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0 Executive Summary 
 

This report summarises the main work undertaken in Work Package 5 over the SPEEDD project. In 

particular, the focus on the report is on the relationship between Sociotechnical Systems concepts that 

informed the field work and discussions with Subject Matter Experts and the design process used to 

construct the dashboards.  In section 4, this relationship is illustrated in a process that shifts focus between 

technical and „human‟ (organisational and perceptual) constraints to produce a dashboard that can not 

only operate in the SPEEDD architecture but also reflects our understanding of the ways in which 

operators in the use case domains process information and make decisions. 

In order to understand the relationship between information presentation and decision making, Work 

Package 5 has undertaken three interconnected activities.  In the first, we have observed and interviewed 

(as far as practicable) Subject Matter Experts in their work domains, performing their normal working 

activities.  From this, we have abstracted a core set of task demands which are used to design simulated 

tasks for laboratory experiments.  The benefit of such tasks is that we can maintain control over 

independent variables in experimental design and minimize confounding variables in ways that are not 

possible in the operator work environments.  This has been particularly beneficial in that it has allowed 

eye-tracking studies to be conducted in a controlled and rigorous manner (although we have reported eye-

tracking studies in the DIRCE control room).  In addition to supporting eye-tracking studies, the 

experimental tasks have allowed us to manipulate the reliability of the automated support.  From a Human 

Factors perspective, we have been particularly interested in the question of how people respond to 

suboptimal decision support (e.g., at reliability of 25%) or to quite reliable support (e.g., at reliability of 

81%). We have shown that, even when they have no indication of reliability, people are able to adapt their 

strategies and change their reliance on the support or their own decision rules. 

Experiments and modelling work have focused on the manner in which people sample the information 

available to them.  The modelling work, in particular, suggests that, for tasks in which there can be clear 

definition between validity of cues and a well-defined decision, people exhibit performance which agrees 

with an optimal decision model.   Further experiments have suggested that, when the definition of cue 

validity of the definition of the problem is less clear, then people will sample more information (and, at 

times, this could lead to over-sampling which, while inefficient, did not seem to impair either decision 

time or accuracy).  Thus, people are able to adapt their information sampling strategy to reflect their 

impressions of the reliability of automated decision support, their understanding of cue validity and the 

clarity of the decisions required.  In other words, people will seek to make specific information from the 

situation space on to the decision space for their jobs. 

We have used this understanding (of mapping situation and decision spaces) to inform the design of 

dashboards for the SPEEDD project.  Evaluation studies, comparing different versions of the dashboard, 

suggest that we have produced reliable visualisations of the situation space for operators in both Road 

Traffic Management and Credit Card Fraud analysis.  
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1. Introduction 

1.0 History of the document 

Version Date Author Change Description 

0.1 07/10/2016 Chris Baber (UoB) Set up the document and initial content 

0.2 12/10/2016 Sandra Starke (UoB) Descriptions of fraud analytics and experiments added 

0.3 13/10/2016 Natan Morar (UoB) Description of user interface design added 

0.4 14/10/2016 Andrew Howes (UoB) Discussion of decision modelling work added 

1.0 15/10/2016 Chris Baber (UoB) Comments incorporated and draft submitted for 

Consortium review 

1.1 24/10/2016 Alex Artikis (NCSR) Review of report 

2.0 24/10/2016 Chris Baber  (UoB) Final version of report 

1.1 Purpose and Scope of the Document 

This report summarises the activity under Work Package 5 in terms of the objectives laid out in the 

Description of Work. 

1.2 Work Package 5 Objectives in Description of Work 

The SPEEDD project aims to make „Big Data‟ accessible to human operators, so that recommendations 

offered by the machine learning components can be understood by operators. This is important, as 

decisions may have to be verified by human operators, either due to legal requirements (as in the road 

traffic control use case) or due to customer-service requirements (as in the fraud use case).    A core 

question is, to what extent, the human operator will respond to 4Vs of Big Data (i.e., volume, variety, 

veracity, velocity).   The main reason for introducing automation into Big Data systems is to cope with 

the volume of data and the speed (velocity) with which these data are presented for processing.  

Consequently, one would expect automation to provide some form of triaging of data prior to its 

presentation to the human operator.  Hence, both SPEEDD use cases require the presentation of data that 

the automatic system has already processed.  From this, the focus of the human is less on volume and 

velocity than on the other two Vs.  In terms of veracity,  the role of the operator could be to confirm the 

recommendations made by the automated system or to check the conclusions that such a system draws 

from the data, i.e., to provide checks and balances in terms of  automated data processing.   In such cases, 

a subset of data is presented to the decision maker in the expectation that this will provide a sufficiently 

detailed view of the situation space (Hall et al., 2007) to allow the decision maker to select an appropriate 

course of action (or, at least, to enable a clear understanding of the situation space).  Consequently, there 

is an assumption that visualising the situation space should help the decision maker understand the 

decision space (Hall et al., 2007).  In this context, the decision space can be defined as the set of possible 

decisions which could be made by the decision maker, given the information in the situation space.  

However, humans are known to be efficient when it comes to expending effort on information search 

(Pirolli and Card, 1999, Gigerenzer and Gaissmaier, 2011), and just making a large amount of data 

available does not mean that all of it would actually be used.  In terms of variety, the human operators 

might have access to information that is not presented to the automated system.  Such information could 

be presented verbally (through telephone or radio calls) or visually (through Close-Circuit Television 

systems), or it could be contained in systems that lie outside the scope of the automation, e.g., personal 

bank accounts which are not open to the automated analysis. 
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Work Package 5 sought to extend the state-of-the-art in the design, development and evaluation of visual 

analytics for Big Data applications in three ways:  

 understanding expert decision-making in context,  

 modelling expert decision-making,  

 ecological interface design for visual analytics.  

The primary focus of Work Package 5 was to develop novel approaches to visual analytics for the 

SPEEDD use case domains.  In this context, we follow the definition of Visual Analytics offered by 

Thomas and Cook (2005), as the science of analytical reasoning supported by interactive graphical 

interfaces.  This involves both the automated analytical reasoning (undertaken by our partners in 

SPEEDD and reported in WPs X & X) and the analytical reasoning made by the humans who interact 

with the visualisation.  In this way, Keim et al. (2010) suggest that Visual Analytics supports “the 

exploration of information presented by visualisations [in] a complex process of sense-making” (p.116).  

This means that, in order to design and develop user interfaces which can support human decision making, 

we need to understand the processes of sense-making in the use case domains. Furthermore, in previous 

work we have shown that the manner in which people interact with Visual Analytics is not simply a 

function of what is displayed to them, but a matter of how this display corresponds to their existing 

knowledge (Ishack et al., 2015).   

The interaction of human decision-makers with the SPEEDD prototypes, drawing on the observation 

studies conducted in the use case WPs 7 and 8, lead to:  

 understanding the decisions involved in each SPEEDD use case and the information sources on 

which these decisions are based, in order to understand how decision-makers assimilate 

information from multiple sources in a socio-technical system;  

 description of human decision-making as a rational, objective response to goals and changing 

context, thus understanding human decision-making in the context of SPEEDD and the manner in 

which this process can be learned and refined by both human and automated system through their 

interactions;  

 development of novel, real-time visualization techniques for Big Data that support human 

decision-makers in their situation awareness, sense-making, decision-making and appreciation of 

recommendations made by the SPEEDD prototype. 

From this perspective, Work Package 5 has involved Human Factors research into understanding how 

experts in the use-case domains make decisions in their day-to-day roles; how such decision making can 

be influenced by the ways in which the information available to them in sampled and utilised; how 

graphical user interfaces can be designed to best support this decision- and sense-making.  Each of these 

areas is the subject specific tasks under this Work Package. 

 



8 

 

 

                                                                                                       D5.3 UI Design – part 3 

2. Modelling Decision-Making as a Socio-Technical Activity  
 

2.1 Joint Optimization in Socio-Technical Systems 

In any organisation, efficient operation involves a combination of Technical factors , relating to the 

technology, data and processes used by that organisation, and Social factors , relating to the behaviour of 

people in that organisation (Cherns, 1976). In an ideal state of affairs, there will be „joint optimisation‟ 

(Cooper and Forster, 1971) of these factors so that they work seamlessly together. However, a defining 

aspect of any Socio-Technical System (STS) is that the relationship between these factors tends to be non-

linear, so that optimization of one factor can lead to unpredicted consequences in the other.  In terms of 

the SPEEDD project, the challenge is to balance the expectations and assumptions which inform the 

Technical solutions to the processing of Big Data in the two use cases, with the knowledge, skills and 

abilities of the people who will be using these solutions.  In broad terms, this raises the concept of a 

„whole task‟ from STS (Trist and Bamforth, 1951), in which the boundary between receiving information 

and performing an action is clearly marked and is meaningful for all parties involved in the work (both 

human and automation).  The challenge for any user of Big Data analytics thus lies in how easy it is to 

understand the recommendations of the automated decision maker and how to incorporate these 

recommendations into one‟s own decision making.  This also raises the question of how to manage the 

responsibilities for who (or what) will perform the action.   

While the SPEEDD architecture incorporated assumptions about the division of processing between 

modules and the user interface, the manner in which the user might interact with the recommendations 

could be affected by either the understanding of the recommendation, or the perceived reliability of the 

automation. Consequently, in the Human-Automation Systems that SPEEDD is developing, the 

Allocation of Function, i.e., who does what, becomes an important issue and the ways in which such 

Allocation might shift in response to the reliability of automation is a question that has been addressed 

through a series of experiments in this work.   

Goal

Detect and 
predict issues

Mitigate issues

Automated System
Actions

Operator
Actions

- poll sensors and 
analyse data
- find recurring 
patterns in sensor data 

- control actuators

- spot patterns in 
sensor data
- detect errors in the 
data and analysis
- inform automation

- understand 
automation actions
- challenge automation 
actions
- inform automation

 
Figure 1: Contribution of System Components to System Goals [from Morar et al., 2015] 
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In the initial work on this question, Morar et al. (2015) note that there is a potential danger in seeing the 

user of the automated system simply in terms of the passive audience of the automated output:  “Not only 

does the relegation of the human to an acceptor of system recommendations miss the point of the Visual 

Analytics concept, but it also removes the human operator from the analysis loop.”  In this case, the 

human could find it difficult to reason about the automation‟s recommendation (Bainbridge, 1987) or 

could have less trust in the automation than if the human had been involved in the discovery process 

(Keim et al., 2010).   

Human intervention could, for example, arise when the automation‟s performance is below an acceptable 

level or when the human has information which is not available to the automation. In other words, human 

decision-makers will be drawing upon sources of information which need not be explicitly represented in 

the Big Data available to SPEEDD, e.g., hunches, rumours, guesstimates and other types of „informal‟ 

data which could influence human decision-making.  The question for our research is when, and why, 

people might introduce this material in their decision making, and what impact it might have on overall 

performance of the combined human-automation system.  For example, in the experiments on identifying 

Fraud patterns [REPORT WP7.3?] participants reported attempting to scan the available information to 

develop a „gut feeling‟ and then either reducing the number of cues to attend or to form a story, e.g., “[…] 

for example, has the person stayed out late at night or are they purchasing a one-off strange item. In these 

cases where there was a possible innocent explanation I generally let the transaction through”.  These 

„stories‟ are not part of the presented data (nor necessarily even supported by the data) but illustrate how 

sense-making can involve adding information to better develop a frame in which to interpret the available 

data.   

In terms of Road Traffic Management, a core information source for the control room operators is the 

images displayed on the CCTV screens in the control room.  The content of these displays are not 

available to the SPEEDD decision algorithms (which rely on the data captured from sensors buried in 

Grenoble‟s ring road).  However, the control room does employ software which scans the image content 

to recognise obstructions in the road, and then alert the operators.   In D8.5, it was shown that operators 

did not spend much time monitoring the bank of CCTV screens on the back wall of the control room, but 

preferred to focus their attention of the desk-mounted display screens.  Following our report to the control 

room manager, there has been a reconfiguration of the control room (as shown in figure 2). 

 
 
Figure 2: Comparing control room over time. On the left is the control room when we first visited it. On the right is the 

control room on our most recent visit. 
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2.2 Situation spaces, decision spaces, situation awareness 

Complex decisions are rarely made by individuals; rather they are made by teams of people working as 

part of a socio-technical system. The primary socio-technical focus for this work is decision-making in 

the small groups formed by the SPEEDD prototype, its operators and their colleagues (figure 3). 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3: Visual Analytics in a Socio-Technical System [from Morar et al., 2015] 

Considering the Road Traffic Management use case, figure 4 illustrates how functions (defined using 

Cognitive Work Analysis which is described in detail in D5.1 and D8.1) can be performed by different 

people inside and outside the control room.   In any cell in which there is more than person, there is the 

assumption that some of communication could be required between these people in order to perform a 

given function in a given situation.  For example, consider the function „Detect incident‟ in the situation 

„Response to incidents‟.  In this cell, drivers, patrols, police / emergency, operator and the automated 

system can all contribute to performing the function.  While the operator and automated system will 

communicate with each other, it is plausible that either patrols or police / emergency may also be in 

communication with the operator (via radio or telephone) and the operator will communicate with drivers 

using Variable Message Signs.  This is not intended to be an exhaustive description of the possible 

communications which could arise in this situation, but does highlight that there will be flows of 

information that are beyond the behaviour of the automated system.  This means that a critical role of the 

operator in any system involving automation is to provide a current and coherent awareness of the 

ongoing situation.  This Situation Awareness (Endsley, 1995) involves perception of current state of the 

road network, comprehension of this information and projection (prediction) of possible future states and 

potential problems.  For an event-driven decision support system that SPEEDD can offer, the projection 

could be enhanced by the automation. 
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Managed Roads Response to Incidents Planned Works

                             Situation
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Drive on roads
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Drivers 

(road users)
Patrols Operator

Police / 

Emergency

Automated 

System

Road Works 

Crews
 

 

Figure 4: Illustrating the role and behaviour of different Actors in a Road Management network using CWA Social 

Organisation and Cooperation Analysis 

2.3 Understanding the role of Fraud Analysts 

Through discussion with Subject Matter Experts in Feedzai, FICO, UK Cards Association and high-street 

banks, we identified (at least) three different principal settings in which fraud analysts work with data 

related to credit card transactions and potential fraud: call centers, pattern analysts and technical 

investigative units. The roles, skills and responsibilities of staff vary largely between these settings and, 

depending on the role, staff work with different data.  

Call center agents are usually the first point of contact after a transaction was blocked by an automated 

system: in credit card fraud detection, the transaction risk scoring is performed fully automatic through 

tailored software packages, such as Feedzai‟s Pulse system. The transactions at risk can be identified in 

near real time while a purchase is being validated. After automated risk assessment, the transaction is 

either allowed or blocked. Blocking a transaction can result in blocking the card from all further 

transaction, until the card owner has been spoken to. Call center agents are the staff who have to follow 

up these blocked transactions and speak to the customer. The exact way in which this is executed depends 

on the bank, and there are various approaches to make this point of contact more automatic. However, the 

normal case is that the call centre operative will get in touch with the customer via phone, enquiring about 



12 

 

 

                                                                                                       D5.3 UI Design – part 3 

the questionable transaction. When contacting the card owner, call-center agents follow a clearly defined 

script. The aim is to determine whether the person answering the call is the genuine card holder and 

whether the card holder made the purchase legitimately or whether the transaction was a fraud which the 

card holder does not know anything about. When working in the role of call center fraud staff, agents 

have access to transaction and customer details, both past and present. In this role, each flag is dealt with 

reasonably fast; the total number of cases to be processed by an operator can be around 200 per day.  This 

can be equated to almost 30 transactions per hour (assuming an 8 hour day with lunch break), or around 2 

minutes to investigate each transaction.  Hence, there is usually no deep level of investigation of the 

transaction specifics; the information is used to validate that the customer for example remembers some 

recent purchases (to confirm identity) and to explain to the customer which transaction was blocked, and 

why. Alerts are dealt with according to the risk level; alerts with the highest level of risk are usually 

worked on first (this is called „priority mode‟) and the remaining alerts are cued.   Given the rate at which 

the human operator might be expected to process these transactions, it might be expected that any design 

in the user interface that can result in marginal gains in operator time could be beneficial.  Indeed, our 

final user interface for the SPEEDD prototype results in time to process a suspicious transaction of 

between 12.5seconds to 15 seconds. 

Fraud analysis that is performed at a higher level, e.g. with the purpose of tuning automatic fraud 

detection system or exploring new trends that might be just emerging, is a process that requires more in-

depth analysis of transaction behaviour at the level of individual accounts, but also e.g. across countries, 

institutions or time zones. Hence, this staff works with more data than call-center operators, often from 

multiple databases, and also requires the ability to aggregate data. The case load for specialist fraud 

analysts is substantially lower, with around 10 cases per day; training for this role is more substantial, and 

wages are considerably higher compared to call center operators. Analysts look at fraud patterns in broad 

terms, for example if regions-specific patterns emerge. They have access to past transactions, which 

includes the risk score assigned by an automated system and the outcome of the decision (as well as 

possibly a transcript or case summary) which the call center agent made after calling the customer 

following a blocked transaction. Further, agents may work with aggregated data (spending per day, 

transactions per hour etc.).   As we described in section 3.3, we have produced a simulated fraud analysis 

task that allows us to explore how analysts search for information that can help them determine whether a 

transaction is likely to be fraudulent. 

In addition to cardholder activity, merchant behaviour can be monitored: if three cards in a cue are 

confirmed fraud, all other cards in that cue may be blocked for reasons of caution. Similar to higher level 

fraud analysis, technical investigative units examine cases where fraud was due to exploitation of security 

gaps or technological interception. In our work we did not focus on setting, as it requires a different skill 

set and is driven more by software and hardware analysis. 

 



13 

 

 

                                                                                                       D5.3 UI Design – part 3 

 

Figure 5: Decision Ladder (Control Task Analysis) for generic Credit Card Fraud Analyst Activity 

 
From our initial consideration of fraud analysis, we developed a Control Task Analysis, or „decision 

ladder‟ (figure 5).   This shows the steps that we believe a generic credit card fraud analysis process might 

follow.  Bearing in mind the challenges of speaking in detail about fraud detection practices, this figure is 

built from a variety of sources and is not intended to represent any specific organization.  The central part 

of figure 5, i.e., the „step-ladder‟ from Activation up to Functional Purpose and down to Execution, 

represents a flow of tasks that an operator or analyst might perform.  The dotted lines between the two 

sides represent short-cuts that the experienced analyst might make in response to specific information.  

On either side of the decision ladder, are specific instances of actions that the analyst is likely to perform 

in order to complete the tasks. 
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2.4 Understanding Road Traffic Management 

Road traffic control involves the monitoring of traffic, responding to incidents and influencing road user 

behaviour. Given that incidents can contribute to some 25% of the overall congestion levels on major 

roads (UK Highways Agency, 2009), it is important that any incident is resolved as quickly as possible. 

Regional Control Centers, such as the „Direction Interdépartementale des Routes Centre-Est‟ (DIR-CE) in 

Grenoble, France, are the central focus of communications regarding major roads and will monitor traffic 

flow (through CCTV, through verbal reports or through sensor data from the roads or vehicles) and 

control the Variable Message Signs on these roads. In broad terms, the goals of such a center can be 

summarized as follows (Folds et al., 1993): i.) Maximize the available capacity of the roadway system; ii.) 

Minimize the impact of incidents (accidents, debris, etc.); iii.) Contribute to demand regulation; iv.) 

Assist in the provision of emergency services; and v.) Maintain public confidence in the control centre 

operations and information provision. 

 
 Figure 6: CTA for RTM 
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Studies involving eye-tracking of controllers in the DIRCE control room (detailed in D8.1 and D8.3 and 

reported in more detail in Starke et al., 2015, in press) shows how situation awareness involves two 

processes. The first relates to the perception of the situation and requires the ability to collate sufficient 

information to define the situation.   As we discuss in D8.1, the definition of the situation is supported by 

the categorisation scheme used in the incident log. Indeed, operators must rely on the predefined 

categorisation (which has been designed to cover all eventualities that operators encounter). The second 

process which is relevant to perception of an event is the ability to recall previous, related examples. In 

our observations, this ability was supported mainly through discussion with colleagues (although there is 

also the likelihood that the operator would simply remember similar events). The operators are 

monitoring the situation and choosing an appropriate response to make. We believe that this is not a 

sequential process of perceive / comprehend and then respond, but rather an interleaving process in which 

both activities are performed in parallel, with one influencing the other.  

 

Figure 7: Summary of scan patterns in eye-tracking by one operator in DIRCE control room 
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3. Defining Objective Metrics for Evaluating Decision-Making 
 

3.1  A Novel Approach to Modelling Human Decision Making  

In Chen et al. (submitted) we proposed an integrative cognitive model of how the process of interaction 

with visualizations supports decision making. It is an attempt to explain how display design can 

contribute to reducing information access cost (in terms, for instance, of the perceptual and cognitive 

effort that is required to find and use information relevant to a specific action) and, therefore, efficient 

decision making. A key feature of the model is that the predicted user strategies are an emergent 

consequence of the cost structure of the task, rather than a model assumption. The model builds on a 

number of recent threads in Human-Computer Interaction and decision making research. These threads 

are described below. 

3.1.1 Partially Observable Markov Decision Processes (POMDP).  

A POMDP is a mathematical framework for modelling sequential decision problems in which (1) only 

incomplete observations of the state of the world can be made, and (2) the transitions between states are 

stochastic. These properties are important for modelling interactive decision making because of the partial 

and stochastic nature of human information gathering.  

3.1.2 Active vision. 

While vision that is centrally focused (foveal) around the retina is very accurate, peripheral vision is much 

less so (Kieras, 2014). As a consequence there is uncertainty as to which, and whether, objects in 

peripheral vision are detected. This uncertainty limits the extent to which visualizations in HCI can 

support direct perception. As a consequence multiple eye movements and fixations are often required to 

build a belief about what is on the display that is sufficient to guide action. Eye movements are, therefore, 

actively recruited in order to solve the user's decision task, not to build a complete model of the display.   

While we have used eye-tracking in several of our studies, from DIRCE control room to laboratory 

studies with the different user interface designs.  Examples of these studies have been considered in the 

previous section.  The data from these studies provide some of the fundamental measures used in the 

models developed below.  In addition to eye-tracking data, recent work has shown how colour, shape, and 

size have different consequences for visual search of displays. In order to reflect these consequences, we 

have used the constraints proposed in Kieras (2014) to define the POMDP's observation function. 

3.1.3 Machine learning.  

Human eye movements can be predicted by solving a POMDP, bounded by a model of human vision, 

with machine learning (Butko, 2008, Chen, 2015). Machine learning is used to find a strategy for 

choosing actions given each belief about the state of the world, where beliefs about the world are built 

through repeated fixations. For any POMDP there are one or more optimal strategies that choose the 

actions that maximize the average utility of interaction. In interactive decision tasks, the problem is to 

find a strategy for moving the eyes so as to generate good estimates of the task-relevant displayed state 

and, therefore, best possible decisions. We might expect that good visualizations facilitate efficient 

strategies by increasing the rate or reliability with which the human eye gathers information. 
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3.1.4 Decision strategies.  

Behavioural evidence suggests that people use simple rules (e.g., search rules, stopping rules and decision 

rules) in order to make good decisions quickly (Gigerenzer, 1999, Gigerenzer and Goldstein, 1996; 

Gigerenzer, 2011). The use of machine learning to derive strategies allows us to explore the extent to 

which these heuristics are an emergent consequence of adaptation to the decision task specified in the 

POMDP and, therefore, the limits of the specified cognitive-perceptual mechanisms (Howes, 2009; Lewis, 

2014).  

To test the model, data were collected using a laboratory study of human participants performing a 

laboratory variant of the credit card fraud detection task, requiring a decision about whether a credit card 

payment might be fraudulent (see section 3.3). In order to do this, participants were provided with 

information about various card transaction cues (e.g. transaction history, amount etc.) that were presented 

using one of two types of display. In one type of display, the information was presented numerically, and 

in the other, a colour-map was used. We hypothesized that the colour-map would enhance the human 

capacity to encode information using peripheral vision in accordance with the constraints investigated by 

Kieras (2014). Moreover, we used the model to predict the decision time, accuracy and number of 

fixations used for each interface. In addition, the study manipulated the cost of accessing each cue. In one 

condition, cues were always present on the display and in the other they were covered until individually 

revealed by a mouse click. 

The contribution of the work is in providing a new model and empirical validation of how people make 

decisions through interaction with visualizations such as colour-maps. The model shows how decision 

making behaviour is an emergent consequence of adaptation to display design. Critically, the model does 

not make any priori assumptions about decision strategy, rather the strategy is calculated using a machine 

learning algorithm.  In Chen et al. (submitted) comparisons between the model's behaviour and human 

performance metrics (including performance time and eye movements) are provided. 

3.2 Task 

We modelled the credit card fraud detection task. As noted in section 2.3, despite the use of automated 

detection algorithms, there continue to be key roles for people to play in the analysis process.  These roles 

range from defining and tuning the algorithms that automatic systems deploy, to triaging and screening 

recommendations from such systems, to contacting customers (either to query a transaction or to explain a 

decision).  For this task, we assume that an automated detection process is running and that this process 

has flagged a given transaction (or set of transactions) as suspicious and a user will engage in some form 

of investigation to decide how to respond to the flag.   

In this study, we use a simplified version of fraud detection in which the task is to decide whether a 

transaction should be blocked (prevented from being authorized) or allowed.  Participants are provided 

with 9 sources of information (cues) and these are presented using one of 4 display designs 

(visualizations). The cues differ in the reliability with which they determine whether or not a transaction 

is a fraud and the participants must discover these validities with experience and decide which cues are 

worth using to make a decision.  
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The visualizations presented in the experiment did not have the full richness and complexity of the 

dashboards proposed for the project (and presented in section 4). Our focus on colour is partly to enable 

simple experimental designs and also because colour is known to be more detectable with peripheral 

vision than shape. 

The theoretical claim made by Chen et al. (submitted) is that decision strategies are an emergent 

consequence of both the statistical properties of the environment (the experienced cue validities, different 

time cost for extracting information) and of the constraints imposed by human perceptual mechanisms. 

For a visualization task, this theory can be written precisely by formulating the decision problem as a 

POMDP for active vision and solving this problem with machine learning to find an optimal decision 

strategy (emergent heuristics). 

In the resulting model, eye movement strategies and stopping rules, are an emergent consequence of the 

visualization and the limits of human vision (Chen, 2015; Tseng, 2015; Butko, 2008). The assumption is 

that people choose which cues to look at and when to stop looking at cues informed by the reward/cost 

that they receive for the decisions they make. Better decisions will receive higher rewards, which will 

reinforce good eye movement strategies.  

3.3 Problem Formulation 

We assume that the problem faced by a decision analyst can be modelled as a Partially Observable 

Markov Decision Process (POMDP) (Kaelbling, 1998). On each time step, the environment is in one of 

the possible states that is not directly observed. Instead, by interacting with the environment (taking 

actions), observations and reward (cost if the value is negative) are received from it. That is, the 

environment is partially observable. This action-observation-reward sequence happens in cycles indexed 

by $t = 1,2,3,...$. Because the environment's state is not directly observed, actions are taken under 

uncertainty of the true environment state. On each time step, an action is chosen from the action space 

including both information gathering actions and decision actions. The action selection is dependent on 

the history of observations and actions.  

The action-observation sequence is used to update the estimate of the underlying true state (called `belief 

state' below) using Bayesian inference. Q-learning was then used to learn which action to do next (e.g., to 

gather more information or to make a decision) given the current belief state, so as to maximize the 

expected future reward. It does so by learning the belief-action values through simulated experience. 

Belief-action values are updated incrementally (learned) as reward and cost feedback is received from the 

interaction during the simulated experience. For example, if the model looks at cue A in a certain belief 

state and subsequently makes an incorrect decision, then the value of the action (look at cue A) at this 

belief state will decrease. With enough simulation trials, the optimal strategy will emerge and the model 

will take the best actions given the beliefs.  

3.3.1 Experiment: Credit card fraud detection 

Participants were asked to take on the role of a credit card fraud analyst at a bank. The task was to decide 

whether a given transaction should be blocked (prevented from being authorized) or allowed. As shown in 

each panel of the figure 8 information sources were laid out in a 3x3 grid.   The derivation of these 
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information sources are explained in section 3.5.  For the description in this section, the key issue is the 

validities that were assigned to each cue. Each cue was presented in binary terms based on rules for 

fraudulent and non-fraudulent behaviour; rules were provided to the participants. The cues had validities 

[0.85, 0.70, 0.65, 0.60, 0.60, 0.60, 0.55, 0.55 and 0.55], where validity was defined as the probability that 

the cue indicated fraud given that the ground truth of the transaction is fraudulent. Validities were 

arbitrarily assigned to the nine cues and reflected the observation that high quality cues are relatively rare 

in many tasks.  An operation panel was presented on the right side of the interface, including  

Block/Allow decision buttons and a feedback window. The location of each cue on the interface was 

assigned randomly for each participant and stayed constant across all trials. Participants were asked to 

complete 100 correct trials as quickly as possible. Trials in which an error was made (e.g. blocking a non-

fraudulent transaction) did not reduce the number of correct trials required, so errors resulted in time costs.  

The experiment was a 2x2 design. The independent factors were format and availability. (1)  format had 

two levels: text vs. colour; (2) availability had two levels:  visible vs. covered. The figure illustrates the 

user interface of each of the four experimental conditions.  

 Covered-Text (CT) condition. The cue information was presented in covered text. In order to 

check each cue, the participants had to click on the associated button on each cue and wait for 1.5 

seconds while a blank screen was shown. 

 Covered-Colour (CC) condition: The cue information was presented by colour (green for possibly 

normal, red for possibly fraudulent). As with CT, the information was covered until clicked. 

 Visible-Text  (VT) condition: The cue information was presented in text. The information was 

visible immediately (no mouse-click was required). 

 Visible-Colour (VC) condition: The cue information was presented in colour and no mouse-click 

was required to reveal it. 

On each trial, participants were told to use as much information as they see fit (up to 9) by clicking the 

`reveal' buttons or by fixating depending on the condition they were assigned to. They then indicated their 

decision in the right panel by clicking the  „Allow‟ or „Block‟  button. Following this, participants clicked 

on the cues that they based their decision on (for later cross-validation not reported here) and then 

confirmed their decision by pressing a „submit‟ button. Participants then received feedback regarding the 

correctness of the decision. The next trial was shown after clicking the button „next transaction‟. This 

button was placed in the top right corner of the display above the operational panel so as not to confound 

initial gaze data on the cues.  
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Figure 8: Four interface variants for credit card fraud detection. The information cues are represented with text (left 

panels) or colour (right panels) and the information is either immediately available (bottom panels) or revealed by 

clicking the „Reveal‟ buttons (top panels). 

 

3.4 Results 

 

Figure 9: The frequency that the model used each cue. 

Figure 9 shows the frequency with which the model used each cue. Cues varied in their validity and as 

expected, those with higher validity were used more frequently by the model. More interestingly, the 

model also predicts an effect of design. In the covered conditions there is a strong and consistent effect of 

validity, perhaps because of the high cost of information access. In the visible condition, it is the 

visualisation technology, rather than validity, that dominates the performance effect. With visible text 

there is an effect of validity but the major effect is that in this condition all cues are used more frequently 

than in other conditions. This is perhaps because information access cost is low and items must be 
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Figure 5. The decision time distr ibutions. The bin centers for the his-
tograms are 0,4,8,12,...48. For human data, the decision time is the time
between clicking the ’next transaction’ button to clicking ’Allow/Block’
decision button. For the model, the decision time includes the saccade
time across panels (including information panels and operational pan-
els) and dwell duration on the panels as descr ibed in the ‘Time Cost’
section.

Figure 6. The frequency that the model used each cue in the last 1000
tr ials.

(A)

(B)

Figure 7. Frequency of cue fixations (r ight panels) for different ROI
validity layouts(left panels). Each row isfor a different center-of-gravity.
Themodel’sfixation frequency tracks the center-of-gravity.

Thismodel predictionandthehumandataareconsistent with
previously reportedphenomena[41]. Oneof themost well-
knownphenomenaiscalledcenter-of-gravity (alsocalledav-
eragingsaccadesor theglobal effect) [10, 42, 40, 41], which
refers to thefact that people frequently land saccadeson a
regionof low-interest that issurroundedbymultipleregions
of high-interest. Figure7showsthat this ‘center-of-gravity’
effect is an emergent effect of our model.

Did participants use the highest validity cues?

In order to further understand the decision strategy used
by participants, we analyzed which cues they used. The
quality of cues is determined by the validities. A one-
way repeated measures ANOVA was conducted to com-
paretheeffect of frequency of cueuseacrosshigh validity
([0.85,0.7,0.65]), mediumvalidity [0.6, 0.6, 0.6] andlowva-
lidity [0.55,0.55,0.55]. Therewasasignificant effect of cue
validityonfrequencyof cueuse(F(2,15)=5.44,p=0.0096). Par-
ticipantsusedmorehighvalidity cuesthanlowvalidity cues
(Figure8). Thefigurealsoshowsthat themodel predictsthe
participant’ preference for high validity cues.

Inaddition, thisanalysisprovidesevidenceabout theuseof
decisionheuristicssuchasTake-theBest (TTB) andWeighted
Additive(WADD).TTBwouldbeindicatedbytheparticipants
selectingjust thevery best cue(which inour interfacealways
discriminates) andthenmakingaBlock/Allowdecision. How-
ever, it canbeseenFigure8that participantsdidnot only use
thehighest validity cue. Further, WADDwouldbeindicated
by theparticipantsusingall of theavailablecues. However, it
isclear that thisisnot happening, withparticipantspreferring
touseonly asubset of thebest cues. Whilethereisplenty of
evidenceinother tasksthat peopleuseTTB, they donot seem
to do so in our task, and may not do so exclusively.

9
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directly foveated in order to be perceived. In contrast, in the visible colour condition very few items are 

directly foviated and there appears no effect of validity. Here, information can be gathered through 

peripheral vision, and so the frequency measure offers reduced sensitivity as a measure of information 

used. 

 

Figure 10:  The frequency of cue use for three summative levels of validity. Results for model and data. 

 

Figure 10 shows a good correspondence between the model‟s prediction of the number of cues that should 

be used and the human data. Recall that the model has not been fitted to these data and so it is offering a 

good prediction of the qualitative effect of validity on cue use.  These results have implications for 

theories of compensatory heuristic decision making (Newell and Shanks, 2003) that we will explore in 

future work. 

3.5 Discussion of Modelling Work 

The fact that the model is able to predict how strategies for using information visualisations is a departure 

from models that are programmed with strategies so as to fit performance time. This is  important because 

it suggests that the model might be easily developed in the future so as to rapidly evaluate the usability of 

a broader range of visualizations for a more extensive range of decision tasks. For example, in the near 

future we wish to consider multidimensional visualizations that not only make use of color, but also size, 

shape, grouping etc. It should be possible to increment the observation functions, for example with a 

shape detection capacity, and then use the learning algorithm to find new strategies for the new 

visualizations. 
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Figure8. Frequency of cueuseordered by cuevalidity. For human data,
’Frequency’ (y-axis) represents the frequency that each cuewereused in
last 15 tr ials by the par ticipants.

DISCUSSION

Wehavereported anew theory of how peopleuse interac-
tion to makedecisions in which strategies for information
gatheringandchoiceareanemergent consequenceof theca-
pacity tomakepartial observationsof adisplay. For atask
that involvesinteractionwithavisualization, thistheory can
bewrittenprecisely by formulating thedecisionproblemas
aPOMDPfor activevision and solving this problem with
machinelearningtofindtheoptimal decisionstrategy. Further,
weappliedthemodel todifferent typesof informationvisual-
izationandshowedhowwhencolor-mapvisualizationswere
madeavailable, moreuseshouldbemadeof peripheral vision
togather information. Thisresult isaconsequenceof thefact
that strategiesfor informationgatheringcantakeadvantageof
thedifferent humanacuity functionsassociatedwithcolor and
withtext; whereascolor informationcanbeobtainedfromthe
periphery, text must be foveated to be understood.

In addition, the model predicts that people will not make
exclusiveuseof TTB(or WADD). Thesestrategieshavebeen
extensively studiedinthehumandecisionmakingliterature,
but more recent work has suggested that people exhibit a
moreflexiblerangeof strategies. Insteadof assumingTTB
or WADD, our model derived theoptimal strategy given a
POMDPproblemformulation; thisoptimal strategy involved
using aweighted integration of thebest cues. Thesecues
provideinformationthat optimizesthetrade-off betweentime
and accuracy imposed in the experiment. Further work is
requiredtodeterminewhether TTBemergesasaconsequence
of different task scenarios.

Thefact that themodel isabletopredict thestrategies that
peopleuseisadeparturefrommodelsthat areprogrammed
withstrategiessoastofit performancetime. Thisisimportant
becauseit suggeststhat thetheory might beeasily developed
inthefuturesoastorapidly evaluatetheusability of abroader
rangeof visualizationsfor amoreextensiverangeof decision
tasks. For example, in thenear futurewewish to consider
multidimensional visualizations that not only makeuseof

color, but alsosize, shape, groupingetc. It shouldbepossible
to increment theobservation functions, for examplewith a
shapedetectioncapacity, andthenusethelearningalgorithm
to find new strategies for the new visualizations.

Inconclusion, wehavereported thefirstmodel of howpeo-
plemakedecisionsthroughinteraction inwhichstrategiesfor
informationgatheringanddecisionarederivedgivenaspec-
ificationof aPartially ObservableMarkovDecisionProcess
withhuman-likeperceptual observationfunctions. Themodel
makes predictions that are validated by human data.
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3.6 Experiments on Fraud Analysis 

Data associated with credit card transactions are very rich, with often more than 70 fields of coded 

information associated with a transaction (Chung and Suh, 2009, Whitrow et al., 2009, Krivko, 2010),  

and more variables from derived and aggregated metrics. Many of the metrics are bank specific (and 

hence, confidential), although some can be considered as de facto standards. In order to understand 

decision making, we needed to reduce the amount of information in order to match comparable 

experimental paradigms from the cognitive psychology literature. After reviewing the literature and 

speaking to domain experts, we chose nine transaction attributes which are commonly examined during 

fraud detection and which also correlated with the case study fraud patterns chosen for SPEEDD. These 

nine attributes are: 

 Transaction amount 

 Transaction history 

 Card present during purchase 

 CVV entered 

 Bank issuing the card 

 Location where the purchase was made 

 Check of the expiry date of the card 

 Transaction time 

 Type of goods purchased 

After running several pilot experiments and analyses using eye tracking with trained fraud analysts 

(described in D7.3), our main laboratory studies focused on visual information use and information 

aggregation during decision making. We designed our main experiment around the benefits and trade-offs 

of data presentation, and a supplementary experiment to explore the interaction of users with highlighted 

information. The laboratory experiments simplified the scenario and user interface in order to generalise 

in context of other psychological studies, but equally we aimed to retain the general SPEEDD scenarios in 

order to make the work relevant to the case study domain. We hence simplified user interfaces to simple 

3x3 grids, while still describing tasks to participants in context of banking and the domain of fraud 

analysis. Our studies were a hybrid between the task of call center staff and fraud analysts, although they 

were more akin to the work scenario of call center staff: participants were generally required to examine 

up to nine information sources relating to a transaction which – in the participant brief – was explained as 

having been flagged by an automated system. With this description we followed the normal first stage of 

the „blocked transaction‟ workflow described above: an operator has to review the available information 

in order to get an understanding of the transaction specifics. However, instead of calling the customer, in 

our experiments the participant was then ask to make the decision whether or not the card should be 

blocked. This task was more akin to the work of fraud analysts, who have to integrate information to then 

for example predict fraud patterns or spot new trends. We chose this approach in order to gain an insight 

into fundamentals of decision making when working with complex data and the integration of multiple 

information sources.  

In our main experiment (discussed in 3.2), we manipulated the data presentation approach, examining 

visual information sampling, correctness of decisions and decision times in four different conditions: 
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firstly, we were interested in differences in behaviour when presenting data as a simple colour scheme 

(green – possibly normal, red – possibly fraud) as compared to presenting the original data. Secondly, we 

were interested in how the direct availability of information affected user behaviour, comparing a 

condition in which information had to be revealed sequentially with a condition in which all information 

was in view straight away.  

In our supplementary experiment, we used the same simplified 3x3 grid in which information was 

presented as available original data to examine how highlighting of potentially relevant information 

affected information sampling and integration. Here we pursued the research question whether 

information highlighting of relevant information sources, in context of SPEEDD for example driven by 

on-the-fly data mining, would change participant‟s sampling behaviour and improve their decisions. We 

designed this experiment after noting that – both in lab studies as well as in situ – participants tend to 

create stories and select cues accordingly, resulting in large variation in selected cues and cue weighting 

across participants. 

Our results showed that in general, people like to look at as much information as possible. This was a 

trend we observed for both, experienced staff and novices. The presentation mode made hardly any 

difference to the performance with respect to the percentage of correctly classified transactions and 

learning of important cues. However, visualisations using colour often resulted in faster processing of 

cases. Highlighting information, even if this would lead to a 100% correct performance (unknown to the 

participant), was surprisingly often ignored; participants used this information to gain an insight into the 

„opinion‟ of the automated system, but then preferred to rely on their own reasoning. 

A further experiment was conducted in which the dashboards designed to support fraud analysts 

(described in section 4.3) were compared.  The results showed that performance tends to be faster with 

the low-level detail presented to users, but that, in all cases, participants will (as in the previous studies) 

search for as much information as possible.   The modeling work suggests that people will optimally 

search the information presented to them on the dashboard.  We note that, if information is hidden (i.e., 

the user has to open a separate window to find this information) and the decision task is ambiguous (i.e., 

it is not clear which fraud pattern is definitely being shown), participants are more likely to search for the 

information.  In other words, when the reliability of the automated decision system reduced, participants 

would search for more information, even when this information was available on the main display.  

Clearly, the ability to conduct efficient search in a well defined decision task could be compromised when 

the definition of this task becomes ambiguous.  

 

3.7 Experiments on Road Traffic Management 

Experiments on Road Traffic Management involved a version of the ramp-metering tasks that the 

SPEEDD prototype is designed to support.  In these experiments, participants (either Road Traffic 

Controllers or students) are presented with a visual display of the road network and data concerning the 

activity of the ramp-metering system or the traffic on the road, and were required to determine which 

action would be most appropriate.  
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The theoretical position adopted in these studies followed the approach to joint decision making taken by 

Bahrami et al. (2010). In their studies, Bahrami et al. (2010) demonstrate the importance of information 

sharing and (more importantly) of weighting information by its reliability. In these experiments, 

participants were presented with a visual detection task (in which they had to spot a target against a 

background of distractors). For each decision, participants worked individually, then they shared the 

decision with another person, and then the two of them discussed the decision until they reached 

consensus. Their experiments, show that when two (human) decision makers have similar levels of 

reliability (or sensitivity) in a detection task, their combined performance is superior to that of either 

individual, providing they are able to communicate freely and can indicate their confidence and reliability 

in their own decisions. However, when either person has lower reliability, then performance is much 

worse than that of either individual.  The model that Bahrami et al. (2010) propose assumes that the pair 

of decision makers are Bayes optimal and exchange (implicitly) their level of confidence in their 

detection decisions.  This notion of optimality in decision making can be seen as a parallel to the 

assumptions made in the modeling work presented in sections 3.1 to 3.5). In a recent development of this 

approach, Koriat (2012) removed the requirement to discuss the decision, and replaced this with using the 

result of the most confident member of a pair makers (where confidence was measured using self-report).  

In this case, the initial findings of Bahrami et al. (2010) were replicated (i.e., relying on the performance 

of the most confident member of the pair leads to consistently superior performance), even in the absence 

of discussion.  If the most confident member of the pair was, however, wrong, then performance 

deteriorates (because the least confident member accepts their partner‟s recommendation).  This suggests 

that while Bahrami et al. (2010) saw their results, in part, as arising from the development of consensus 

through discussion, Koriat (2012) has demonstrated that the relationship between report of an answer and 

confidence of that person reporting the answer is key.  In an interesting development of this work, Bang et 

al. (2014) show that the approach advocated by Koriat (2012) works well when participants are of „nearly 

equal reliability‟ but when there are discrepancies then it is important to allow interaction.  This seems to 

suggest that the approach taken needs to be adapted to suit differences in confidence and raises some 

interesting (and resolved) questions about how human participants are able to evaluate the credibility of 

each other‟s rating of confidence and how should they relate this to actual performance.  

This raises interesting questions for Joint Cognitive Systems, particularly when the system is confronted 

with uncertain data.  Assume that the pair consists of a human and an automated recommender system. If 

the automated system has high confidence (in this case we would use the notion of reliability as a proxy), 

then it is plausible to assume that the human will accept the answer it provides. Conversely, if the 

automated system has low reliability, then the human will rely on their own self-confidence rating and 

select their answer. However, we are not aware that the „optimally interacting‟ research area, has 

considered what happens when one of a pair of decision makers is computer. If either the computer or the 

human partner in this decision making dyad exhibits different reliability to their partner, will joint 

performance deteriorate (as shown in the Bahrami et al. (2010) and the Koriat (2012) studies)?  Will the 

human be able to notice discrepancies in reliability (either in terms of their own performance or in terms 

of the computer suggestions)?  Will such discrepancies affect the trust that the person has in the computer, 

or lead to over-reliance of the person on the computer? 

Experiment 1, reported in D8.3, compared performance of expert (Road Traffic Operators) and non-
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expert (students) on a ramp-metering task. The goal was to decide whether to agree or challenge the 

recommendation of the automated support. In this case, the „accuracy‟ of the automated was set very low, 

i.e., only ¼ of trials contained correct information and the remainder had to be challenged. It was shown 

that, for this task, there was no significant difference in time to deal with an incident (typically around 5 

seconds in all trials) but the expert group completed around 95% of trials correctly.  For the student group, 

there were some students who were able to match the „expert‟ level of performance, although the majority 

performed at around 75% reliability.  Considering the visual sampling of displayed information (from 

eye-tracking recordings of participants performing the trials) we noted that there was a clear difference in 

strategy between expert and non-expert performance. The non-experts were not checking for display 

congruence, i.e., they were not looking at information which indicated whether the same ramp was being 

displayed in all windows on the display. In contrast, the expert group checked congruence with glances at 

the map and ramp displays, although also spent a large proportion of their time looking at the fundamental 

diagram.  The suggestion was that, while all participants were presented with the same information, the 

non-experts were not able to judge the „worth‟ of the displays for congruence checking and focused their 

attention on the automation checking aspect of the task.   

It was not clear whether the problems experienced by the non-experts were solely due to lack of 

knowledge or due to some confusion in interpreting the rules for the task.  A second experiment was 

conducted in which participants were required to define the rules that underlay their decision.  In this 

experiment, reported in Morar et al. (submitted), we also compared performance when the (simulated) 

automated support was operating at reliability levels of 25% of 81%. We also noted that the ability to 

apply the rules helped participants, suggesting that it is potential beneficial to provide opportunities for 

humans to either read the rules that the automation uses or to reflect of the rules that they are using 

themselves. Results show that the reliability level had a clear impact on the user‟s behavior: at low 

reliability, the humans would ignore any automation suggestion and rely on their own decision making, 

and at high reliability, the humans tended to accept the automation suggestion (even if this was incorrect).   

In a third experiment, we compared performance on a ramp-metering task using the first and second 

SPEEDD prototypes.  There were clear advantages to using the second SPEEDD prototype, in terms of 

decision time and accuracy, and (as in study 2), there was an effect of system reliability.  When system 

reliability was high (80%) then average decision time was much faster than when it was either low (25%) 

or medium (50%).  Participants were able to compensate for system reliability, i.e., they would be more 

inclined to disagree with the automated system when it had low reliability and more inclined to agree 

when it had high reliability. While this finding might appear self-evident, it is worth noting that 

participants had no indication as to the system‟s reliability (which was changed over the course the 

experiment). 
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4. Real-Time Visualization for Human Decision-Making Visual Analytics 
and Ecological Interface Design 
 

4.1 Introduction 

Visual Analytics is not simply the visualization of the output from analysis processes, but the creation of 

insight in the decision-makers working with these visualizations.  One approach to designing visual 

interfaces for decision-making is through the processes which underlie Ecological Interface Design. 

„Ecological Interfaces‟ are designed to visualize the manner in which physical components of the system 

map on to the (more abstract) functions that the system performs. So, they are views of the process which 

are not simply maps of how physical components connect to each other but are abstractions which show 

how types of physical components affect particular functions. The purpose of such designs is to improve 

operator decision-making and diagnosis when dealing with faults relating to those specific functions. For 

SPEEDD, this means that the visualization will not only display the model‟s input and output, but also the 

relationships between elements in the decision space. Ecological Interface Design (EID) requires an 

understanding of the nature of the cognitive work performed by people in the domain under consideration. 

One element of EID is simply the reflection of the constraints in the work domain through constraints in 

the user interface. In this way, the „ecology‟ of the work domain becomes reflected in the user interface 

through the definition and management of these constraints. 

The user interfaces (dashboards) for the two use-cases underwent very similar development processes 

which involved a study of the work environments (when possible) and analysis of the tasks that are 

completed on a daily basis along with the procedures for completing them. The design of the dashboards 

also took into consideration the requirements and limitations of the underlying technical systems that 

support these tasks and the research on human visual perception and decision strategies in the modeling 

and experimental work. These three factors, more specifically, the organisational, technical and 

perceptual characteristics have guided the development of the interfaces and informed different aspects of 

it. Figure 11 illustrates how the social and technological environments constrain and define requirements 

for the content, format and form aspects of the interface. Content refers to the information that needs to be 

displayed on the screen, format relates to the way in which interaction with the information and control of 

the system in question is achieved, and finally, form is the manner in which the information is displayed 

to the user.  
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Figure 11: Sociotechnical constraints on user interface design 

 

Traditionally, the design of user interfaces is done by technical teams as a terminal to the automation 

developed for a specific user interface (Few, 2006).  The danger with such an approach is that it assumes 

that the human operator will be sufficiently flexible and adaptable to be able to modify familiar and well-

practiced patterns of working to cope with whatever the automation presents.  However, this can result in 

a mismatch between the users‟ understanding of their work (e.g., in terms of the „whole task‟ discussed in 

section 2.1), which in terms can either lead to confusion and frustration or to a reluctance (or refusal) to 

interact with the automation.  The SPEEDD dashboards have undergone an incremental design process in 

which both, social and technological aspects of the work environment have been taken into consideration 

and have informed the final prototype designs, presented in this deliverable. The following subsections 

illustrates how this design process was achieved, presenting a history of the dashboards for both, Traffic 

Management and Credit Card Fraud Investigation, along with the corresponding inputs that guided and 

informed their design. 

4.2 Road Traffic Management Dashboard Design 

The design process began with a study of the work environment which provided us with an understanding 

of tasks traffic operators deal with on a daily basis, the available resources and usual procedures they 

follow, which determined the informational requirements of the visual display, or more specifically, its 

content. Deliverable D8.1 shows how this study was conducted and describes the data gathering process 

while D5.1 show how these data were used to gain an understanding of their informational requirements. 

Finally, a schematic user interface layout was produced (see Figure 12). 
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Figure 12: Schematic User Interface Layout 

 

One would assume that transferring this conceptual design to an actual working prototype is straight-

forward and implies the mere conversion of the individual boxes in figure 12 to visual components. After 

the analysis of the work domain is achieved, information requirements are defined and then a user 

interface is designed according to the identified requirements. However, for the actual implementation of 

such a user interface, its goals and functions need to be aligned with the technological aspects of this issue. 

Work needs to be done in order to ensure compatibility and congruity between the user interface elements 

and the underlying architecture that supports it. 

In SPEEDD, the translation of the schematic UI to an initial design (figure 13) was guided by two 

important technical considerations: there was no data to support the Road User Goals window and the 

infrastructure did not provide a means to store the user‟s interaction with the system (open tasks, 

scheduled events, etc.). Moreover, the only prediction that the underlying system was able to make at this 

initial stage was whether a congestion was likely to occur. It was decided that this would be shown on the 

main road map along with the detected congestion event. The road status is indicated by a historical 

traffic flow vs density graph at each sensor location, selectable from the main road map. Also present on 

the main road map are the individual ramp metering, Variable Message Signs and lane closure control 

points. When one is selected, its current status and options for future control are shown in the control 

panel window. The video feed provides live CCTV footage at from a physical location selected on the 
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map. Because there are already existing systems in Traffic control rooms, this is implemented in the 

SPEEDD prototype as a mock feed using, Google Street View API
1
. Finally, Driver Behaviour and 

Compliance window shows average speed of traffic participants and average distance between drivers. 

The reason for having only these two metrics was again driven by data availability, their source in this 

case being the sensors in the road. This shows how the technological environment shaped and constrained 

the content of the dashboard further from the initial requirements and constraints identified as a result of 

the work domain analysis. 

 

Figure 13:Initial version of the Traffic Management UI 

The dashboard in figure 13 evolved into the version shown in figure 14 as a result of addressing 

accessibility issues regarding the selection of individual ramps and improvements of the Compliant 

Drivers visualisation by differentiating between north- and south-bound traffic behaviour. An additional 

technical requirement of displaying automated suggestions to the operator arose and is shown in the 

Suggested Activities window. 

                                                      

1
 https://developers.google.com/maps/documentation/javascript/streetview  

https://developers.google.com/maps/documentation/javascript/streetview
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Figure 14:Improved initial version 

The design in figure 14 was presented the Traffic Control Room (DIRCE Grenoble) for the purpose of 

evaluation and to gather further input from work-domain experts. They identified two areas where 

improvements could be made: i) logging is a primary activity that they perform and the presence of a log 

is mandatory, and ii) their work does not involve the direct control of road users‟ behaviour, this being 

achieved by long-term governmental campaigns. Issue i) was addressed in the next iteration of the 

dashboard design by the addition of the Activity Log window, while ii) lead to the removal of the 

Compliant Drivers window. Both questions link to the content of the display. 

Returning to the technical perspective, additional constraints on the content and format of the dashboard 

arose. First, SPEEDD deals primarily with the automatic control of ramp metering rates for the purpose of 

mitigating and potentially preventing traffic congestions. Therefore, the control of variable signage and 

lane closures is not something that is dealt with by the system and user interaction with automatic ramp 

metering control unit is expected to be minimum. This lead to a simplified control panel window where 

the user can set bounds for the ramp metering control unit and not absolute values. The content was 

modified by the exclusion lane closures and variable signage controls. Format was modified by the 
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change in how the user interacts with the automatic ramp metering unit. The form of the window is kept 

the same, by preserving the text box inputs for setting the bounds. 

Secondly, the outputs of the automated system are in the form of ramp metering levels to be applied at 

each particular ramp and not in the form of suggestions of what actions the user should perform. 

Therefore, the Suggested Actions window has been removed. This marks a further change in content. 

An in-house usability analysis of the individual display components revealed the following characteristics. 

In terms of format, it has been identified that the raw sensor data is not spatially liked to the map. In order 

to see the raw data gathered by a specific ramp, the user needs to either know the physical location of the 

ramp in question and select it on the main map window, or know its number and select it from the ramp 

metering window. However, once a ramp is selected, there is no indication of its selection on the main 

map. This was solved by displaying the ramp numbers along with the icons at their corresponding 

physical locations on the map. 

Another issue that relates to format was the fact that there is no indication of CCTV feed source once it 

was selected, therefore, it required the end-user to memorise its physical location. The video feed was not 

linked to the ramp metering in its vicinity either. This issue has been addressed by moving the video feed 

on the main map and displaying it on a ramp icon click. 

The changes previously discussed are illustrated in the subsequent iteration of the display design and can 

be seen in figure 15. More information on the user evaluation of this and the previous prototype version 

can be found in D8.3. 

 

Figure 5 – Second Version of the Traffic UI 

The design shown in figure 15 has undergone further evaluation, both from the perspective of the 

underlying technical system and from the DIRCE traffic operators. From the discussions with traffic 

managers and the dashboard demonstrations that were run it has been concluded that the congestion event 

is too distracting. Initially when a congestion alert was triggered, a circle would appear on the main map 

and the map would automatically pan to its physical location. This resulted in a loss of the overall view of 



34 

 

 

                                                                                                       D5.3 UI Design – part 3 

the system and was deemed very disruptive to the tasks that the operators could have been engaged in 

prior to the appearance of the event. Also mode of displaying congestion was designed under the hidden 

assumption that it would have the highest priority and this is not actually the case. The information that 

the operators provided us lead to the following change in display format: circles continued to be the 

means of displaying a congestion event, however, the map view would no longer pan to its location. 

Traffic operators made an additional comment regarding the overview of the state of the road. While there 

was an indication of the ramp metering rates of all the inbound ramps (colours of the squares in the Ramp 

Metering window), there was no indication of ramp queue lengths. This lead to the addition of the 

Ramps-Quickview window, which displayed the values of both ramp rates and queue lengths. This 

change related to both, the content (the addition of queue lengths) and the form (the means of displaying 

ramp rates) of the display. The graph in the top-left of the display proved hard to read and a continuous 

view of the historical data was deemed unnecessary, the instantaneous view in the Ramps-Quickview 

window being sufficient for the task. This lead to a further change in display content, i.e. the removal of 

the Sensor Data window. 

A complete redesign of the Log window was motivated by a new requirement from the technical 

environment to display more information for each automatic detection and control event. This marked a 

change in both the content and the form of the Log window, which was renamed Event List. It has been 

decided that the request to illustrate the performance of the automatic decision making unit has been 

addressed by the, now, dual function of the Ramps-Quickview window.  

A more in-depth analysis of how the operators‟ jobs could be changed by the addition of an automatic 

ramp metering system revealed that users would not be expected to constantly correct and contribute to 

the computer‟s actions. Therefore, it was decided that the „trimming‟ of ramp metering rate bounds 

should be moved from the main dashboard to a pop-up dialog, thus modifying the format of the Ramps 

window and leading to the removal of the Control Panel from the main dashboard. 

The dashboard which resulted from applying the changes discussed above can be seen in figure 16. 
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Figure 15: Third Version of the traffic UI 

The user interface went through a major redesign process informed by principles of Ecological Interface 

Design and previous operator comments, while taking into account the technical aspects of the problem. 

The output of this design process can be seen in figure 16 and a detailed account of how this version was 

arrived to is shown in D5.2. 

 

Figure 16: Fourth Version of the Traffic UI 

One significant change from the previous design shown in figure 16 is the integration of multiple 
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information sources into one view. The map along with the Ramps and Ramps-Quickview window have 

been replaced by the circular display shown in the left hand side of the figure. The schematic road is split 

into segments at the locations of inbound and outbound ramps. Ramps are represented by nodes (circles). 

Each node is linked by a thin arrow to a set of bars on the outer circle, the direction of the arrow 

indicating whether the node represents an inbound or outbound ramp.   

In addition to these modifications of format, further changes of content and form can be identified. In 

terms of content, from our discussions with DIRCE operators and further analysis of their work it has 

become clear that they make extensive use of the CCTV panels for most of their tasks and, therefore, it 

was decided that their work would be better supported by the addition of a bespoke CCTV feed window 

on the main dashboard rather than having it in a separate window that requires additional actions to access. 

They have also pointed out that an indication of average traffic speed would complement the overview of 

the road status. This latter change was made possible by the fact that data regarding traffic speed was 

already being exchanged as part of the architecture messaging bus, thus being in line with the 

technological goals and requirements.  

Several changes in format can be seen in this redesign of the Traffic Management dashboard. First, 

notifying the operator about a congestion can no longer be done by displaying a circle on the map as this 

is no longer a salient feature, its discernibility from other map element being reduced, therefore reducing 

its effectiveness as an alert. Road occupancy is now shown by the colour of the road segment, red 

signifying high density, yellow – medium, while grey showing normal to low levels of density. Secondly, 

ramp rates and occupancy bars are now linked to a physical location on the map, allowing for global 

patterns to be spotted. The text representing actual values of the measures were removed as operators 

have pointed out that they rarely need to know precise values and they are more interested in the state 

ramps are in (e.g. low throughput, high occupancy, etc.).  

When bringing this design to traffic operators for the purpose of evaluation, they have pointed out that the 

circular layout and the radial placement of the ramp status bars made the visualisation very difficult read 

(see figure 17). Comparing this version of the User Interface with the previous one, we noticed that 

replacing the initial map with a schematic of the road results in some loss of context. To be more specific, 

the highways and city roads that connect to the Grenoble Ring road are no longer shown. It has been 

decided to the map on the background of the schematic. The issues of visualisation legibility and context 

were addressed in the next version which can be seen in figure 18. The form of the congestion event was 

changed, improving its salience by increasing segment thickness in addition to colouring it red. 
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Figure 17:Final Map Visualisation 

Figure 18 shows the final prototype for the Traffic Management dashboard. In addition to the changes 

discussed above, the content of the Live Feed window was changed by adding cycling views from other 

parts of the road network, thus contributing to an increase in the overall situation awareness of operators. 

 

Figure 18: Final Dashboard for Traffic Management 

As discussed in section 3.7, experimental evaluation comparing working prototype 1 (figure 15 ) and 

working prototype 2 (figure 18) showed significant gains in operator performance when using prototype 2 

and a significantly higher usability rating. This evaluation is discussed in D8.5. 
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4.3 Credit Card Fraud Dashboard Design 

A similar process was followed for the design of the Credit Card Fraud use-case dashboard. We began 

with the analysis of the work environment. Due to the high-security of the domain, however, this was 

limited to research into publicly available information about fraud and fraud detection and discussions 

with several financial institutions. The analysis was complemented by access to Feedzai experts which 

evaluated and tested the developed designs. Cognitive work analysis was performed and a list of 

information requirements along with an initial layout for the dashboard was produced as a result (see 

figure 19). The drives and requirements of both the technical and social (work-domain) aspects and their 

influence on the content, format and form of the display will be discussed. 

Figure 19: Initial Layout  

The layout presented in figure 19 was directly translated to a first user interface design (figure 20) with 

the following changes in content, driven by the description of the technical architecture. First, time to 

detect refers to the time to spot a fraud pattern and this is an automatic process with very little variation 

within an interval. This variation is influenced by the rate of events, number of events in the pipeline and 

the type of fraud that is being investigated. Average time for analysts to detect a fraud pattern is not 

computed as part of the architecture and is therefore, left out. Second, the Risk Probabilities windows has 

also been removed. This is due to the fact that financial institutions which use fraud detection software 

differ in the way the calculate and manage risk. It is usually set at an organisational level and does not 
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tend to vary within the organisation. Therefore, the window would have ended up displaying the rules or 

guidelines of dealing with potentially fraudulent transactions of the respective organisation. Traditionally 

these rules and guidelines are incorporated in the computation of the fraud score, or certainty associated 

with the pattern detected. The third content change is the removal of the account associated information 

windows. This is due to the fact data analysed in the project is anonymised and the event processing unit 

does not deal with individual accounts. 

 

Figure 20: Initial Fraud UI 

In figure 20, the top rectangles contain information on average transaction amounts and volumes, in 

addition to the total transactions investigated and total flagged transactions. When clicking on one of the 

metrics, the treemap below reacts, updating the area of each shape (which represents a country) in 

proportion to the selected metric. Analyst‟s Hypothesis is renamed to Analysts‟ Workspace. This window 

allows for analysts to submit new patterns for the automated system to investigate. New patterns are 

constructed using a logic builder model. The Other Info window at the bottom is meant to show external 

consumer statistics which could help the analyst make a more informed decision about the course of 

action to adopt in response to the flagged pattern. 

Further analysis of this user interface version brought up a number of potential improvements to be made. 

Taking the technical perspective, the architecture is set up in such a way that each update of rules (fraud 

patterns to investigate) requires a redeployment of the runtime. Therefore, the addition of extra fraud rule 

or the modification of existing ones is not something that the architecture supports. Functionality such as 

that of the Analysts‟ Workspace needs to be taken offline. This consideration resulted in the removal of 

the Analysts‟ Workspace, which thus rendered the Patterns Investigated window (which lists the patterns 

currently investigated by the automation) redundant. These updates mark changes in display content. 
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Feedback from domain experts (reported in D7.2) led to a series of further changes to the display content, 

format and form. In terms of content, the discussions we had with financial institutions revealed that 

analysts use a device other than the main one (which displays the user interface) to access extra 

information, such as news, market statistics, etc. This lead to the removal of the Other Info window for 

the next design iteration. The Flagged Transactions Queue proved hard to read, the order being pre-set in 

terms of flagging time without the possibility of reordering patterns. The previous comment, coupled with 

the requirement of transparency of the automated flagging system led to a redesign of this area of the 

dashboard. The Flagged Transactions Queue was replaced with the event list. This is an ordered list which 

shows some of the more important information without the need of selecting a particular transaction. It 

allows the user to arrange the list in terms of any of the shown attributes. More information can be 

accessed by selecting a transaction and clicking on the Explain button. This brings up a modal window 

with all the attributes of the flagged pattern in question. 

In terms of form, the treemap in figure 20 proved difficult to read and in the subsequent version, it was 

replaced with a contiguous cartogram. In this way the update model of the treemap (changes in area of the 

rectangles) is preserved by having the area of the countries get bigger and smaller depending on the 

selected statistics. A secondary change that resulted from this replacement was an improvement in 

geographical fidelity, making it easier for analysts to find a specific country. An additional change in 

content was the inclusion of an Explore button on the map, which brings up more detailed information 

about a selected region. 

The changes discussed above can be seen in figure 21. 

 

Figure 21: Second Version of the Fraud UI  

In order to provide the analyst with a better understanding of how risk score or certainty is computed, in 

other words, what is the computer‟s „rationale‟ for flagging a particular set of transactions as potentially 

fraudulent, we decided to find a way to display some of the automation reasoning alongside a flagged 

event. This was achieved by adding an Account History window and a visualisation of the contribution of 

transaction attributes to the final risk score. These changes mark refer to the content of the display and 

can be seen in figure 22. Colours from the account history relate to those in the Transaction – Score 

Contribution window, while the height of the graph (themed river) shows the risk level. The Transaction – 
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Score Contribution window is a graphical representation of the contribution to the total risk score of each 

attribute for the pattern selected in the Event List window. 

 

Figure 22: Third Version of the Fraud UI 

While domain experts liked the idea of this information being made available in the process of decision-

making, decoding the information from the themed river proved problematic due to the lack of reference 

levels (thresholds) on the graph. This view, along with the score contribution window have been 

abandoned due to technical constraints relating to data availability and due to the fact that in the way 

patterns were defined at the system level at that time implied a constant risk visualisation for each fraud 

pattern, rendering the visualisation no more useful than the pattern name. Another comment that analysts 

have made was that differences in country areas was very difficult to quantify, and the distortion of the 

map that resulted from the countries changing areas made it very difficult to recognise and differentiate 

between countries. It was decided to replace the contiguous cartogram with a choropleth map. 

As discussed in section 2.3, there are multiple analyst roles within an organisation and the tasks they are 

responsible of differs. Two roles have been identified that could be supported using the SPEEDD 

dashboard: i) high-level supervisor, and ii) low-level call centre analyst, each requiring different support. 

The user interface in figure 23 presents an overview of all transactions analysed by the automatic risk 

scoring system and illustrates overall statistics for each geographical region. Individual flagged patterns 

are also shown with the possibility to further investigate them, bringing up additional available 

information. This user interface was designed for the supervisor role. The dashboard in figure 24 is a 

flagged pattern investigation tool designed with the call-centre analysts in mind. The window on the left 

shows the flagged patterns that have been assigned to the analyst, with the option to bring up more 

information. The window on the right provides the user with an integrated visualisation of the most 

relevant aspects of the pattern which triggered the flagging by the automated system. 
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Figure 23: High-level fraud dashboard 

 

Figure 24: Low-level fraud dashboard 
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5. Conclusions 
 

This report has summarized the work completed to date in Work Package 5.  At present there are further 

experiments being conducted, using eye-tracking to explore search in the main fraud experimental task, 

and refinements to the model.  The dashboards will undergo slight modification prior to the final review 

(to accommodate changes to the primary tasks in the use cases) but will otherwise retain the look and feel 

that they have now.  Experimental evaluation of the two dashboards (comparing first and second 

prototype designs) have shown measurable improvements in the ability of users to make decisions based 

on the presentation of information. 

Experimental studies and modeling have extended our understanding of our people use dashboards to 

make decisions. We have modified our designs on the basis of these results and have a set of papers being 

submitted to key journals in Human-Computer Interaction and Ergonomics as the project comes to a close. 

5.1 Advancing State of the Art 

T5.1: Modeling Decision-Making as a Socio-Technical Activity 

The main objective of task 5.1 was to apply Cognitive Work Analysis (CWA) in the use-case domains to 

understand Human Decision-Making and then to advance the state-of-the-art by developing Cognitive 

Work Analysis for the study of human-automation collaboration in proactive decision-making.  This has 

meant describing decision making terms of Joint Cognitive Systems and the insights from this description 

has underpinned the Sociotechnical design process for the design of dashboards in SPEEDD.  As section 

4 shows, the design process has not only been informed by our understanding of decision making but also 

the balance between social, technical and perceptual constraints.  This work has been presented at the 

Human Factors and Ergonomics Society and  EP for DM conferences.   

T5.2: Defining Objective Metrics for Evaluating Decision-Making 

In terms of defining metrics for decision making, Work Package 5 has used a combination of POMDP 

modelling, eye-tracking data and experiments to compare and contrast the effect of different approaches 

to information display on decision making.  Together the results from these studies inform our 

understanding of the uses of visual analytics and, in particular, have allowed us to advance the state-of-

the-art by developing an understanding of how human decision makers allocate their attention to different 

features in a decision problem and how these features contribute to satisficing in decision-making (both 

individually or in teams).  The field-based eye-tracking work was presented at the Institute of Ergonomics 

and Human Factors conferences (where it was awarded best paper) and is currently under review for the 

journal Applied Ergonomics.  The initial concept for the modelling work was presented at the ACM CHI 

conference and a follow-up paper has been submitted to the same conference. 

T5.3: Real-Time Visualization for Human Decision-Making Visual Analytics and Ecological 

Interface Design 

The primary aim of this task was the design and development of a  visual analytics suite for real-time 

explanation of, and interaction with the Big Data in the use-cases.  Here, we assume that the key 

challenge lies in displaying the situation space to the user in such a way that they can clearly discern the 
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decision space available to them.   In this way, the user interface is intended to support proactive decision 

support.   For this task, the aim was to advance  the state-of-the-art by applying concepts and principles 

from Ecological Interface Design to the development of visual analytics for decision support in Big Data 

applications.  The primary goal of this task is to capture the constraints which influence the pursuit of the 

goals of human operators and to develop novel techniques for representing multiple information sources 

in terms of converged visualizations which will support decision-making and understanding of the 

proactive system recommendations.   The design process is currently being written up for submission to 

the International Journal of Human-Computer Studies, and evaluations of the dashboards are being 

submitted to IEEE Transactions on Human-Machine Systems. 
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