestion, ClearRampOverflow: It can be seen from Figure 2.47 that these types of
events are processed comparatively fast. This is not surprising since these events always exhibit
100% certainty. They mainly act as triggering mechanisms to turn off ramp metering control after
a critical traffic situation has been resolved. Therefore, processing them is often as simple as
updating the internal state of DM and potentially resetting the state of the high-level coordination
algorithms.

(iii) setMeteringRateLimits: This event corresponds to a user command and is always sent with
100% certainty. It always requires an (inexpensive) update of the corresponding variables. In
about 22% of the instances in this test case, this change in the metering rate limits requires an

D4.3: Decision Making III



2.4. Performance Evaluation page 117 of 138

Event Mean 50% 95% 99.9%

PredictedCongestion 2060µs 18µs 5305µs 7345µs
Congestion 1030µs 18µs 3535µs 5363µs

ClearCongestion 3.9µs 0.3µs 29µs 94µs

setMeteringRateLimits 4.4µs 0.5µs 31µs 103µs

CoordinateRamps 41µs 0.4µs 29µs 99µs

PredictedRampOverflow 2014µs 25µs 5324µs 7398µs
ClearRampOverflow 5.5µs 0.3µs 39µs 100µs

AverageOnRampValuesOverInterval 7.4µs 0.4µs 39µs 108µs
AverageDensityAndSpeedPerLocation 4.1µs 0.3µs 31µs 99µs

Table 2.8: Statistics of computation times for individual events.

immediate change in the metering policy, since the bounds become active. The effect, that only
sometimes an immediate change in the metering policy is required, is likely responsible for the
bimodal distribution of computation times for this event.

(iv) RampCoordination: This event is very similar in nature to the setMeteringRateLimits event,
since one can interpret the call for ramp coordination just as a request to restrict the metering rates
depending on the event attributes. The only difference to the metering rate limits defined by the
user via the UI is that for ramp coordination, the rates are restricted based on the requirements of
downstream ramps for which ramp overflow is imminent.

(v) Congestion: Note that some congestion events, close to 50% in this experiment according to Fig-
ure 2.47, do not require further processing. This happens if the DM is already aware of a particular
congestion, e.g. because it was perfectly predicted or congestion events are sent multiple time. In
all other instances, the main computational effort that arises for a Congestion event comes from
the necessity to evaluate the internal GP model. The evaluation of the GP is always executed if the
congestion was not detected earlier and serves to determine the maximal bottleneck flow, which
in turns influences the metering rates. However, since a congestion event always exhibits 100%
certainty, no re-estimation of the GP is necessary, which makes processing congestion events
somewhat cheaper than predicted events.

(vi) PredictedCongestion, PredictedRampOverflow: These events are in general uncertain. There-
fore, a re-estimation of the internal GP model is required, in order to related the reported uncer-
tainty to the uncertainty present in the internal model and ultimately to determine the appropriate
reaction. Note that similar to congestion events, some events are essentially duplicates and do not
require further processing.

For completeness, we also report the computation times in Table 2.8 numerically. To account for the
multimodal nature of the distribution, we first report mean computation time, which might be more or
less meaningful in practice, since it of course heavily depends on the percentage of events that do not
require immediate processing. We then also report the 50%, 95% and 99.9% quantile, which are more
accurately able to capture the tail of the distribution of computation times.

It shall be highlighted that the distribution of computation times might vary depending on the com-
position of the event stream. For example, less predicted events (PredictedCongestion, PredictedRam-
pOverflow), which routinely require a re-estimation of the internal GP model, might lead to increased
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Benchmark Optimum

TTS TWT TTS TWT
Sec. 2.2.1 Local feedback, −5.33% −17.53% +0.054 +0.178%

benchmark: no control
Sec. 2.2.1 Local feedback, −0.43% −1.42% +0.054 +0.178%

benchmark: ALINEA
Sec. 2.3.2 Coordinated metering, - up to -31% unknown unknwon

benchmark: no coordination

TTD SoD TTD SoD
Sec. 2.3.3 Dec-MILP, Network 2.46a 18% 14% unknown unknown
Sec. 2.3.3 Dec-MILP, Network 2.46b 17% 15% unknown unknown

Table 2.9: Performance comparisons between the algorithms proposed in this deliverable and various benchmarks. Improve-
ments against the benchmarks are indicated in green and suboptimal values are indicated in red. Note that we minimize the
TTS and TWT metrics, whereas we maximize TTD and SoD.

average computation times for measurement events (AverageDensityAndSpeedPerLocation), since the
GP model needs to be re-estimated after a certain time. If no re-estimation because of predicted events
is required, the computations will be performed during evaluation of some measurement event after a
certain time, that is, after a certain number of measurements. Also, it is noticeable, that the computation
time for PredictedRampOverflow events are very similar to the distribution of computation times for
PredictedCongestion events. The exact distribution of computation times depends also on the attribute
values which will differ in a closed-loop simulation or execution. The similarity between both distribu-
tions is therefore likely only an artifact created by the way events have been created randomly for this
evaluation.

2.4.2 Improvements in Terms of Traffic Metrics
For each of the algorithms presented in this section, we have quantified the quantitative improvements,
as summarised in Table 2.9. In particular, the algorithms are evaluated against a benchmark and the
optimal solution, if available. The choices for the benchmarks are given in the table itself. Note that
the optimum refers to the global optimal solution under perfect model knowledge and perfect traffic
demand prediction. This performance will be unobtainable for any real-world controller and it merely
provides an estimate of the potential for further improvement. Depending on the scenario, we compare
algorithms w.r.t. Total Time Spent (TTS) and Total Waiting Time (TWT), as defined in Section 2.2.1.
Note we seek to minimize both quantities, therefore negative values in the table indicate an improvement
of the proposed algorithms over the benchmark performance. Conversely, we seek to maximize the
Total Travel Distance (TTD) and the Service of Demand (SoD), as defined in Section 2.3.3. All results
reported in Table 2.9 can also be found in the respective sections. Note that for some control problems,
there is no efficient method to compute the optimal solution because these problems are nonconvex and
far too large to be solvable by available tools. Therefore, the relation of the obtained results to the
optimal solution are reported as “unknown”.

In the traffic use case, existing solutions for freeways such as Alinea are proprietary systems and
the decision making algorithm used in these approaches are not publicly available. To circumvent this
problem, we suggest the use of the first version of the SPEEDD prototype as the state-of-the-art.

For inner city traffic, this problem is only more acute. Design principles for existing traffic controls
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in the city of Geneva are opaque. In fact, many of the existing urban traffic control solutions around the
world have been hand-tuned over several years, and the design principles are absent or lost. Also, these
systems have been designed at some point for existing traffic conditions and have not been thoroughly or
rigorously updated since. In this context, an important contribution of the decision making component
in SPEEDD are the systematic design approaches developed in this project.
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3

DM for Credit Card Fraud

In the use-case of credit card fraud detection, the question of reliable and accurate detection of fraud
is predominant and decision making is reduced to a supporting role, providing additional detection
algorithms or addressing the question of how to automate the decision tasks that in current state-of-the-
art solutions are left to human experts.

3.1 Inverse Optimization

Decision making for the credit card use case deals with fraud detection, based on inputs from event pro-
cessing for this use case as well as other sources of information. In current practice, the decision makers
are often fraud analysts. We examine how to automate this last and important step in fraud detection for
the credit card use case. The event processing algorithms identify fraud patterns, or their likelihoods,
and this information can be used to decide on whether a fraud has occurred or not. However, credit card
companies often use humans, with access to the entire transaction history and other information such as
user profiles, to take the final call on fraud. Using models for cognitive processing, we wish to identify
the rationale behind the analysts’ decisions, so as to replicate them using automated controllers.

A cognitive processing model for an analyst’s decisions is depicted in Figure 3.1. The cognitive
model is inherently dependent on the visual processes involved: how is the data presented to the analyst
and how is such information processed by a human observer? The answer to the first question is deter-
mined by the design of the graphical user interface. Data can be presented in the form of lists, numerical
values, bar charts, colour maps, etc. Each visual display method has an associated cognitive model,
which describes how quickly and accurately the human eye and brain absorb this information. Using
this information, the cognitive process updates a belief vector that summarizes the analyst’s current un-
derstanding of the case at hand and takes a suitable decision. The decision could be to examine another
data source on the graphical user interface, or to click on the visual aid to access exact numerical values,
or to take a final call on the absence or presence of fraud. By virtue of the fraud analyst’s expertise,
these decisions can be assumed to be optimal for some unknown cost function. If this cost function
were known, it may be possible to design an optimal control policy for this cost, and to use this control
policy to replace the expert analyst. We show how inverse optimization can be used to identify this cost
function for a simple visual cognitive process.
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Figure 3.1: A visual and cognitive processing model for a credit card fraud expert who scans and operates the graphical user
interface.

3.1.1 Problem Formulation
We describe the model for the cognitive process from Figure 3.1 for a static visual display consisting
of an n ×m matrix of encoded symbols. We have kept our formulation generic to motivate its use for
various display methods and the associated cognitive models.

Physical Process: We consider a static visual display represented byX ∈ X n×m, where n×m is the
size of the visual array and the elements in the array are encoded using the alphabet X = {1, . . . ,M}.
The state corresponding to this physical process at time k ≥ 0 is xk = vec {X}. The visual array
corresponds to a static display, and thus, xk+1 = xk.

Measurement Model: We apply the spatial smearing and feature noise model for the measurement
process, resulting in the measurements

yk = Cρkxk + vρk,k . (3.1)

Here, ρk ∈ R is a non-autonomous switching process taking values in the set R := {1, . . . , nm}. A
mode ρk = r denotes the new fixation, following a saccade, on the rth element of the state xk, or on the
corresponding (ir, jr)

th element of the visual array X , for ir = mod(r, n) and jr = br/nc+ 1.
As per the spatial smearing model, the measurement is a weighted average of the elements of the

cell corresponding to the new fixation and its neighbours. Thus, the qth component of Cρk is

Cρk,q =

{
wρk,q if q ∈ N (ρk) ,

0 otherwise .

Here, N (ρk) denotes the set of indices of the cell ρk and its neighbours, and is defined as N (ρk) :=
{q ∈ {1, . . . , nm} | iq = iρk ± 1 , jq = jρk ± 1}. The weights wρk,q are determined by the Gaussian
kernel with standard deviation σ(θρk,q, dρk,q), where θρk,q and dρk,q are the angle and distance between
the fovea, which is fixated at the centroid of the ρth

k cell, and the centroid of the qth cell, respectively.
The standard deviation σ(θρk,q, dρk,q) is defined as

σ(θρk,q, dρk,q) = 1− acuity(θρk,q, dρk,q) ,

acuity(θρk,q, dρk,q) =

{
(dρk,qθρk,q)

−0.29 − 0.32 ifθρk,q 6= 0 ,

1 otherwise .
(3.2)
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As per the feature noise model, the qth component of the measurement noise process vρk,k is given by

vρk,k,q =

{
νρk,k,q if q ∈ N (ρk) ,

0 otherwise .

Here, νρk,k,q is an independent and identically distributed zero-mean Gaussian noise process with stan-
dard deviation σ(θρk,q, dρk,q).

Observer: An observer generates the minimum mean squared error estimate x̂k := E[xk|yk0 ,ρk0], per-
haps using a Kalman filter.

Controller: The controller generates a control signal uk ∈ U, where U := R⋃{‘present′, ‘absent′}.
The control signal chooses to saccade to a new fixation in R or detect the absence or presence of a
target element in the visual array. When the controller chooses to saccade, the new fixation is given by
ρk+1 = uk for k = −1, 0, . . . , N − 1.

In general, any admissible control policy, such as uk = γk(y
k
0 ,u

k−1
0 ), can be used. Accordingly, for

k = −1, the control signal will be chosen based on a priori information alone. However, on grounds of
simplicity, the control policies may also be restricted to use the current estimate x̂k alone.

Control Cost: The controller is typically chosen to minimize a cost

J =

N−1∑

k=0

E[ck(xk, uk)] + E[cN (xN )] , (3.3)

where ck(xk, uk) is the cost incurred at time k.

Problem of Interest: Assume that the controller is restricted to use the estimate x̂k in place of the entire
measurement and control history. Then, we wish to explore the following questions:

1. Given κ instances of the data pair {x̂k, uk}, corresponding to κ observations of the inputs and
outputs of an expert decision maker, can we impute a cost function Ĵκ for the above problem?

2. Can we provide a performance guarantee for a controller γ∗(Ĵκ), designed to minimize the im-
puted cost, in comparison to the expert decision maker?

3. Can we impute a cost function for various visual display aids, and comment on different designs
for the graphical user interface in terms of fraud detection performance?

Brief Summary of Inverse Parametric Optimization

The problem described in (3.1)–(3.3) can be posed as an optimization problem. To do so, let us defined
the probability space (Ω,F ,P) for the primitive random process vρk,k driving our system. Then, we
have

{γ0, . . . , γN−1} ∈ arg min
u−1,u0,...,uN−1

N−1∑

k=0

E[ck(xk, uk)] + E[cN (xN )]

such that xk+1 = xk ,

yk = Cuk−1
xk + vuk−1,k ,

uk = γk(y
k
0 ,u

k−1
0 ) ,

γk ∈ U(Ω,Fyk ,P) , k = 0, . . . , N − 1 ,
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where U(Ω,Fyk ,P) is the space of U-valued functions that are measurable with respect to Fyk :=
σ(y0, . . . , yk), the σ-algebra generated by the history of the observation process up to time k. The
above formulation represents our aim of selecting causal control policies that minimize the cost in (3.3).

In general, we obtain a parametric optimization problem, defined as one in which the problem data,
and consequently the solution, varies with respect to some known parameter. For such problems, one
wishes to identify some function f : Rm → Rn such that

f(p) ∈ arg min
z

J(z, p)

such that (z, p) ∈ Γ ,
(3.4)

where z ∈ Rn is the decision variable, p ∈ Rm is the parameter, J : Rn × Rm → R is the cost function
and Γ ∈ Rn × Rm is the constraint set. The solution function f maps each parameter to an optimal
solution for that parameter, and is to be identified. A overview of methods for constructing a solution
function f for several common problem classes can be found in Pistikopoulos et al. (2007).

3.1.2 Methodology
The problems considered by SPEEDD are typically subject to significant noise or uncertainty. Therefore,
we extend the previously derived formulation to allow for a robust approach in the sense of Task 4.2.
Consider the inverse optimization problem in which, instead of a “best fit”, we seek to minimize the
conditional value at risk (CVar) at level α given as

CVarα(lθ) = inf
τ
τ +

1

α
EP[max{lθ(s, x)− τ, 0}

]

for some loss function lθ(s, x) describing the quality of fit given some prior probability measure P.
The prior distribution P is not known and therefore, it has to be estimated. We assume that a set of N
independent data samples ξ̂i = (ŝi, x̂i) is available. The sample distribution is then given as

P̂N =
1

N

N∑

i=1

δξ̂i

We attempt to obtain a solution to the inverse optimization problem that is robust to changes in the
(unknown) prior distribution. More precisely, we consider the set of all distribution within a ball

P̂ := Bpε (P̂N ) =
{
Q : Wp(Q, P̂N ) ≤ ε

}

of radius ε centered around the sample distribution P̂, defined by the p-Wasserstein metric. We encode
the preference for a robust solution in the loss function

lθ(s, x) := Fθ(s, x)− min
y∈X(s)

Fθ(s, y)

which can be interpreted as (minimizing) the suboptimality of the chosen parameters x in comparison
to the best parameters y for the parameter dependent, certainty-equivalent objective Fθ(s, x). Putting all
the pieces together, we define the robust inverse optimization problem

minimize
θ∈Θ

sup
Q∈P̂

inf
τ
τ +

1

α
EP[max{Fθ(s, x)− min

y∈X(s)
Fθ(s, y)− τ, 0}

]
(3.5)

In Esfahani et al. (2015), the problem given by the previous equation is considered for linear, piecewise-
affine and quadratic parametric objective functions Fθ(s, x) and affine constraints. The following theo-
rem summarizes the main result:
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Theorem 3.1.1 (Theorem 5.3, Esfahani et al. (2015)). (Safe Conic Approximation of 3.5 for Quadratic
Candidate Objective). Consider the set of quadratic objective functions given as Fθ(s, x) = x>Qxxx+
x>Qxss + x>q with θ = (Qxx, Qxs, q), Qxx � In, and affine constraints X(s) = {(x, s) : Wx ≥
Hs + h}. Then, the following conic program provides a safe approximation for the distributionally
robust inverse optimization problem 3.5 over the 2-Wasserstein ball:

minimize τ +
1

α

(
ε2λ+

1

N

N∑

i=1

si

)

subject to θ ∈ Θ, λ ∈ R+, τ, ri, ρi1, ρi2 ∈ R, φi1, φi2 ∈ C∗, µi1, µi2, γi ∈ K∗ ∀i ≤ N
χi1, χi2 ∈ Rm, ζi1, ηi1, ζi2 ∈ Rn ∀i ≤ N

χi1 =
1

2

(
−C>φi1 +H>(µi1 + γi1)− 2λŝi

)
∀i ≤ N

ζi1 =
1

2
(−q −W>µi1 − 2λx̂i), ηi1 =

1

2
(q −W>γi1) ∀i ≤ N

ρi1 = τ + ri + λ(x̂>i x̂i + ŝ>i ŝi) + d>φi1 + h>(µi + γi) ∀i ≤ N

χi2 =
1

2

(
−C>φi2 +H>µi2 − 2λŝi

)
∀i ≤ N

ζi2 =
1

2
(−W>µi2 − 2λx̂i), ηi2 = −1

2
W>γi2 ∀i ≤ N

ρi2 = ri + λ(x̂>i x̂i + ŝ>i ŝi) + d>φi2 + h>µi ∀i ≤ N



λI −1
2Q
>
xs

1
2Q
>
xs χi1

−1
2Qxs λI−Qxx 0 ζi1

1
2Qxs 0 Qxx ηi1
χ>i1 ζ>i1 η>i1 ρi1


 � 0,



λI 0 χi2
0 λI ζi2
χ>i2 ζ>i2 ρi2


 � 0 ∀i ≤ N.

Once we have identified a cost function, the theory of partially observed Markov decision processes
provides us with a structural characterization of the optimal controller. We can utilize this to system-
atically identify controllers that approximate the optimal one. In this section, we briefly outline the
important existing results.

A partially observed Markov decision process consists of a state process sk ∈ S, an observation
process ok ∈ O, an action process ak ∈ A, for k = 1, 2, . . . , N , and a single decision maker, where:

1. The action at time k is chosen by the decision maker as a function of the entire observation and
action history, i.e.,

ak = dk

(
ok0,a

k−1
0

)
.

2. After the action at time k is taken, the new state and observation are generated according to the
transition probability law

P
(
sk+1, ok+1|sk0,ok0,ak0

)
= P (sk+1, ok+1|sk, ak) .

3. At each time instant, an instantaneous cost ck(sk, ak) is incurred.

4. The optimization problem for the decision maker is to choose a decision strategy d := {d0, . . . , dN}
to minimize the total cost

J =

N∑

k=1

E [ck(sk, ak)]
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The following well known results provide the structure of optimal strategies and a dynamic program
for POMDPs (Whittle, 1982).

Theorem 3.1.2. Let θk be the conditional probability distribution of the state sk, at time k, given the
observation and action history, as given by

θk(s) = P(sk = s|ok0,ak−1
0 ), s ∈ S .

Then:

1. θk+1 = ηk(θk, ak, ok+1), where ηk is the standard non-linear Bayes’ filter. Thus, we have

θk+1(s) =

∑
s′ θk(s

′) P(s, ok+1|s′, ak)∑
ŝ,s̃ θk(ŝ) P(s̃, ok+1|ŝ, ak)

.

2. There exists an optimal strategy of the form ak = d̂k(θk), which can be found using dynamic
programming.

3.1.3 Results
We present result for two different test cases. First, we consider a problem motivated by Linear Quadratic
Control, in which a receding horizon controller is implicitly defined as the solution to a finite horizon
optimal control problem parametrized by the system state. The cost function in this case reads

J =
M−1∑

k=0

xTkQxk + uTkRuk + xTMSxM ,

where S is the infinite horizon cost. This solution is exact under constraints on uk and xk as long as the
horizon M is long enough, such that all constraints remain inactive after time step M . The problem can
be solved using the batch approach, in which it is converted to the system




x(0)
x1
...
...
xM




︸ ︷︷ ︸
X

=




I
A
...
...

AM




︸ ︷︷ ︸
Sx

x(0) +




0 . . . . . . 0
B 0 . . . 0

AB
. . . . . .

...
...

. . . . . .
...

AM−1B . . . . . . B




︸ ︷︷ ︸
Su




u0
...
...
uM




︸ ︷︷ ︸
U0

With this system, the cost function is

J(x(0), U0) = X T Q̄X + UT0 R̄U0,

where Q̄ = blockdiag{Q, . . . , Q, S}, Q̄ � 0 and R̄ = blockdiag{R, . . . , R}, R̄ � 0. Now, the optimal
inputs U0 can be determined by solving the quadratic optimization problem

minimize X T Q̄X + UT0 R̄U0

subject to X = Sxx(0) + SuU0

C̄U0 � d̄
W̄X � h̄,
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(a) Real, piece-wise quadratic cost.
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(b) Identified cost.

Figure 3.2: Example of real and identified costs based on 20 samples for a small LQR-type problem. The real cost function
is piecewise-quadratic, but convex and can reasonably well be approximated by another convex, piecewise quadratic function
defined on a smaller set of pieces, as provided by the inverse optimization problem.

where C̄, W̄ , d̄ and h̄ are blockdiagonal matrices similar to R̄. In Figure 3.2, we compare the exact solu-
tion of a small problem with two states and one input to the controller obtained by inverse optimization
based on a small set of data samples. Note that we do only formulate a one-step inverse optimiza-
tion problem, that is, the true objective function is not contained in the set of candidate objective that
the inverse optimization problem considers. Nevertheless, the robust approach allows to find a close
approximation.

Second, we study a visual search problem as outlined in the previous section, but we restrict ourself
to the simplifications made in Naghshvar and Javidi (2013). Most importantly, the general detection
problem in which a target might or might not be present is simplified to a version where we assume
that some target is always present and we seek to locate it in one of finitely many observation regions.
The signal s is now the prior distribution of the probability of the target being located in a particular
region and the decision x is the decision on which region to observe in a next step. A key distinction to
the aforementioned problem is that now, the parametric optimization problem is no longer convex, let
alone quadratic. An immediate consequence is that a convex inverse optimization problem is no longer
able to provide a close estimate of the objective function. Since the problem is now high-dimensional,
it is not easy to visualize the objective function as a whole as in Figure 3.2 for the LQ-problem, but
we can depict low-dimensional projections of the ground-truth optimizer in comparison to the solution
of the optimization problem using the identified cost. Figure 3.3 depicts the results. It can be seen
that the identified optimizer does not correspond to the true optimizer at all. This seems to be due to
the non-convex nature of the optimization problem. If a parametrix optimization problem is not strictly
convex, than the optimizer may be discontinuous in the parameters, essentially making the robust inverse
optimization intractable.

The results can be slightly improved if the feature space is expanded. We consider the same setup
as used to create Figure 3.3, but add nonlinear features to the original ones, the prior distribution. The
results are depicted in Figure 3.4. The quality of fit is improved significantly.

To evaluate the potential of the chosen approach, we also conducted a systematic comparison of
the inverse optimization method with a neural network. We consider the visual search problem over a
finite number of regions as described and use either inverse optimization or a neural network to learn the
problem based on a set of data pairs. The training data are either just the prior distribution or they are
also enhance with nonlinear features. Furthermore, the training targets are either given as continuous
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(a) Changes in the true (blue) and identified (red) op-
timal actions for all observation regions if the prior is
shifted towards the boundary.

(b) Changes in the true (blue) and identified (red) op-
timal actions for all observation regions if the prior is
shifted towards the center.

Figure 3.3: Projections of the optimizer x∗, depending on one-dimensional changes to the prior, i.e., the signal s. The identified
optimizer does not correspond to the true optimizer at all.

(a) Changes in the true (blue) and identified (red) op-
timal actions for all observation regions if the prior is
shifted towards the boundary.

(b) Changes in the true (blue) and identified (red) op-
timal actions for all observation regions if the prior is
shifted towards the center.

Figure 3.4: Projections of the optimizer x∗, based on parameters that include artificially created, nonlinear features. The
quality of fit is significantly improved in comparison to Figure 3.3.
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Only prior. Prior + NL features
Targets ∈ [0, 1]n Targets ∈ {0, 1}n Targets ∈ [0, 1]n Targets ∈ {0, 1}n

Inverse Optimization 0.458 0.400 0.613 0.385
Neural Network 0.356 0.356 0.432 0.321

Table 3.1: Probability of correct classification.

values according to Naghshvar and Javidi (2013) (Which uses a method based on the Extrinsic Jenssen-
Shannon Divergence as an approximation to the exact, unknown optimal policy) or as zero-one data
which only indicate the chosen observation region. The probabilities for correct classification for 20
data pairs as training samples are reported in Table 3.1. Such a small data set was chosen on purpose, as
inverse optimization is most suitable for situations in which only limited amounts of data are available. It
can be seen that for such a small data set, inverse optimization outperforms the neural network. However,
the probability of correct classification is poor and except for the unrealistic case, when both continuous
training targets and nonlinear features are made available, it is not good enough for further usage. If
the amount of training data is increased, one can unsurprisingly notice a higher probability of correct
classification, but the neural network also easily outperforms inverse optimization.

3.1.4 Discussion
We have defined a setup in which inverse optimization is applied to a problem motivated by visual search,
in order to identify the decision maker’s cost function. A solution method has been proposed and it has
been evaluated in a case study. It turns out that the available methods in inverse optimization are unsuit-
able for problems as they appear in visual search. This is caused in part by the nonconvexity of these
problems. However, even more severe is the fact that the structure of the solution to these problems is
not known, except for its Markov property. It seem that most inverse optimization approaches are able to
outperform generic, black-box approaches like neural networks if (and only if) they can use the knowl-
edge that the training data have been generated by an optimization problem of a particular structure. The
knowledge of the structure of the parametric optimization problem restricts the a-priori search space of
suitable models and can be interpreted as additional prior knowledge, which is ultimately responsible
for the better performance. This is for example the case for the LQ-control problems. Conversely, visual
search problems present no exploitable structure.

Even though we conclude that the inverse optimization approach is unsuitable for visual search
type problems, we still believe it might be used in CCF decision support advantageously. However,
it might be more suitable for an active learning setting, in which we seek to extract and formalize the
prior knowledge that a domain expert has gained through experience. Consider a situation in which an
expert of CCF is presented with partial information about a suspicious transaction and is then asked to
select additional information that (s)he would consider before deciding if the transaction in question is
fraudulent or not. Mathematically speaking, we consider a classification problem in which only parts of
the feature vector are revealed and the expert then selects the most expressive features, given the values
of the available features, to make the final decision. The question of which features are most expressive
is closely related to the location of the decision boundary in the feature space, between fraudulent and
non-fraudulent decisions. If the decision boundary is given as the solution of an explicitly defined
optimization problem, one can use the decision by the expert to infer the objective of the optimization
problem and therefore estimate the decision boundary via inverse optimization. In the next section,
we review an approach for distributionally robust classifiers (originally presented in deliverable D4.1),
which ultimately reduces to a conic program. The structure of this optimization problem is known, but

D4.3: Decision Making III



3.1. Inverse Optimization page 129 of 138

it does not allow for immediate application of Theorem 3.1.1 because of a constraint which is bilinear
in parameters and optimization variables. Currently, methods for extending the inverse optimization
approach to such a problem class are investigated in a student project.

3.1.5 Distributionally Robust Classifiers
The problem of credit card fraud detection is a heavily unbalanced classification problem, since only a
small minority of transactions are fraudulent. It is well known that unbalanced data pose a challenge
for machine learning. Common state of the art solutions include over-/ under-sampling as well as the
replacement of individual data points by probability distributions, which approximate the data prior to
training. This approach has recently been extended by exploiting results from robust optimization to
create distributionally robust classifiers (Van Parys et al. (2014); Stellato (2014)). A brief summary of
the derivation of distributionally robust classifiers will be provided in the following.

Problem Formulation

Robust optimization addresses optimization problems, in which at least one of the problem parameters
is a priori uncertain and will only be revealed after a decision has been made. In robust optimization, it
is assumed that even though we do not know the value of those parameters a priori, we know that they
belong to a given set and we seek to optimize the worst case outcome.

Consider the problem to separate samples drawn from two probability distributions by a hyperplane,
such that the probability of misclassification is minimized for either side. Assume further that the mean
and the covariance of the probability distributions are known, but not the complete probability density
function. The problem of minimizing the classification error can then be formulated as a robust opti-
mization problem, in which we find a hyperplane such that we minimize the classification error for the
worst-case probability distribution that coincides with the given first and second moments. In practice,
it often seems to be unjustified to allow for entirely arbitrary probability density functions. In partic-
ular, many probability distributions encountered in practice are unimodal. Intuitively, unimodality of
the probability density function means that obtaining samples ”close” to the mean is more likely than
obtaining samples ”further away” from the mean.

Let the µ1 and µ2 denote the mean of the first and the second probability distribution, and likewise
let Σ1 and Σ2 denote the respective variances. By P ∈ P(µ,Σ)∩Pα we denote a probability distribution
P that has mean µ and variance Σ, and an α-unimodal probability density function1. The problem of
minimizing the worst-case classification error can be formulated as:

max
a,γ,b

γ

subject to P(−a>x > −b) ≤ 1− γ, ∀ P ∈ (µ1,Σ1) ∩ Pα
P(+a>x > +b) ≤ 1− γ, ∀ P ∈ (µ2,Σ2) ∩ Pα

(3.6)

Results

The previously introduced optimization problem includes an infinite number of constraints, because of
the ”for all” classifier, therefore a straightforward numerical solution is impossible. However, by em-
ploying results from Van Parys et al. (2014), Stellato (2014) reformulates the problem as an equivalent,

1In Van Parys et al. (2014), α-unimodality is introduced as a generalization of the concept of unimodality.
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nonlinear, but finite dimensional problem:

min
a,b

ω

subject to (−b+ a>µ1) ≥
∥∥∥(Σ1)

1
2a
∥∥∥

(−b+ a>µ2) ≥
∥∥∥(Σ2)

1
2a
∥∥∥

This problem can be reformulated into a finite dimensional Second-order Cone Problem (SOCP):

min
a

∥∥∥(Σ1)
1
2a
∥∥∥+

∥∥∥(Σ2)
1
2a
∥∥∥

subject to a>(µ1 − µ2) = 1
(3.7)

Note in particular that this problem is convex. Numerical solvers for SOCPs exist, so that the resulting
optimization problem can be solved (numerically) for the optimizer a∗. The remaining quantities can be
computed as

ω∗ =
1∥∥∥(Σ1)

1
2a∗
∥∥∥+

∥∥∥(Σ2)
1
2a∗
∥∥∥

and
b∗ = a∗µ1 − ω∗

∥∥∥(Σ1)
1
2a∗
∥∥∥

Note that the objective has been the minimization of the classification error for either probability dis-
tribution. A tractable problem formulation for the objective of minimizing the overall misclassification
error is also given in Stellato (2014).

We intend to use this problem in an inverse-optimization setting as described in the previous section
in order to learn the prior distributions (µ1,Σ1 and (µ2,Σ2) from samples.
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4

Conclusions

This report documents the final version of the DM algorithms in the SPEEDD project. An extensive
range of control algorithms for the traffic use case and a description of DM functionality in the use-case
of CCF are described.

First, we have investigated how Gaussian Processes can be used to learn the traffic dynamics of a
freeway from data. A range of tools addressing non-stationary noise, inhomogeneous process variance
and time delays in measurement data have been developed to this end. Such GP models allow to in-
corporate model uncertainty directly into the models used for decision making, making them especially
suitable for SPEEDD. To enable usage of such models, we have demonstrated how reinforcement learn-
ing techniques based on GPs can be extended to high-dimensional systems such as traffic networks. This
extension is possible via usage of SGPs, which model systems that exhibit a distributed structure and can
be decomposed into small-dimensional, uncertain subsystems coupled by linear and known dynamics.

Second, we have presented a range of low-level decision making algorithms for traffic control. This
includes controllers like the best-effort-controller for freeways, which is provably robust to variations
in the traffic demand, and a corresponding, one-step-ahead control scheme suitable to maximize local
traffic flows in arbitrary traffic networks, in particular in inner-city road networks.

Third, local feedback laws are complemented by high-level coordination algorithms in the proposed
hierarchical control scheme, which are designed to achieve some system-wide control objective. We
have presented a generic algorithm for model-free decision making in the presence of disturbances and
explored its application to the ramp metering use-case. In more use-case specific approaches, we have
analyzed the need for coordination in both the freeway and the inner city traffic control scenario. We have
proven that there exist certain situations in freeway ramp metering in which coordination is not necessary
to achieve flow optimality, due to the convexity of the underlying optimization problem. However, global
problems for optimization of road traffic in arbitrary networks are inherently nonconvex, and we have
developed a coordination scheme which allows to approximate the solution to the nonconvex problem
via successive linear optimization problems.

A fourth contribution addresses the use case of Credit Card Fraud detection. For CCF, the answer to
the question of whether to accept or to block a certain transaction depends on whether a fraud attempt
was detected or not. If a fraud attempt is detected with sufficiently high confidence, the decision is
obvious. Therefore, DM is reduced to a support role in this use case. Indeed, we have presented a
method to formalize and solve the problem of reverse engineering a utility function that a credit card

D4.3: Decision Making III



page 132 of 138

analyst might be unconsciously optimizing. The intention is to use the gained knowledge to streamline
the decision making process for the analyst in automatically providing the right information at the right
time.
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