

Scalable Data Analytics,

Scalable Algorithms, Software Frameworks

and Visualization ICT-2013 4.2.a

Project FP6-619435/SPEEDD

Deliverable D6.1 (amended) and

D6.5

Distribution Public

 http://speedd-project.eu

D6.1 (amended) and D6.5

The Architecture Design of the SPEEDD

Prototype and

Second Integrated Prototype

Alex Kofman (IBM), Fabiana Fournier (IBM), Inna Skarbovsky (IBM), Natan Morar (UoB), Marius

Schmitt (ETH), Chithrupa Ramesh (ETH), Jason Filippou (NCSR), Elias Alevizos (NCSR), Rohit

Singhal (CNRS), Jonathan Yom Tov (Technion)

 Status: Final (Version 2.1)

 February 2016

ii

 Architecture Design and Second Integrated Prototype

Project

Project Ref. no FP7-619435

Project acronym SPEEDD

Project full title Scalable ProactivE Event-Driven Decision Making

Project site http://speedd-project.eu/

Project start February 2014

Project duration 3 years

EC Project Officer Alina Lupu

Deliverable

Deliverable type Report

Distribution level Public

Deliverable Number D6.1 (amended) and D6.5

Deliverable Title The Architecture Design of the SPEEDD Prototype and

Second Integrated Prototype

Contractual date of delivery M24 (January 2016)

Actual date of delivery January 2016

Relevant Task(s) WP6/Tasks 6.3

Partner Responsible IBM

Other contributors NCSR, CNRS, Feedzai, ETH, UoB, Technion

Number of pages 90

Author(s) Alex Kofman (IBM), Fabiana Fournier (IBM), Inna Skarbovsky

(IBM), Natan Morar (UoB), Marius Schmitt (ETH), Chithrupa

Ramesh (ETH), Jason Filippou (NCSR), Elias Alevizos (NCSR), Rohit

Singhal (CNRS), Jonathan Yom Tov (Technion)
Internal Reviewers Feedzai

Status & version Final v2.1

Keywords architecture design scalability cep decision-making proactive

iii

 Architecture Design and Second Integrated Prototype

Executive Summary
SPEEDD (Scalable ProactivE Event-Driven Decision making) will develop a system for proactive event-

based decision-making: decisions will be triggered by forecasting events – whether they correspond to

problems or opportunities – instead of reacting to them once they happen. The decisions and actions

will be real-time, in the sense that they will be taken under tight time constraints, and require on-the-fly

processing of “Big Data”, i.e. extremely large amounts of noisy data storming from different

geographical locations as well as historical data.

The goals of WP6 (Scalability and System Integration) are to develop a highly scalable event processing

infrastructure supporting real-time event delivery and communication minimization, and implement

integration of the SPEEDD components into a prototype for proactive event-based decision support.

The purpose of this document is to describe the design of the SPEEDD prototype architecture. It

discusses main architectural questions and decisions made to build a proactive decision support system

that satisfies requirements of the two representative use cases. The document describes APIs provided

by the prototype for integration, extensibility, and automation. We define the, main test cases for

testing the prototype. Finally, the current version of the document describes our approach to

performance and scalability evaluation of the prototype, discussing the challenges, the methodology

used for performance evaluation, and the analysis of the initial results.

The work done so far on the architecture design includes analysis of the use case requirements, drafting

the conceptual architecture and the corresponding technical architecture that should allow building the

technology that satisfies the requirements. The following refinement of the high-level technical

architecture involved evaluation of available technologies and selecting the appropriate stream

processing and messaging platforms. Additionally, the event-driven architecture paradigm has been

selected as the main architectural principle for SPEEDD integration. During the last year the architecture

has been updated according to the enhancements done in different components.

Architectural decisions documented in the current deliverable guide the development of SPEEDD

prototype. In the process of the development and according to the issues and questions identified, the

architecture decisions are constantly revised, refined, and modified.

iv

 Architecture Design and Second Integrated Prototype

Contents
1 Introduction .. 10

1.1 History of the document ... 10

1.2 Purpose and Scope of the Document ... 10

1.3 Relationship with Other Documents ... 10

1.4 Updates since the first version ... 10

2 SPEEDD Prototype Architecture .. 11

2.1 System Requirements ... 11

2.2 Approach ... 12

2.3 Conceptual Architecture ... 12

2.4 SPEEDD Runtime Architecture .. 14

2.4.1 Event Bus ... 17

2.4.2 Event/Data Providers .. 19

2.4.3 Action Consumption – Actuators/Connectors .. 20

2.4.4 Complex Event Processor .. 21

2.4.5 Decision Making .. 27

2.4.6 Dashboard application .. 36

2.4.7 SPEEDD Scalability Component Architecture .. 40

2.5 SPEEDD Design-Time Architecture .. 42

2.5.1 Machine Learning .. 43

2.5.2 Authoring of CEP Rules ... 43

2.6 Integration – APIs and Data Formats .. 44

2.6.1 Input Events .. 44

2.6.2 Communication between SPEEDD components ... 45

2.7 Deployment Architecture ... 47

2.8 Non-Functional Aspects .. 48

2.8.1 Scalability .. 48

2.8.2 Fault Tolerance.. 48

2.8.3 Testability .. 48

3 Test Plan .. 50

4 Performance Analysis.. 51

v

 Architecture Design and Second Integrated Prototype

4.1 Objectives.. 51

4.2 Approach ... 51

4.3 Performance Testing Architecture and Configuration .. 52

4.4 Performance Test Results ... 54

4.5 Performance Analysis and Conclusions .. 55

5 Conclusions ... 58

6 Appendix – Technology Evaluation ... 59

6.1 Stream Processing – requirements and evaluation criteria .. 59

6.2 Storm ... 60

6.3 Akka ... 62

6.4 Spark Streaming .. 64

6.5 Streaming technologies – conclusion ... 65

6.6 Choice of the Messaging Platform .. 65

7 Appendix – Setup Guide .. 67

7.1 Overview ... 67

7.2 Running SPEEDD runtime in Docker containers ... 67

7.2.1 Pre-requisites .. 67

7.2.2 Usage ... 68

7.3 Building from sources ... 69

7.4 Offline pattern mining – setup and usage instructions .. 69

8 Appendix – User Reference: Traffic Management Dashboard ... 76

9 Appendix – User Reference: Credit Card Fraud Management Dashboard ... 78

10 Appendix – Demonstrating SPEEDD Prototype .. 80

10.1 Demo Scenarios .. 80

10.2 Running demo scenarios ... 80

10.2.1 Traffic Management .. 80

10.2.2 Credit Card Fraud Detection ... 80

10.2.3 Stopping SPEEDD prototype ... 80

11 Appendix – Aimsun Integration .. 82

11.1 Aimsun Integration Architecture .. 82

11.1.1 Control traffic light phases .. 83

11.1.2 Control section speed limit ... 83

vi

 Architecture Design and Second Integrated Prototype

12 Appendix – SPEEDD Event Reference ... 84

12.1 Common attributes for all events emitted by Proton .. 84

12.2 Credit Card Fraud Management Use Case .. 84

12.2.1 Transaction .. 84

12.2.2 SuddenCardUseNearExpirationDate ... 84

12.2.3 TransactionsInFarAwayPlaces ... 85

12.2.4 TransactionStats .. 85

12.3 Traffic Management Use Case .. 85

12.3.1 AggregatedSensorRead ... 85

12.3.2 SimulatedSensorReadingEvent ... 85

12.3.3 Congestion .. 86

12.3.4 PredictedCongestion ... 86

12.3.5 ClearCongestion .. 86

12.3.6 OnRampFlow ... 86

12.3.7 AverageDensityAndSpeedPerLocation ... 86

12.3.8 2minsAverageDensityAndSpeedPerLocation .. 87

12.3.9 PredictedTrend ... 87

12.4 Traffic Control Actions .. 87

12.4.1 UpdateMeteringRateAction .. 87

12.4.2 setMeteringRateLimits .. 87

12.5 AIMSUN Simulation Control Commands .. 87

12.5.1 setTrafficLightPhaseTime .. 87

12.5.2 setSpeeddLimit.. 88

13 Bibliography .. 89

vii

 Architecture Design and Second Integrated Prototype

List of Tables
Table 2.1 - Kafka topics in SPEEDD event bus ... 17

Table 2.2 - Input Events (from CEP) for DM .. 35

Table 2.3 - Input Events (from UI) for DM .. 35

Table 2.4 - Output Events from DM .. 36

Table 4.1 - Performance Test Configurations ... 54

Table 4.2 - Performance Results Summary ... 54

List of Figures
Figure 2.1 - Conceptual Architecture of SPEEDD Prototype ... 13

Figure 2.2 - SPEEDD - Event-Driven Architecture .. 15

Figure 2.3 - SPEEDD Runtime - Event-Driven Architecture (Traffic Use Case) .. 16

Figure 2.4 - SPEEDD Runtime - Event-Driven Architecture (Credit Card Fraud Use Case) 17

Figure 2.5 - Storm-Kafka Integration .. 19

Figure 2.6 - Proton Authoring Tool and Runtime Engine .. 21

Figure 2.7 - Proton Runtime and external systems... 23

Figure 2.8 - Proton components ... 25

Figure 2.9 - Architecture of Proton on Storm ... 26

Figure 2.10 - Implementation of DM in SPEEDD topology.. 27

Figure 2.11. An overview of the distributed control approach applied to DM for the traffic scenario. 29

Figure 2.12 - Partitioning of the Rocade in Grenoble for the purpose of distributed DM 30

Figure 2.13 - Urban Traffic Network ... 30

Figure 2.14 - Freeway Traffic Network.. 30

Figure 2.15 - Assignment of Events to Instances of the Bolt .. 34

Figure 2.16 - Execution of Events within the Bolt ... 34

Figure 2.17 - Dashboard Architecture ... 37

Figure 2.18 – Prototype V2 User Interface for the Traffic Management use-case 39

Figure 2.19 – Prototype V2 User Interface for the Credit Card Fraud use-case ... 39

Figure 2.20 - Scalability Layer Architecture .. 41

Figure 2.21 - Sensor node composition .. 41

Figure 2.22 - Scalability Component in context of the SPEEDD architecture for Traffic Management 42

Figure 2.23 - SPEEDD Design Time Architecture ... 43

Figure 2.24 - Fields in a Transaction event ... 45

Figure 2.25 - Deployment Architecture .. 47

Figure 4.1 SPEEDD Performance Testing Architecture - Conceptual View ... 52

Figure 4.2 - Mesos cluster topology .. 53

Figure 4.3 - Performance Results: Adding more workers improves latency, adding more executors – does

not ... 55

Figure 4.4 - SPEEDD Topology for Credit Card use case: a screenshot from Storm UI 56

Figure 4.5 - Storm UI: Proton Context Bolt runtime metrics: only 3 of 16 executors actually involved in

processing ... 57

Figure 6.1 - Storm Topology .. 61

Figure 6.2 - Storm Parallelization .. 61

Figure 6.3 - Akka Actors Hierarchy .. 63

Figure 6.4 - D-Stream is a major concept in Spark Streaming .. 64

Figure 8.1 - Traffic Management Dashboard – Reference (1/2) ... 76

Figure 8.2 - Traffic Management Dashboard – Reference (2/2) ... 77

Figure 9.1 - Credit Card Fraud Management Dashboard – Reference (1/3) ... 78

Figure 9.2 - Credit Card Management Dashboard – Reference (2/3) ... 79

9

 Architecture Design and Second Integrated Prototype

Figure 9.3 – Credit Card Management Dashboard – Reference (3/3) .. 79

Figure 11.1 - AIMSUN Integration Architecture .. 82

10

 Architecture Design and Second Integrated Prototype

1 Introduction

1.1 History of the document

Version Date Author Change Description

1.0 31/01/2015 Alexander Kofman (IBM) First version of the architecture document

2.0 draft 24/01/2016 Alexander Kofman (IBM) Draft of the architecture document v2.0

2.0 28/01/2016 Alexander Kofman (IBM) Incorporate internal review comments

2.1 25/02/2016 Alexander Kofman (IBM) Complete performance analysis results

1.2 Purpose and Scope of the Document

This is the second, amended version of the report on the design of the SPEEDD prototype architecture. It

discusses main architectural questions and decisions made to build a proactive decision support system

that satisfies the requirements of the two representative use cases. The document describes APIs

provided by the prototypes for integration, extensibility, and automation.

1.3 Relationship with Other Documents

The current document refers to the system requirements for the Proactive Traffic Management use case

described in D8.1 and for the Proactive Credit Card Fraud Management described in D7.1.

The complex event processing module is discussed in depth in D3.2 where one can find more

information on the architecture and the event patterns.

The Decision Making module algorithms are described in D4.2.

For more details on the traffic simulation module please refer to D8.2.

The dashboard application design and the underlying approach are explained in D5.2.

The scalability component’s approach and algorithms are described in D6.4.

1.4 Updates since the first version

As mentioned in the previous section, the current document contains updates, corrections, and more

detailed descriptions to the concepts introduced in the first design report (D6.1).

Specifically, the chapters discussing the complex event processing, the decision making, and the

dashboard modules have been updated corresponding to the enhancements done in the new version

(v2) of these components (sections 2.4.4 - 2.4.6 respectively).

A description of the architecture of the scalability module is now available in 2.4.7.

11

 Architecture Design and Second Integrated Prototype

The performance testing architecture and analysis is provided in section 4.

The setup guide has been updated with instructions for running SPEEDD runtime in docker1 containers.

The details of the integration of AIMSUN traffic simulator and SPEEDD runtime are available in

appendix 11.

Following the request from the last project review, we have added the appendix 12 that contains

reference for all the events used in SPEEDD, thus serving as the API reference for SPEEDD.

2 SPEEDD Prototype Architecture

2.1 System Requirements

The requirements for the current prototype are derived from two problem domains – traffic

management, and credit card fraud management. The detailed requirements for each domain are

available in the deliverable D8.1 (Traffic) and D7.1 (Fraud) respectively.

The prototype should provide authoring tools that could be applied to the historic data in order to

derive event pattern definitions and decision models to be deployed in runtime, as well as a scalable

runtime system capable of detecting and predicting important business situations (traffic conditions,

credit card fraud attempts) and issuing automatic actions aimed at preventing undesired situations.

To support credit card fraud detection scenario, it is required to provide continuous throughput of 1000

transactions per second, with latency less than 25 milliseconds. Availability is an important requirement

for the fraud detection system, 99.9% is stated by the document. As the goal of the current project is

implementing a prototype and not an operational system, we aim at building the architecture which

could be further evolved and expanded to provide the required level of availability rather than achieving

and testing the availability compliance of the prototype.

For the traffic management scenario, the projected throughput is 2000 sensor readings per second

(computed based on the amount of sensors and the report frequency, assuming aggregated readings

sent every 15 seconds by each of the 130 Sensys sensors installed along the Grenoble South Ring).

As we scale out the problem presented in the Grenoble traffic management scenario from the level of a

single highway (or even a few ones) to managing traffic in the entire city, and further to managing traffic

at the regional level and at the country-level, the requirements scale up correspondingly. Also, there are

additional challenges:

• Large number of event sources – sensors and others

• Event rate grows correspondingly

• Network latency and partitioning

1
 https://www.docker.com/

12

 Architecture Design and Second Integrated Prototype

In terms of integration with external systems the following is required:

• replay historic events from text files or a database (traffic, fraud)

• receive sensor reading messages generated by the micro-simulator (traffic)

• provide a mechanism to log output events and actions to a log for subsequent research

• provide a mechanism to connect to the traffic micro-simulator for updating the simulator

configuration – action simulation

It is important to mention that many of the requirements learned for the traffic management and the

credit card fraud management also applicable to many other domains; thus the current work should be

also extensible to additional areas and use cases.

2.2 Approach

The design of the system architecture for a prototype like SPEEDD is an iterative process that starts with

the beginning of the project and continuously evolves, as requirements of the different components are

better understood and insights are gained. Therefore, a close iterative and collaborative process was

carried out between the architecture team in WP6 “Scalability and System Integration” lead by IBM, and

the technical teams of the SPEEDD prototype, specifically the teams of the real-time event recognition

and forecasting (WP3), real-time decision making (WP4), real-time visual analytics (WP5), scalability

(WP6), and the technical teams from the use cases (WP7 and WP8).

To this end we followed the steps below:

1. Iterative biweekly virtual meetings that included representatives of all partners involved. A very

draft architecture presented at M3 of the project has been frequently updated and refined

based on input and feedback to the current architecture (described in sections 2.3 - 2.8).

2. On a case-by-case basis, bilateral virtual meetings with a specific partner to elaborate on a

specific issue (e.g., specific API).

3. Face-to-face meetings during the project meetings in May and September 2014. As part of

every plenary project meeting, we’re having a “Code Camp” day dedicated to architecture and

integration technical discussions and work.

2.3 Conceptual Architecture

This section provides a high-level overview of SPEEDD prototype. The goal is to introduce the main

concepts, high-level components and information flow without getting into implementation and

technological details.

Figure 2.1 illustrates the conceptual architecture of SPEEDD prototype. We separate between the design

time and the run time. The products of the design time activities are event processing definitions and

decision making configurations that will be deployed and executed at the runtime.

13

 Architecture Design and Second Integrated Prototype

Figure 2.1 - Conceptual Architecture of SPEEDD Prototype

Historic data used at design time contains raw events reported during the observed period along with

annotations provided by domain experts. These annotations mark important situations that have been

observed in past and should be detected automatically in the future. Visualization tooling is used to sift

through historic data to gain insights and create annotations. Domain experts apply tools and

methodologies provided by SPEEDD authoring toolkit to extract derived event definitions from the

annotated event history. This is a semi-automatic process involving applying machine learning tools to

extract initial set of patterns which is further enhanced and translated with help of the domain experts

into deployable CEP artefacts.

The runtime part is composed of the CEP component, the automatic decision making component, and

visual decision support tooling. SPEEDD runtime receives raw events emitted by the various event

sources (e.g. traffic sensors, transactional systems, etc., - depending on the use case) and emits actions

that are consumed by the actuators connected to the operational systems or simulators.

The CEP component has been extended to cope with detecting and forecasting derived events under

uncertainty. It processes raw as well as derived (detected and forecasted) events to detect and forecast

higher-level events, or situations. These serve as triggers for the decision making component, which

uses domain-specific algorithms to suggest the next best action to resolve or prevent an undesired

situation.

14

 Architecture Design and Second Integrated Prototype

The visualization component (further called the dashboard) facilitates decision making process for

business users by providing easily comprehensible visualization of detected or forecasted situations

along with output of the automatic decision making component – a list of suggested actions to deal with

the situation. The SPEEDD system can be run in either open or closed loop mode. In case of the open

loop, the user can approve, reject, or modify the action proposed by the automatic decision maker. The

closed loop operation does not require user’s approval, - the action is performed automatically2. A

hybrid mode where some types of actions are taken automatically while other types require human

attention is also supported; moreover, we believe that this mode is the most realistic one.

2.4 SPEEDD Runtime Architecture

The architecture of the runtime part of SPEEDD follows the Event-Driven Architecture paradigm3. This

approach facilitates building loosely coupled highly composable systems as well as provides close

alignment with the real world problems, including our representative use cases. Every component

functions as an event consumer, or an event producer, or a combination of both. The event bus plays a

central role in facilitating inter-component communication which is done via events. Figure 2.2 provides

a refinement of the conceptual architecture described above where the runtime part is represented as a

group of loosely-coupled components interacting through events. The event bus serves as the

communication and integration platform for SPEEDD runtime.

2
 Actuators are out of scope of SPEEDD prototype. Under automatic action we mean that the message

representing the action type and parameters is emitted by SPEEDD, so that the actual operational system listening

to action events is supposed to execute it.
3
 G. Hohpe. Programming without a call stack – Event-driven Architecture. 2006, [Online]. At:

http://www.eaipatterns.com/docs/EDA.pdf

15

 Architecture Design and Second Integrated Prototype

Figure 2.2 - SPEEDD - Event-Driven Architecture

Input from the operational systems (traffic sensor readings, credit card transactions) are represented as

events and injected into the system by posting a new event message to the event bus. These events are

consumed by the CEP runtime. The derived events representing detected or forecasted situations that

CEP component outputs are posted to the event bus as well. The decision making module listens to

these events so that the decision making procedure is triggered upon a new event representing a

situation that requires a decision. The output of the decision making represents the action to be taken

to mitigate or resolve the situation. These actions are posted as action events. The visualization

component consumes events coming from two sources: the situations (detected as well as forecasted)

and the corresponding actions suggested by the automatic decision components. Architecturally there is

no difference between these two – both are events that the dashboard is ‘subscribed to’, although

having different semantics and presented and handled differently. The user can accept the suggested

action as is, modify the suggested action’s parameters, or reject it (and even decide on a different

action). In the case where an action is to be performed, the resulting action will be sent as a new event

to the event bus so that the corresponding actuators are notified.

In the following subsections we describe the details of the runtime architecture including the design of

each component and explain how the technology is being used to implement it.

Figure 2.3 and Figure 2.4 illustrate the SPEEDD runtime architecture for the traffic and credit card fraud

use cases respectively. These diagrams include the technology platforms used to implement the

architecture. We will use these illustrations as we discuss the details of each component.

16

 Architecture Design and Second Integrated Prototype

Figure 2.3 - SPEEDD Runtime - Event-Driven Architecture (Traffic Use Case)

17

 Architecture Design and Second Integrated Prototype

Figure 2.4 - SPEEDD Runtime - Event-Driven Architecture (Credit Card Fraud Use Case)

2.4.1 Event Bus

The technology chosen for the event bus component is Apache Kafka4 (Kreps, Narkhede and Rao 2011).

It provides a scalable, performant, and robust messaging platform that matches SPEEDD requirements

(see 6.5 for our technology evaluation results). To implement routing of the events to event consumers

we build upon the topic-based routing mechanism provided by Kafka. In Table 2.1 one can find the

topics used by SPEEDD runtime along with the information about what components produce events or

consume events for every topic.

Table 2.1 - Kafka topics in SPEEDD event bus

Topic Name Description Producers Consumers

speedd-in-events Input events Event sources (e.g.

traffic sensor readers,

credit card transaction

systems, file readers

for replay etc.)

CEP runtime

speedd-out-events Detected/Forecasted

events

CEP, Decision making Decision making,

Dashboard

speedd-actions Suggested decisions Decision making Dashboard, CEP

speedd-actions-confirmed Actions confirmed for

execution

Dashboard (in open

loop mode), Decision

making (in closed loop

mode)

Dashboard, Actuators,

CEP

4
 http://kafka.apache.org/

18

 Architecture Design and Second Integrated Prototype

Topic Name Description Producers Consumers

speed-admin Administrative actions

for configuring SPEEDD

runtime

Dashboard Decision Making

To allow scalable processing of massive stream of messages at high throughput Kafka provides the

partitioning mechanism. Every topic can be partitioned into multiple streams that can be processed in

parallel, while every partition can be managed in a separate machine. There may be more than one

replica for every partition, thus providing resilience in case of failures.

 In SPEEDD we exploit Kafka partitioning to build a scalable and fault-tolerant event bus. The topic that

receives the biggest incoming traffic is speedd-in-events where all the input events are sent. The

decision about the partitioning mechanism to use is use-case specific as we want to achieve nearly

uniform distribution of load over different partitions. Below we describe the partitioning approach for

each use case, providing the rationale for the design decisions. It is important to mention, though, that

we may change the final partitioning mechanism based on the performance experiments on real and

simulated data. We will be able to do that at any stage of the project development, thanks to the highly

extensible and customizable partitioning framework that Kafka provides.

2.4.1.1 Partitioning for the Traffic Use Case

Assuming that we get relatively equal amount of events produced by every sensor, we could partition

sensor reading events based on the sensor id. This should result in uniform distribution of the messages

to partitions, which provides horizontal scalability of the topic. In v2 of the prototype we slightly

enhance the partitioning strategy by using an additional attribute, dm_location, which identifies a road

section which may include multiple sensors. This strategy is beneficial because it takes into account

geographical location and proximity of the sensors. Given that all partitions contain similar amount of

sensors we still get uniform distribution of the messages to partitions.

2.4.1.2 Partitioning for the Credit Card Fraud Use Case

For the credit card fraud use case, the card Primary Account Number (PAN) uniquely identifies the card.

It is questionable though if we can assume uniform distribution of transactions among all card owners.

Therefore the most suitable partitioning seems to be ‘random’ partitioning, that should guarantee

uniform partitioning of the messages in the topic.

2.4.1.3 Ordering of events

Kafka guarantees that the order of events submitted to a topic’s partition is preserved within same

partition – the consumers will receive them in the same order. However, the order is not guaranteed

across partitions. In our case this should not be an issue because the CEP component takes care of the

out-of-order events as long as the delay between the event and its preceding event that arrives after

that event is not too long – this assumption should be valid with Kafka.

2.4.1.4 Storm-Kafka Integration

SPEEDD event processing and decision making components run on top of Apache Storm (Toshniwal, et al.

2014), - a distributed scalable stream processing infrastructure (see 2.4.4.6, 6.2 for details).

19

 Architecture Design and Second Integrated Prototype

Integration between Storm streaming platform and our Kafka-based event bus is done based on the

storm-kafka integration module which has become a part of the storm project since v0.9.35. The

integration module provides two building blocks. KafkaSpout listens on a Kafka topic and creates a

stream of the tuples. KafkaBolt posts incoming tuples to a configured topic. There is an extensible

mechanism for serialization and deserialization of tuples to messages and vice versa.

The diagram on Figure 2.5 illustrates the way this integration is done in SPEEDD. Raw events posted on

the speedd-in-events topic in comma separated values (CSV) format are de-serialized using the use-case

specific scheme (in the diagram AggregatedReadingScheme corresponds to the traffic sensor aggregated

reading event format). The resulting stream contains tuples of form {eventName, timestamp, attributes}.

Outbound events are serialized as JavaScript Object Notation (JSON) text-based messages using

JsonEncoder class configured via serializer.class parameter of the KafkaBolt.

Figure 2.5 - Storm-Kafka Integration

2.4.2 Event/Data Providers

Event providers provide the input interface of SPEEDD runtime with the external world. Every event that

occurs in the external world that should be taken into account by SPEEDD to detect or predict an

important business situation should be sent to the speedd-in-events topic on the event bus (see 2.4.1

above) as a message representing the event.

2.4.2.1 Event Providers for Traffic Use Case

As it is illustrated in Figure 2.3, events for the traffic use case come from the following sources:

• Traffic sensors – magnetic wireless Sensys sensors buried in the road

• Micro-Simulator – synthetic data generated by the micro-simulator

• Historic data – data from the sensors collected over some period of time that should be

replayed to test or demonstrate the SPEEDD prototype

5
 http://storm.apache.org/documentation/storm-kafka.html

20

 Architecture Design and Second Integrated Prototype

To enable processing of events generated by either of the above sources, a connector should be

developed. The connector uses source-specific integration mechanism to read the data from the event

sources and send them to SPEEDD event bus using Kafka producer API. The message data model and the

format of the serialized representation are described in API and Integration part of this document

(see 2.6). We define three connector types corresponding to the types of the event sources:

• Sensor connector6

• Micro-simulator connector

• File reader connector – replay past events from a file

Architecture and various aspects of AIMSUN micro-simulator connector are discussed in appendix 11.

2.4.2.2 Event Providers for Credit Card Fraud Use Case

The requirements for SPEEDD prototype in regard to the Credit Card Fraud use case only assume

running SPEEDD in ‘offline’ mode by replaying historic events. Thus two types of connectors are

considered in this design document (as shown in Figure 2.4):

• Database connector – replays events from Feedzai transaction database

• File reader connector – replays events from a file (with partially or fully anonymized data)

These connectors reuse the same design framework as described above. For instance, only a small

portion of a connector code is use-case specific, where most of the functionality is reused between

connectors. In case of the file reader connector the same connector can be used for either use case,

while the parsing part is use-case specific.

The data model and the format of the messages are described in API and Integration part of this

document (see 2.6).

2.4.3 Action Consumption – Actuators/Connectors

The outcomes of SPEEDD are actions that should be applied in the operational environment to resolve a

problem or prevent a potential problem. According to the event-driven architecture principles, actions

are represented as outbound events and are available to every interested party to receive and process

them. The actuators connectors are interface points in SPEEDD architecture responsible for listening on

the speedd-actions-confirmed topic for new actions and connect to operational systems to execute

respective operations. The following provides details of the actuators for each use case.

2.4.3.1 Actions for the Traffic Use Case

As mentioned above, it is not planned to connect SPEEDD prototype to the traffic operational systems

running in production mode. Instead, the detect�decide�act loop is implemented and tested using

the AIMSUN micro-simulator developed as part of WP8. The traffic actuator connector listens on the

outbound action events (speedd-actions topic on the event bus) and executes operations supported by

the micro-simulator, e.g. update speed limits, set ramp metering rates, etc. (see appendix 11 for more

6
 Sensor connector is out of scope for SPEEDD prototype because connecting to the operational systems in

production environment is not planned as a goal for the prototype

21

 Architecture Design and Second Integrated Prototype

information on AIMSUN integration). The integration with the event bus for actuators is based on the

Kafka consumer API.

2.4.3.2 Actions for the Credit Card Use Case

Per definition of the scope for the SPEEDD prototype, outbound events representing final decisions

related to a suspected fraud situation represent the actions – the action information will be written to a

log or recorded in a decision data store for further analysis and verification of the prototype functional

correctness. No actual operation will be performed. The integration mechanism is the same as for the

traffic use case – Kafka consumer API.

2.4.4 Complex Event Processor

Figure 2.6 - Proton Authoring Tool and Runtime Engine

Proton—IBM Proactive Technology On-Line—is an open source IBM research asset for complex event

processing extended to support the development, deployment, and maintenance of proactive event-

driven applications. Proactive event-driven computing (Engel and Etzion 2011) is the ability to mitigate

or eliminate undesired states, or capitalize on predicted opportunities—in advance. This is accomplished

through the online forecasting of future events, the analysis of events coming from many sources, and

the enabling of online decision-making processes.

Proton receives raw events, and by applying patterns defined within a context on those events,

computes and emits derived events (seeFigure 2.6).

2.4.4.1 Functional Highlights

Proton's generic application development tool includes the following features:

� Enables fast development of proactive applications.

� Entails a simple, unified high-level programming model and tools for creating a proactive

application.

� Resolves a major problem—the gap that exists between events reported by various channels and

the reactive situations that are the cases to which the system should react. These situations are a

22

 Architecture Design and Second Integrated Prototype

composition of events or other situations (e.g., "when at least four events of the same type occur"),

or content filtering on events (e.g., "only events that relate to IBM stocks"), or both ("when at least

four purchases of more than 50,000 shares were performed on IBM stocks in a single week").

� Enables an application to detect and react to customized situations without having to be aware of

the occurrence of the basic events.

� Supports various types of contexts (and combinations of them): fixed-time context, event-based

context, location-based context, and even detected situation-based context. In addition, more than

one context may be available and relevant for a specific event-processing agent evaluation at the

same time.

� Offers easy development using web-based user interface, point-and-click editors, list selections, etc.

Rules can be written by non-programmer users.

� Receives events from various external sources entailing different types of incoming and reported

(outgoing) events and actions.

� Offers a comprehensive event-processing operator set, including joining operators, absence

operators, and aggregation operators.

2.4.4.2 Technical Highlights

� The Proton technology is platform-independent, uses Java throughout the system.

� Comes as a J2EE (Java to Enterprise Edition) application or as a J2SE (Java to Standard Edition)

application.

� Based on a modular architecture.

2.4.4.3 Proton APIs

One of the main characteristics of CEP engines is the asynchronous way in which events are received

and emitted to and out of the system. This is usually done through a publish/subscribe mechanism, with

no Application Programming Interface (API) definition per-se.7

PROTON’s JSON file that is created at build-time contains all EPN definitions, including definitions for

event types, EPAs, contexts, producers, and consumers. The physical entities representing the logical

entities of producers and consumers in PROTON are adapter instances. For each producer an input

adapter is defined, which defines how to pull the data from the source resource and how to format the

data into PROTON's object format before delivering it to the run-time engine. The adapter is

environment-agnostic, but uses the environment-specific connector object, injected into the adapter

during its creation, to connect to PROTON runtime.

At run-time, the standalone CEP engine receives incoming events through the input adapters, processes

these incoming events according to the definitions, and sends derived events through the output

adapters. At execution, the standalone run-time engine accesses the metadata file, loads and parses all

the definitions, creates a thread per each input and output adapter, and starts listening for events

incoming from the input adapters (producers) and forwards events to output adapters (consumers).

7
 This summary is taken from D6.1 - Second version of event recognition and forecasting technology

23

 Architecture Design and Second Integrated Prototype

Note that for the distributed implementation on top of STORM, an input Bolt serves the same function

as input adapter, and the derived events are passed as STORM tuples to the next stage in the SPEEDD

topology processing (see Figure 2.3, Figure 2.4).

2.4.4.4 Proton High-level Architecture

Figure 2.7 - Proton Runtime and external systems

Proton architecture consists of a number of functional components and interaction among them, the

main of which are (see Figure 2.7):

• Adapters – communication of Proton with external systems

• Parallelizing agent-context queues – for parallelization of processing of single event instance,

participating in multiple patterns/contexts, and parallelization of processing among multiple

event instances

• Context service – for managing of context’s lifecycle –initiation of new context partitions,

termination of partitions based on events/timers, segmenting incoming events into context

groups which should be processed together.

• EPA manager –for managing Event Processing Agent (EPA) instances per context partition,

managing its state, pattern matching and event derivation based on that state.

In the context of the SPEEDD runtime, the traffic sensors, or the transaction terminals reporting input

events correspond to the external systems producing raw events in the diagram. On the other hand, the

24

 Architecture Design and Second Integrated Prototype

dashboard, and the actuators (e.g. AIMSUN actuator component, or an actual traffic light controller)

correspond to the external systems that are the consumers of the derived events (or, detected

situations).

When receiving a raw event, the following actions are performed:

1. Look up within the metadata, to see which context effect this event might have (context

initiator, context terminator) and which pattern this event might be a participant of

2. If the event can be processed in parallel within multiple contexts/patterns (based on the EPN

definitions), the event is passed to parallelization queues. The purpose of the queues:

a. Parallelize processing of the same event by multiple unrelated patterns/contexts at the

same time keeping the order for events of the same context/pattern where order is

important

b. Solve out-of-order problems – can buffer for a specified amount of time

3. The event is passed to context service, where it is determined:

a. If the context is an initiator or a terminator, new contexts might be initiated and or

terminated, according to relevant policies.

b. Which context partition/partitions this event should be grouped under

4. The event is passed to EPA manager:

a. Where it is passed to the specific EPA instance for the relevant context partition,

b. Added to state of the instance

c. And invokes pattern processing

d. If relevant, a derived event is created and emitted

25

 Architecture Design and Second Integrated Prototype

2.4.4.5 Proton component architecture

Figure 2.8 - Proton components

Proton’s logical components are illustrated in Figure 2.8. The queues, the context service, the EPA

manager are purely java-based. They utilize dependency injection to make use of the infrastructure

services they require, e.g. work manager, timer services, communication services. These services are

implemented differently for the J2SE and J2EE versions.

26

 Architecture Design and Second Integrated Prototype

2.4.4.6 Distributed Architecture on top of STORM

Figure 2.9 - Architecture of Proton on Storm

The Proton architecture on top of Storm8 (see Figure 2.9) preserves the same logical components as are

present in the standalone architecture: the queues, the context service and the EPA manager, which

constitutes the heart of the event processing system. However the orchestration of the flow between

the components is a bit different, and utilizes existing Storm primitives for streaming the events to/from

external systems, and for segmenting the event stream.

After the routing metadata of an incoming event is determined by the routing bolt (which has multiple

independent parallel instances running), the metadata – the agent name and the context name – is

added to the event tuple.

We use the Storm field grouping option on the metadata routing fields – the agent name and the

context name – to route the information to the next Proton bolt – the context processing. Therefore all

events which should be processed together – relating to the same context and agent – will be sent to

the same instance of the bolt.

After queueing the event instance in the relevant queues (in order to solve out of order, if needed and

parallelize event processing of the same instance where possible by different EPAs in the same EPN) and

after processing by context service, the relevant context partition id is added to the tuple.

8
 Work on implementing Proton on Storm is being performed as part of the FERARI project (http://www.ferari-

project.eu), and will become available as open source (https://bitbucket.org/sbothe-iais/ferari) in the next months.

The architecture is described in the current document for completeness and clarity.

27

 Architecture Design and Second Integrated Prototype

Here again we use the field grouping on context partition and agent name fields to route the event to

specific instances of the relevant EPA, this way performing data segmentation – the event will be routed

to the agent instance which manages the state for a specific agent on a specific partition.

If the pattern matching is done and we have a derived event, it will be routed back into the system, and

passed through the same channels as the raw event.

2.4.5 Decision Making

The Decision Making (DM) module provides a host of proactive event-driven DM tools. Using the

detected or forecasted events from the Complex Event Processing (CEP) module as inputs, it outputs

appropriate decisions, possibly in the form of actions, to steer the system towards a desirable outcome.

Figure 2.10 - Implementation of DM in SPEEDD topology

Within the SPEEDD topology, DM is implemented in the form of a number of bolts that receive and

output events to the event bus, as illustrated in Figure 2.10. The bolts implement the DM algorithm at a

local decision maker, or DM agent. The algorithm is typically driven by detected, derived or forecasted

events from the CEP, as well as events from other DM agents. It outputs events that could convey

decisions or actions, as well as initiate coordination with other DM agents. The DM algorithm may also

require an external planning and optimization module for more complex DM tasks. This module is

foreseen to be used sparingly. Currently, the mixed integer linear program solver LP Solve has been

proposed for use in this module, and some initial progress has been made on integration with the

SPEEDD runtime.

The architecture depicted in Figure 2.10 is distributed, event-driven and modular. All of these aspects

are essential to the SPEEDD philosophy. The distributed and modular nature of DM permits new

algorithms and methods to be added without an overhaul. It also permits DM to tackle different use

cases using the same architecture. We provide a detailed description of this architecture, using one of

the use cases, namely traffic. At every stage of conception and design, considerable effort has been

taken to provide a modular implementation. The main components in this architecture are the following:

• DM agents k = 1,…,n

• Input Events to the kth DM agent

• Output Events from the kth DM agent

28

 Architecture Design and Second Integrated Prototype

We describe each of these components in the following subsections.

2.4.5.1 DM agent

The distributed nature of DM in traffic is illustrated in Figure 2.11. The DM agent or local controller

controls a part of the complete traffic network, in the sense that it controls more than just one

intersection or actuator in the system.

29

 Architecture Design and Second Integrated Prototype

Figure 2.11. An overview of the distributed control approach applied to DM for the traffic scenario.

30

 Architecture Design and Second Integrated Prototype

The complete traffic network is partitioned into smaller networks, as depicted in Figure 2.12 for the

Rocade in Grenoble.

Figure 2.12 - Partitioning of the Rocade in Grenoble for the purpose of distributed DM

Figure 2.13 - Urban Traffic Network

Figure 2.14 - Freeway Traffic Network

31

 Architecture Design and Second Integrated Prototype

We begin by identifying a DM agent in the traffic scenario. Consider the freeway and urban traffic

network illustrated in Figure 2.13 and Figure 2.14, respectively. In both these figures, the networks

comprise of roads and intersections. Sensors placed along the roads provide measurements that drive

the DM algorithm, in the form of processed events from the CEP. The DM algorithm generates control

signals that are implemented through various actuators. One form of actuators, namely ramp meters,

can be found at controlled or metered intersections, and they control the flow of traffic through the

intersection. Other forms of actuators may also be present, such as variable speed limit indicators on

certain roads, which control the flow of traffic out of these roads. These actuators are spatially

distributed, and the information needed to drive them comes from sensors that are also spatially

distributed. In this scenario, a DM agent implements the algorithm to drive a set of actuators.

Thus, in the traffic scenario, the set of DM agents k = 1,…,n can be thought to represent a partition of

the complete traffic network into smaller networks. Naturally, spatial or geographical concerns

determine an appropriate partition. However, the relevance and ease of coordination between the

networks also plays a role in determining the partition. Furthermore, the networks provide a modular

way to represent the complete traffic network within the SPEEDD topology. Modifying and accessing a

modular representation may prove to be more practical, particularly in the case of an extensive traffic

network, such as an urban traffic network.

 It should be clear by now that to define the DM agents k = 1,…,n, we need to define the k = 1,…,n

networks that constitute the complete traffic network. We use the following definition to structure our

implementation in Storm as well, as shown below.

32

 Architecture Design and Second Integrated Prototype

Each instance of the DM bolt in Storm is associated with a number of networks and their identifiers,

given by the attribute dm_location. The network refers to the part of the complete traffic network that

is associated with a DM agent. It is defined as follows.

• Network: A network comprises of a set of roads and intersections, which are defined

below.

• Road: A road can be defined as a directed edge that begins at an intersection and ends

at another. Thus, for the purpose of DM, we treat a two-way road as two separate roads.

Typically, each road has two sets of sensors, one at the beginning and one at the end. In

cases where only a single set of sensors are present, the measurements from the

missing sensor are estimated. The density of cars on a road can be updated by keeping

track of the number of cars that enter and exit the road. For appropriate DM, we classify

roads into the following road types: 'freeway', 'metered onramp', 'unmetered onramp',

'offramp', 'main city' and 'minor city'. As the need arises, new road types and

corresponding DM routines can be added. For future versions, actuators may also be

associated with each road. The dynamic model for the road is given by the CTM model,

which is used to simulate and predict flows, including the demand and supply, for the

road.

• CTM model: For each road, the following parameters are used to define the CTM model:

free-flow speed, congested wave speed, critical density, jam density, length of the road

and capacity of the road. Using the available measurements, one can fit parameters to

this model.

• Intersection: An intersection can be defined as a network node that merges traffic flow

from a set of incoming roads and diverges the flow into a set of outgoing roads. If the

intersection is metered, it will also contain an actuator. For ease of DM, the intersection

and corresponding actuator are assigned IDs, which are associated with the IDs of its

33

 Architecture Design and Second Integrated Prototype

incoming and outgoing roads. If the intersection is unmetered, its corresponding

actuator ID is set to -1. A dynamical model must be assigned for each intersection as

per the traffic rules of the network. A typical dynamical model, which we use currently,

is the FIFO model. This model is used to simulate and predict flows, including demands

and supplies, through the intersection.

• FIFO model: For each intersection, the following parameters are used to define the FIFO

model: priorities, traffic light phases and the turning preference matrix. The traffic light

phases are identified by a phase number or index, which is linked to the indices of the

incoming and outgoing roads that are active during the phase. Note that multiple

incoming roads and/or outgoing roads may be active during a single phase. The turning

preference matrix contains the turning ratios corresponding to each pair of incoming

and outgoing roads. If these values are not provided, measurements from the network

can be used to fit parameters to this model. The priorities arise from traffic rules that

give preference to certain traffic flows over others. Traffic flows through unmetered

intersections are solely determined using priorities. However, priorities also play a role

in determining flows through metered intersections. This is because, during traffic light

phases that permit multiple flows simultaneously, certain traffic flows are prioritized.

The network class in the implementation provides functions that are called to process measurement

events and provide data-filtering or observer functionalities.

Each instance of a DM bolt also contains a definition of the DM algorithm, called DMcontroller in the

previous illustration, which is uniquely associated with a network through the dm_location attribute.

This class maintains all the structures necessary for the control algorithm. For example, in the case of

DM for freeways, it maintains the data structures Sensor2Onramp and Intersection2Onramp for every

active location. It also provides functions that are called to process all incoming events, barring the

recording of measurements.

2.4.5.2 Input Events

Input events are assigned to an instance of the DM bolt based on the attribute dm_location, as

illustrated in Figure 2.15. This is to ensure that the variables associated with a network and its DM agent

can be saved in the bolt instance and retrieved during each incoming event.

34

 Architecture Design and Second Integrated Prototype

Figure 2.15 - Assignment of Events to Instances of the Bolt

Figure 2.16 - Execution of Events within the Bolt

DM receives events from Complex Event Processing (CEP) and the User Interface (UI). Events from CEP

include complex events such as advance predictions about freeway congestion. In addition to the high-

level, derived events, DM also needs access to (time-averages of) low level sensor data, to obtain a

complete description of the state of the traffic network. For simplicity, we assume that all sensor data

are passed through CEP, which allows us to aggregate measurement data already at CEP. In practice, this

means we compute averages over time and thereby reduce the number of events that need to be

passed from CEP to DM.

35

 Architecture Design and Second Integrated Prototype

The input events can be categorized as measurement events and other events, and appropriate

functions are called from the network and DMcontroller classes to process these events, respectively.

This is illustrated in Figure 2.16.

Table 2.2 - Input Events (from CEP) for DM

Name Attributes Description Usage

Predicted

Congestion

{ string dm_location,

integer location,

double average_density,

long timestamp }

 (Freeway) Activates ramp

metering algorithm

Congestion { string dm_location,

integer location,

double average_density,

long timestamp }

 (Freeway) Estimated density

used by DM. (non-

monotonic model: capacity

drop is taken into account)

ClearCongestion { string dm_location,

 integer location,

long timestamp }

 (Freeway) Deactivates ramp

metering algorithm

OnRampFlow {string dm_location,

 integer location,

 double average_flow,

 double average_speed,

 double average_density,

 long timestamp }

Running average of

onramp flow

(Freeway) Numerical state

estimate for DM

2minsAverage

Density

AndSpeedFor

Location

{string dm_location,

 integer location,

 double average_flow,

 double average_speed,

 double average_density,

 long timestamp }

Running average of

mainline states

(Freeway, Inner City)

Numerical state estimate for

DM

PredictedRamp

Overflow

{ string dm_location,

integer location,

double queueOccupancy,

long timestamp }

Queue at metered

onramp is almost full.

(Freeway) Initialize

coordinated metering policy

with upstream ramp.

ClearRampOver

flow

{ string dm_location,

integer location,

(double queueOccupancy),

long timestamp }

Queue at metered

onramp has

considerably

reduced.

(Freeway) Deactivate

coordinated metering policy

with upstream ramp.

In Table 2.2, we provide an overview of the events from CEP that are currently implemented. We include

a brief description of the attributes associated with the event and its use in DM. In contrast, events from

the UI are mostly simple commands, by which a human operator can modify bounds and parameters in

the models. An example of one such event is given in Table~\ref{tab:admin_events}, along with its

attributes and use.

Table 2.3 - Input Events (from UI) for DM

Name Attributes Description Usage

36

 Architecture Design and Second Integrated Prototype

SetRampMetering

Bounds

{ string dm_location,

 integer location,

 double lowerLimit,

 double upperLimit,

 long timestamp }

Upper- and lower

bound for ramp

metering algorithm.

(Freeway) Bounds will be strictly

enforced by the ramp metering

algorithm. Can be used to

override DM entirely, if lower

bound equals upper bound.

2.4.5.3 Output Events

The large majority of events created by DM are actuation commands for the actuators in a traffic

network, that is traffic lights at intersections or at onramps for ramp metering purposes and variable

speed limits. Currently, we expect that the majority of the actuation commands will also be of interest

for UI, since the UI should be able to visualize the current operational state of the traffic network to the

operators. The list of actuation commands is given in Table 2.4. Note that the format of the actuation

commands is tailored to the micro-simulator AIMSUN, which serves as a validation platform in this use

case. In addition to the actuation command, coordination commands are also outputed from DM, which

serve as input events to other DM agents. Examples of such commands include predictions on ramp

overflow and its clearing up.

Table 2.4 - Output Events from DM

Name Attributes Description Usage

SetMeteringRate { integer actuatorID,

 double dutyCycle,

 long timestamp }

Change ramp

metering duty

cycle.

(Freeway) Immediately

translated to red-green

signal by AIMSUN

QueueLengthEstimate { string dm_location,

 integer location,

 double queueOccupancy,

 long timestamp }

Queue length

updates at

metered onramps.

(Freeway) Initialize

coordinated metering

policy with upstream

ramp.

2.4.6 Dashboard application

Operators will interact with the outputs of the SPEEDD algorithms through a User Interface. The

Dashboard Client communicates, via the Dashboard Server with the composite systems in the SPEEDD

architecture. Operators can accept, respond to, or make suggestions and control actions, via the User

Interface and these changes are fed back into the SPEEDD architecture, thus allowing for the seamless

integration of expert knowledge and the outputs of complex algorithms. A diagram of the dashboard

architecture can be seen in Figure 2.17.

37

 Architecture Design and Second Integrated Prototype

E
v

e
n

t
B

u
s

Figure 2.17 - Dashboard Architecture

The Dashboard Server is built using the Express9 web application framework for Node.js10 (Tilkov and

Vinoski 2010). The server implements a Kafka consumer and producer (apart from hosting the files that

generate the UI). The consumer listens for broadcasted messages in the Event Bus under the following

topics: speedd-out-events and speedd-actions. The producer broadcasts messages under the topic

speedd-actions-confirmed. For more details on the SPEEDD Kafka topics see section 2.4.1. Both the Kafka

consumer and producer are implemented using the npm (node package manager) module ‘kafka-node’,

a Node.js client with Zookeeper11 (Hunt, et al. 2010) integration for apache Kafka.

The Dashboard Client is designed to provide the user with a clear picture of the current state of the

world. The Dashboard Client achieves the picture of the current state by aggregating sensor readings

(traffic management use-case) and transaction or account data (credit card fraud use-case) in human

9
 http://expressjs.com – Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications
10

 http://nodejs.org – Node.js is asynchronous event driven framework for building fast, scalable network

applications
11

 https://zookeeper.apache.org – Zookeeper is an open-source distributed service for configuration,

synchronization and naming registry for large distributed systems.
10

 https://angularjs.org/ – MVC framework for JavaScript
11

 http://d3js.org – D3.js is a JavaScript library for manipulating DOM based on data
12

 http://socket.io/– Open source implementation of web-sockets for real-time communication

38

 Architecture Design and Second Integrated Prototype

readable form, current states of the control equipment available (e.g. speed limit signs, message signs,

lanes, etc.) or accounts, current events identified by the Complex Event Processing (CEP) module and

displays of the automated control events produced by the Decision making (DM) unit (e.g. ramp

metering rates). Furthermore, the Dashboard Client aims to support the decision-maker by highlighting

events which might require attention along with corresponding suggested mitigating strategies.

Moreover, based on sensor readings, it helps the traffic managers get a better understanding to what

degree the actions taken affect the drivers’ behaviour and vice versa.

Figure 2.18 illustrates the current proposed design for a User Interface (UI) for the traffic management

use-case along with a description of its components. It has been developed as a result of a thorough

analysis of how the traffic managers in Grenoble operate (Deliverable 5.3.1) and study of previous

research in human visual perception (see Deliverable 8.3 and 5.2).

Figure 2.19 shows the prototype version 2 of the Credit Card Fraud UI along with a description of its

components. Its current form is a result of studies of state-of-the-art commercial fraud analysis systems

and an outcome of several discussions with domain experts from Feedzai and FICO (see Deliverable 7.2).

Both UIs have been built in JavaScript with the use of some third-party open-source libraries. The web

application framework AngularJS10 (following the MVC design pattern) has been used in conjunction

with D3js11 (Bostock, Ogievetsky and Heer 2011) to produce the data driven displays. The client-server

communication for the UI in the second prototype is realised through an open-source implementation

of web-sockets called Socket.io12.

39

 Architecture Design and Second Integrated Prototype

Figure 2.18 – Prototype V2 User Interface for the Traffic Management use-case

Figure 2.19 – Prototype V2 User Interface for the Credit Card Fraud use-case

40

 Architecture Design and Second Integrated Prototype

2.4.7 SPEEDD Scalability Component Architecture

The scalability component described below is targeted at the messaging scalability challenges that are

present in the traffic management use case. Therefore this component is meant to be used in the

context of the traffic management use case only.

2.4.7.1 Introduction

The purpose of the scalability component is to allow the system to scale up the number of messages it

handles. Under normal circumstances in order to report a slowdown in traffic on the road each sensor

must relay every speed measurement to the central processing location. However, the number of

messages can be reduced by using the scalability component. The scalability component takes a

threshold speed and reports whenever the average speed on the road decreases below it. It does this

without requiring continuous reporting by the sensor nodes.

2.4.7.2 Approach

At the startup, a threshold is assigned to each sensor node. If, and only if, the measured speed

decreases below the threshold the measurement is relayed to the central component called the

coordinator. The coordinator then initiates a violation resolution procedure. It collects measurements

from as many sensor nodes as needed in order to achieve an average speed that is higher than the

threshold. Once this has been achieved the coordinator then modifies the local threshold given to each

sensor node based on its measured speed and former threshold.

If measurements from all nodes have been collected and the speed is still below the threshold, the

coordinator reports that a global violation has occurred and the average speed on the road has gone

below the threshold.

2.4.7.3 Architecture

The system is comprised of (see Figure 2.20):

1. Sensor nodes which decide whether or not to relay the measurements to the coordinator.

2. A coordinator.

3. A transport mechanism which uses two Kafka topics, one to relay messages from the sensors to

the coordinator and the other to relay messages in the other direction.

41

 Architecture Design and Second Integrated Prototype

Figure 2.20 - Scalability Layer Architecture

Each sensor node is comprised of three components (see figure 2 below). The sensor receives speed

readings from a physical traffic sensor/simulator. These readings are passed on to a buffer called Time

Machine. Data is then passed on to the Gatekeeper. This component verifies that the new reading is

over the minimal speed threshold. If the speed is below the threshold, the procedure of “violation

resolution” is initiated. The coordinator is informed via the communicator that a violation has occurred.

The coordinator then queries the other local nodes about their data. Upon receiving it calculates a new

threshold for each node and transmits it. This procedure is repeated as necessary whenever a local

violation occurs.

Figure 2.21 - Sensor node composition

The diagram in Figure 2.22 shows the SPEEDD runtime architecture with the communication scalability

component.

Sensor

Sensor

Sensor

Kafka topic (coordinator)

Kafka topic (nodes)

Coordinator

Gatekeeper Time machine Communicator

42

 Architecture Design and Second Integrated Prototype

Figure 2.22 - Scalability Component in context of the SPEEDD architecture for Traffic Management

2.5 SPEEDD Design-Time Architecture

The conceptual view of the design time architecture for SPEEDD is presented in Figure 2.23. The goal of

the design time is to create and/or update the Event Processing Network definition artifact that will be

deployed in runtime and will be used by the Proton proactive event processing component to detect

and predict situations. The details of the design time pipeline are described in the subsections below.

43

 Architecture Design and Second Integrated Prototype

Figure 2.23 - SPEEDD Design Time Architecture

2.5.1 Machine Learning

Figure 2.23 presents the off-line architecture of the SPEEDD system. Past input events, recognized

events, forecasted events and decisions are stored as historic data into a database (step 1). Domain

experts analyze and annotate the historic data, in order to provide the golden standard for Machine

Learning algorithms (step 2). Both historic data and annotation forms the input to the Machine Learning

module. Specifically, the input is provided as a file in the form of comma separated values (CSV). The

form of the CSV file is similar to the input format of the SPEEDD runtime, with additional columns for

representing recognized events, forecasted events, decisions, and annotation. The CSVs are then loaded

into a database in order for the Machine Learning module to be able to create chunks of data that

provide input for the algorithms for performing the tasks of pattern mining and parameter learning.

Optionally, the Machine Learning module can also accept domain / background knowledge and prior

composite event pattern definitions in the form of logic-based rules. The module will combine the input

data (i.e., historic data and rules) with the user-provided annotation, in order to (a) extract new event

definitions, (b) refine the current event definitions and (c) associate each event definition with a degree

of confidence (e.g., a weight or a probability). In step 3, the resulting output of the Machine Learning

algorithms is a set of text-formatted files, using the logic-based representation of the RTEC system

(Artikis, Sergot and Paliouras 2014). Thereafter, the resulting patterns are parsed by the "rtec2proton"

translator and converted semi-automatically to JSON formatted Proton EPN definitions (step 4). All EPN

definitions reviewed and manually refined by domain experts (step 5) using the Proton's CEP authoring

tool. Finally, the refined EPN definitions are exported to the SPEEDD's CEP runtime system using

Proton's JSON format.

2.5.2 Authoring of CEP Rules

Proton provides a web-based authoring application for creating and updating the event processing

network definition. As mentioned above, the process of translation of the event pattern definitions

44

 Architecture Design and Second Integrated Prototype

produced by the machine learning component is semi-automatic: partial definition could be generated

by the machine learning tool while a review and editing still might be required by human.

The output of this process is a JSON file containing the EPN definition.

More details about the Proton authoring tool along with the user manual can be found in the Proton

user guide document (IBM Research 2015).

2.6 Integration – APIs and Data Formats

In the following, we summarize the integration details, APIs and data formats used for inter-component

communication in SPEEDD runtime infrastructure.

2.6.1 Input Events

Input events for both Traffic Management and Credit Card Fraud Management use cases are formatted

as comma-separated value tuples. Below we provide a brief summary of the event types and description

of main data fields, along with some examples. The full description of the data formats is available in

deliverables D7.1 and D8.1.

2.6.1.1 Traffic Management

For traffic management use case input events represent aggregated sensor readings. The format of

sensor reading events produced by real physical sensors (provided to the project team as historic log

files) differs from the format of the events generated by the AIMSUN simulator. Below we provide an

excerpt from D8.1 that describes the sensor data formats for each case.

The current version of the SPEEDD prototype deals with aggregated sensor readings reported once per a

predefined period of time (e.g. 15 seconds for the physical sensors). Individual sensor readings reported

about every single vehicle will be addressed in the next version of the prototype.

2.6.1.1.1 Aggregated Sensor Readings

Aggregated sensor readings are reported every 15 seconds. Each reading has a csv representation that

contains the following fields:

• date, format YYYY-MM-DD

• time, format hh:mm:ss GMT

• location, which is represented by the id of the access point collecting data

• lane, whose value match the kind of lane the sensor is installed in: slow (lane), fast (lane), on-

ramp (entry), offramp (exit), etc.

• occupancy, that is the percentage of time the sensor had vehicle above itself

• vehicles, the number of vehicles that were counted by a sensor during the last 15 seconds

• speed, in kilometers per hour

• histogram of speeds: 20 bins of 10 kilometers per hour each (0-10, 10-20, …, 190-200)

• histogram of lengths: 100 bins of 0.5 meters each (0-0.5, 0.5-1, 1-1.5, …, 49.5-50)

45

 Architecture Design and Second Integrated Prototype

2.6.1.1.2 AIMSUN Simulator Sensor Readings

Every reading reported by AIMSUN every 15 seconds contains the following fields:

• Simulation date and time, in the format of YYYY-MM-DD HH:MM:SS

• Detector ID – sensor id placed on a section in AIMSUN

• Vehicle Speed – average vehicle speed (km/h)

• Vehicle Count_car – the number of cars passing through the sensor at each 15 seconds

• Vehicle Count_truck – the number of trucks passing through the sensor at each 15 seconds

• Density_car – density of cars over the last period of 15 seconds

• Density_truck – density of trucks over the last period of 15 seconds

• Occupancy – fraction of the last time period that there have been a vehicle over a sensor

2.6.1.2 Credit Card Fraud Management

Every transaction is reported as an event represented in a csv format. The table in the Figure 2.24 lists

the fields present in each Transaction event.

Figure 2.24 - Fields in a Transaction event

2.6.2 Communication between SPEEDD components

There are two mechanisms of communication between SPEEDD components:

• Storm messaging infrastructure: events emitted by Proton are passed to the Decision Making

component through Storm built-in messaging infrastructure. This channel of communication is

‘static’, in the sense that the wiring between the event source and the listener is set at the build

time and cannot be changed without modifying the code

46

 Architecture Design and Second Integrated Prototype

• SPEEDD Event bus: the kafka-based event bus serves as the main channel for both internal

communication between SPEEDD components and external event producers and consumers

Independently of the communication channel, the communication is asynchronous, and event-based:

both ‘input’ and ‘output’ objects represent events.

In 2.6.1 we described the structure of the input events for each use case. All the events emitted by

SPEEDD components have uniform structure, defined by the org.speedd.data.Event interface:

public interface Event {

 public String getEventName();

 public long getTimestamp();

 public Map<String, Object> getAttributes();

}

Every event has an event name that identifies the type of the event in the system. For instance,

“AggregatedSensorRead” is the value of the event name for aggregated sensor reading events for the

traffic management use case.

Additionally, every event has a timestamp (number of milliseconds since January 1st, 1970). The

timestamp represents the detection time, i.e. the time when it’s been recognized by the SPEEDD

runtime. Specifically, for input events, the event timestamp is initialized by the code executed by Kafka

spout to parse an input event. For derived events, the timestamp is initialized by the SPEEDD runtime

component that has created it. Note, that for input events the occurrence time will be different from

the detection time whereas for derived events and actions the occurrence and the detected times are

equal.

Finally, every event object has a map of attributes, keyed by an attribute name (a string), where an

attribute is an object, which allows supporting various attribute types.

Events posted on the event bus are serialized using JSON text-based format. One exception is for the

input (raw) events which are comma-separated values, as stated above. Below is an example of a

serialized event representing an action, - “UpdateMeteringRateAction”:

{

 "timestamp": 1409901066030,

 "Name": "UpdateMeteringRateAction",

 "attributes": {

 "density": 1.7333333333333334,

 "location": "0024a4dc00003354",

 "lane": "fast",

 "newMeteringRate": 2

 }

}

47

 Architecture Design and Second Integrated Prototype

Components should use Kafka client API for posting and consuming events. The API is documented in

the Kafka API documentation online12.

The Kafka topics that serve as different event topics for SPEEDD event bus are described in 2.4.1, in

Table 2.1.

The full list of all the event types used in SPEEDD is available in appendix 12.

2.7 Deployment Architecture

The diagram in Figure 2.25 shows the draft of SPEEDD runtime deployment architecture. The

environment on the diagram corresponds to the performance testing setup for SPEEDD, where the goal

is to generate input events at rates close or higher than the rates stated in the system requirements.

Every box in the diagram represents a computing node (a physical or a virtual machine). Blue boxes

represent SPEEDD runtime components. The red boxes correspond to the test agents that run on

separate machines and generate input events. The dashed box represents an external planning and

optimization module mentioned in 2.4.5. Kafka and Storm clusters are built according to the deployment

pattern common to these systems: multiple Kafka broker machines handle different topic partitions

(see 2.4.1.1 and 2.4.1.2 for discussion on partitioning of events). Multiple Storm supervisor instances run

Proton event processing agents in parallel (see 2.4.4), sharing common nimbus instance for coordination.

Both Storm and Kafka clusters use the same zookeeper cluster for distributed coordination and state

management.

Figure 2.25 - Deployment Architecture

12

 http://kafka.apache.org/documentation.html#api

48

 Architecture Design and Second Integrated Prototype

It is important to mention that for development, functional testing, and demonstration purposes the

entire deployment of SPEEDD prototype can run on a single machine (e.g. a developer’s laptop), in a

single virtual machine instance, or in containers (see 7.2).

2.8 Non-Functional Aspects

2.8.1 Scalability

The proposed architecture is horizontally scalable to provide required throughput with limited latency.

The event bus is based on Apache Kafka messaging infrastructure, which provides horizontal scalability

via topic partitioning where every partition can be managed by a separate node. The partitioning

strategy that should enable efficient scaling out is discussed in Sections 2.4.1.1 and 2.4.1.2.

As previously noted, the stream processing infrastructure is based on Apache Storm13 which is also

scalable as all the processing units (bolts and spouts) can be distributed over a large cluster of machines.

2.8.2 Fault Tolerance

Although the goal of the project is building a prototype and not an operational product, it should be

robust enough to allow exploring and testing research ideas and algorithms implemented in the

prototype. As the planned testing should involve replaying large amounts of historic events at rates

close to reality, even errors and failures with low probability can become fairly common. Thus, our goal

is to provide certain level of fault tolerance in the SPEEDD runtime to the level that would allow

consistent and continuous running and testing.

Similar to as we do for scalability, to provide the required level of fault tolerance, we leverage the

capabilities built into the middleware infrastructure SPEEDD is built upon. Every partition in Kafka

messaging infrastructure can be configured to have one or more replica, thus allowing standing failure

of K-1 broker servers when K is the number of replicas for a partition. In Storm, when workers die, they

are automatically restarted. Workers can be restarted on a different node in case when their hosting

node dies.14

2.8.3 Testability

Testability is an important aspect of every system, and SPEEDD is not an exception. We aim at providing

testability on multiple granularity levels. We leverage various unit testing frameworks (e.g. JUnit15,

Mockito16) to implement unit tests for every component, e.g. a class implementing a Storm bolt, or a

message serialization.

For component-level testing we run Storm and Kafka in embedded mode, i.e. in the same JVM that the

unit test runs. This allows running a component (e.g. CEP topology) in its runtime environment, and

verifying that the component’s behavior complies with the designed API.

13

 https://storm.apache.org/
14

 https://storm.apache.org/about/fault-tolerant.html
15

 http://junit.org/
16

 https://code.google.com/p/mockito/

49

 Architecture Design and Second Integrated Prototype

Event-driven architecture facilitates testing and debugging by easily adding/replacing event producers

and consumers for generating test input or verifying output events. This provides a convenient platform

for integration test automation.

Finally, all the tests can be run automatically as part of the automatic build process. We are using Maven

build automation framework to build SPEEDD software.17

17

 http://maven.apache.org/

50

 Architecture Design and Second Integrated Prototype

3 Test Plan
The test plan for SPEEDD prototype contains the following three types of test cases:

1. Unit

2. Functional

3. Performance

Unit tests are developed by component owners during the process of building the components. They

come to verify component’s behavior based on the contract declared in the API design.

Functional tests verify the correctness of the prototype functionality. For every test case, a limited

sequence of raw events is injected using SPEEDD event submission API (Kafka producer API). The

expected results include the list of detected or predicted events and the list of suggested automatic

actions. The actual events and actions issued by SPEEDD runtime will be compared to the expected ones

to verify the correctness. This part of functional testing can be fully automated using automated testing

tools and frameworks (see 2.8.3). Testing of the dashboard component can be partially automated,

while still requiring participation of a human tester to verify the visualization correctness.

Performance tests come to verify the performance and scalability characteristics of the prototype. In

Section 2.7 we describe the deployment environment that should be used to run performance tests. In

the course of performance testing we experiment with different cluster sizes and configurations to

determine performance characteristics of the system (e.g. throughput, latency) as well as test the

scalability of the prototype architecture.

51

 Architecture Design and Second Integrated Prototype

4 Performance Analysis

4.1 Objectives

The objectives of the performance analysis process are as follows:

1) Assess the current system performance

2) Identify and investigate performance issues

3) Explore approaches to improve the performance and overall robustness of the system

4) Verify the ability of the system to match the performance requirements set by the use cases

(see 2.1)

4.2 Approach

The main metric of the system that we are interested in is the latency as a function of the event rate. In

order to learn the system behavior under load we stream the same set of events to SPEEDD at several

different rates, analyze the latencies, and draw a graph of latency as the function of the event rate. We

repeat the same experiment on different cluster sizes to learn about the scalability of SPEEDD runtime.

The desired outcome is that the system performance improves with increase of the number of

computing nodes (e.g. broker nodes and/or storm supervisor nodes).

The aggregated value for the latency that characterizes the system behavior at a given rate is computed

as the 90% percentile of all the latency values observed during the run. This approach should eliminate

the influence of the outliers while providing a good enough metric for the overall performance

assessment of the system (Oaks 2014).

For synchronous systems the method of testing the latency (called ‘response time’) is fairly

straightforward: a client calls the system under test (further SUT) continuously (i.e. next call starts

immediately after receiving the response to the previous one), the latency is the time it took to receive

the response.

The situation with event-driven systems is more complex. First, the semantics of latency differs from

that of the response time. In SPEEDD we define the latency as the time period that it takes till the

emission of an action (or an output event) starting from the latest input event that is required for

derivation of the output event. For example: assuming that the event D is defined a sequence of events

(E1, E2, E3) then the latency is the time period since an instance of E1 is reported till the emission of the

corresponding instance of D. Of course, this definition does not work for all event patterns. For instance,

it is not applicable for ‘absence’ event patterns, or any other event patterns triggered by expiration of a

time window. Still, it is a good enough definition for the performance analysis task.

The conceptual view of the performance testing architecture is presented in Figure 4.1. The event

emitter streams events from the test data set to speedd-in-events topic at the required rate. A module

called “analyzer” records all the events – both input and emitted ones. For every event the analyzer

registers the time it’s been encountered. The output of the analyzer is a test log which is processed later

by the “stats” utility which computes latencies for every output event.

52

 Architecture Design and Second Integrated Prototype

Figure 4.1 SPEEDD Performance Testing Architecture - Conceptual View

For every output event the “stats” utility computes the following values:

1) End-to-end latency – time period between the input event and the derived event from the kafka

consumer perspective

2) Input latency – time period between posting input event to kafka and its detection by SPEEDD

storm topology

3) Processing latency – time taken by derivation process in SPEEDD storm topology

4) Output latency – time taken to deliver the derived event to the event consumer on kafka

In order to correlate the derived event with the latest input event that triggered the derivation, we

leverage the feature of Proton that allows attaching to a derived event the matching set of contributing

input events. Thus, given in instance of the derived event one can easily obtain the list of the events that

has contributed to the event pattern, along with their timestamps – so it’s straightforward to compute

the latency as defined above.

4.3 Performance Testing Architecture and Configuration

The performance tests were executed on a cluster comprised of four physical machines of the following

configuration:

• CPU: 2 x Intel Xeon E5520 @ 2.27GHz -- Cores : 16threads (8 cores)

• RAM: 12GB ECC

• Disks: 2x1TB (RAID1)

• NIC : 4 x 1Gbps

• OS: Debian 8

53

 Architecture Design and Second Integrated Prototype

The cluster has the Mesos18 framework installed that manages the computational resources thus

simplifying the task of cluster configuration and resource allocation. A single virtual machine runs on

every physical machine (to simplify maintenance and management), with exception of one machine

where another small VM runs that functions as a mesos gateway server.

The storm-mesos19 framework used to run storm cluster on Mesos, the kafka-mesos20 framework used

for running kafka cluster on Mesos.

There topology of the Mesos cluster is shown in the Figure 4.2.

Figure 4.2 - Mesos cluster topology

The Table 4.1 lists the various configurations of SPEEDD runtime on which the performance tests

performed. For definition of Storm components (e.g. worker, executor) please see Appendix 6.2. In

addition, we introduce another deployment configuration parameter, - CEP parallelism hint. The CEP

Parallelism Hint is a parameter provided by Proton CEP module for scaling the CEP topology over

multiple threads and tasks. The value of the CEP Parallelism Hint determines the number of executors

and tasks allocated for each bolt in Proton topology. That is, CEP Parallelism Hint = 2 means that 2

threads and two tasks will be created for each bolt in Proton runtime.

As one can see in the table, configurations that involve multiple kafka partitions and brokers are not

documented in this version. The reason for that is that initial test results have demonstrated that the

messaging layer in its minimal configuration (single broker, single executor for kafka-storm spout, 1-2

18

 http://mesos.apache.org/
19

 https://github.com/mesos/storm
20

 https://github.com/mesos/kafka

54

 Architecture Design and Second Integrated Prototype

executors for kafka-bolt) was operating significantly below its capacity, and further increase of

messaging power will not improve the performance of the entire system.

Table 4.1 - Performance Test Configurations

Config # Brokers # Workers CEP Par Hint # Other Executors # Other Tasks

1 1 1 1 1 1

2 1 1 2 2 2

3 1 2 4 4 4

4 1 4 8 4 4

5 1 4 16 8 8

6 1 16 16 8 8

4.4 Performance Test Results

For each of the deployment configurations listed in Table 4.1, we performed tests for rates of 50 and

500 events per second. Based on the findings in these tests we decided to not test on higher rates in this

version – as those would not provide any new information beyond the issues found during lower rate

tests.

The scenario used for performance tests in this version was the Credit Card Fraud Management scenario.

First, this use case implies the strictest performance requirements among the two use cases addressed

in the project (see 2.1). Second, the derived event patterns for Credit Card are well suited for latency

measurement technique described above, as the input events directly contribute to the detection of

derived events. This is different in the Traffic Management use case, where the patterns are more

complex and often the raw event does not directly trigger a derived one. Based on these two points, we

decided to start the testing process with the Credit Card case, in order to obtain the initial performance

results and gain insights into the overall system performance. As the next step we would proceed with

more specific tests for the Traffic Management use case. However, the initial results and the

performance issues encountered made us to decide that before proceeding to the next phase, the

current issues have to be addressed. A more detailed description is provided below.

The performance results are summarized in Table 4.2. In section 4.5 below we provide a detailed

analysis of the observed results and suggest the ways for improvement in future.

Table 4.2 - Performance Results Summary

Config

Number

of

workers

CEP parallelization

factor

End-to-end latency (s) 50

events/sec

End-to-end latency (s)

500 events/sec

1 1 1 25

2 1 2 25 215

3 2 4 21 148

4 4 8 13.5 121

5 4 16 15 129

55

 Architecture Design and Second Integrated Prototype

6 8 16 7.7 75.4

4.5 Performance Analysis and Conclusions

The graph in the Figure 4.3 illustrates the current performance results. The graph shows the dependency

of the end-to-end latency on the number of executors (threads). In the same figure there is a graph

illustrating the number of workers. From looking at these graphs one can easily see that adding more

executors to the topology does not improve the end-to-end latency. On the other hand, adding more

workers (JVM processes) leads to lower latency values.

Figure 4.3 - Performance Results: Adding more workers improves latency, adding more executors – does not

To understand this behavior we inspected the metrics collected by STORM for all topology components.

Investigating these metrics (presented by Storm UI web application) revealed two findings. First, we

learnt that all of the bolts composing Proton component’s sub-tree in SPEEDD topology divide the load

uniformly, except one bolt – the contextBolt (see Figure 4.4 for a diagram of the SPEEDD topology for

Credit Card use case). For contextBolt, at most three executors were actually processing tuples even

when the topology had more (in Figure 4.5 one can see the statistics when running on topology with 16

executors for contextBolt). The reason for such behavior is the grouping strategy currently implemented

in ProtonOnStorm: the combination of EPA name and context type groups all the events that will be

processed by the same contextBolt instance. There are three EPA agents in the EPN for the Credit Card

use case, therefore there are exactly three groups. This is one significant factor that limits the

parallelism of the topology.

56

 Architecture Design and Second Integrated Prototype

Another limiting factor identified in course of the performance testing is the use of Java threads inside

the bolts. Specifically, contextBolt creates Java threads internally in order to carry context-specific

computations. There are two problems in this approach: First, this limits the parallelization and

distribution to a single JVM. Second, threads created “internally” are “invisible” to Storm metrics

system, so it’s hard to monitor the actual system performance using existing Storm mechanisms.

These issues in the current implementation make the contextBolt in Proton sub-tree a bottleneck of the

system that is responsible for the poor performance results.

In the next version (v3) of SPEEDD prototype, the architecture of the ProtonOnStorm component should

be revised and updated following the best practices of development for Storm platform.

Figure 4.4 - SPEEDD Topology for Credit Card use case: a screenshot from Storm UI

57

 Architecture Design and Second Integrated Prototype

Figure 4.5 - Storm UI: Proton Context Bolt runtime metrics: only 3 of 16 executors actually involved in processing

In addition to the performance-related architecture issues described above, we have also learnt that the

clustered environment configuration should be revised for the further testing efforts. Although Mesos

platform simplifies cluster management tasks, and improves resource utilization, for performance

testing task it is sometimes required to control the deployment configuration more closely, e.g. bind

processes to specific nodes. Depending on the framework (e.g. Kafka, storm) it might be hard to

impossible to achieve that level of control.

The detailed results of the performance testing are available as an excel spreadsheet in the project’s

document repository: http://speedd-project.eu/deliverables

58

 Architecture Design and Second Integrated Prototype

5 Conclusions
In this document, we presented our proposed architecture for the SPEEDD prototype and drafted main

architecture principles that should guide its development. The architecture follows the event-driven

style enabling highly composable loosely coupled dynamic system that would be easy to build and test

by a distributed team. Our implementation will be based on two mainstream technologies – Storm and

Kafka, for stream processing and event bus implementation respectively. The document also defines the

APIs and data formats for sending events to SPEEDD, and consuming events and actions produced by

SPEEDD, as well as for inter-component communication within SPEEDD runtime.

It is important to mention that architecture is a continuously evolving artifact. In course of our

development work we anticipate new findings, issues, and questions that will lead to revision of some

architectural decisions. We believe that the architectural foundation documented here is agile enough

to allow and facilitate these changes.

59

 Architecture Design and Second Integrated Prototype

6 Appendix – Technology Evaluation
SPEEDD runtime architecture is built according to the event-driven paradigm and is based on two major

technology platforms: stream processing and messaging technologies. In course of working on the

architecture design we have evaluated several technologies and chose Apache Storm as our stream

processing platform and Apache Kafka for the messaging. Below you can find some details regarding the

evaluation process and the options explored.

6.1 Stream Processing – requirements and evaluation criteria

Our evaluation of the stream processing technologies was based on the following criteria:

1. Suitability for implementing SPEEDD components

• The stream processing platform should allow building both CEP and DM functionality on

top of it. Although DM component was going to be developed from scratch, the CEP

component was planned to base on the Proton technology. The platform of choice

should match Proton architectural principles and allow easy porting.

2. Scalability, Performance

• Support 2K events/sec at <25 latency – derived from SPEEDD requirements (see 2.1)

3. Fault tolerance

• Although the final product of the project is not a production-ready system but a

prototype, fault tolerance is a highly desired feature when it comes to dealing with large

volumes of events arriving at high rate.

4. Connectivity

• The streaming platform should provide support for integration with high-throughput

messaging systems

• For managing operational data we are likely to need an in-memory data store. The

streaming technology should provide a mechanism to connect to such a data store and

use the data stored there as part of stream computation

5. Extensibility

• Ability to override or customize behavior of computational nodes – required for

implementing our functional components

• Ability to develop integration components if not-available or do not match our needs

6. Programming model and language support

• Java support is required (Proton is written in Java)

• Support of other languages is advantageous

• Programming model should be aligned easy porting of Proton code to it

7. Maturity

• We are looking for a mature stable platform to build our features upon

8. Code reuse and cross-initiative collaboration

60

 Architecture Design and Second Integrated Prototype

• We are working in collaboration with the FERARI21 project which is also building a highly

scalable event processing technology based on Proton as the complex event processing

engine. Knowledge and code reuse are beneficial for both activities.

6.2 Storm

Apache Storm (Toshniwal, et al. 2014)22 is a distributed real-time computational system that provides a

set of general primitives for performing computations on streams of data at high speed. Among its key

characteristics are:

• Broad set of use cases: stream processing (processing messages), continuous computation

(continuous query on data streams), distributed RPC (parallelizing intensive computational

problem)

• Scalability: just add nodes to scale out for each part of topology. One of initial applications

processed 1,000,000 messages per second on a 10 node cluster

• Fault tolerant: automatic reassignment of tasks as needed

• Programming language agnostic: topologies and processing components can be defined in

many languages

• Configurable message delivery semantics: At-most-once message delivery (default), At-least-

once delivery (can be enforced), exact-once (using Trident23 high-level abstraction)

Stream in Storm is an unbounded sequence of tuples, where a tuple is a named list of values. A field in a

tuple can be an object of any type.

Two basic building blocks are available: spouts and bolts. A spout is a source of one or more streams. For

example, a spout can connect to a message queue, read messages from the queue and emit them as a

stream. A bolt is a processing node. A bolt consumes one or more streams, and may emit new streams

as output. Bolts can perform various types of processing: filtering, aggregation, joining multiple streams,

writing to databases, executing arbitrary code, etc.

Spouts and bolts are connected into networks called topologies. Each edge of the network represents a

stream between a spout and a bolt or between two bolts. An example of Storm topology is presented in

Figure 6.1. One can build an arbitrarily complex multi-stage stream computation using this model. A

topology is a deployable unit for Storm cluster. Multiple topologies can run on a single cluster.

Storm ecosystem provides integration with a wide variety of the messaging systems and databases,

among them are such messaging technologies as Kestrel, RabbitMQ, Kafka, JMS, and such databases as

MongoDB, Cassandra and a variety of RDBMS’s.

21

 http://www.ferari-project.eu/
22

 http://storm.apache.org/
23

 http://storm.incubator.apache.org/documentation/Trident-tutorial.html

61

 Architecture Design and Second Integrated Prototype

Topologies can be defined and submitted both declaratively and programmatically, using many

programming languages, including Java, Python, Ruby, and others.

Figure 6.1 - Storm Topology
24

A wide support for programming languages for developing spouts and bolts is provided as well. All JVM-

based languages are supported. For non-JVM languages, a JSON-based protocol is available that allows

non-JVM spouts and bolts to communicate with Storm. There are adapters for this protocol for Ruby,

Python, Javascript, Perl and PHP.

Each computation node in a Storm topology executes in parallel. A developer can specify how much

parallelism they want for a specific computational node; Storm will spawn that number of threads

across the cluster to do the execution. This process is illustrated in Figure 6.2.

Figure 6.2 - Storm Parallelization
25

24

 The diagram is taken from http://storm.apache.org/documentation/Tutorial.html

62

 Architecture Design and Second Integrated Prototype

A running topology consists of many worker processes running on many machines within a Storm cluster.

Executors, which are threads in a worker process, run one or more tasks of same component (a bolt or a

spout).

Storm provides a mechanism to guarantee that every tuple will be fully processed; if the processing of

the tuple fails at some point, the source tuple will be automatically replayed. In many cases losing an

event impacts the accuracy of the event processing logic; in such cases the guaranteed message

processing provided by Storm is critical.

The performance of Storm highly depends on the application. According to the information on the

project site26, Storm has been benchmarked at processing of 1M of 100 byte messages per second per

node on the hardware with dual Intel E5645@2.4Ghz CPU with 24GB RAM, however the details of the

benchmark were not available to the authors. A recent performance analysis27 comparing performance

characteristics between IBM Infosphere Streams product and Storm reported ~50K emails per second on

a 4-node cluster for an email processing application. While that is much more modest result than 1M

per second mentioned earlier, still the reported throughput matches our needs. The final conclusion

about Storm performance for SPEEDD requires dedicated performance testing on our workloads and

environment.

Storm has recently graduated to become a top-level Apache project.

6.3 Akka

Akka28 is a toolkit for building scalable distributed concurrent systems. Being written in Scala, it also

provides Java API. Due to its modular structure, it can be run as a standalone microkernel, or used as a

library in another application.

Akka provides an actor-based programming model (Hewitt, Bishop and Steiger 1973). The functional

units are implemented as loosely coupled actors communicating between them via immutable messages.

The actors can run on the same or separate machines; the location of an actor is transparent to the

developer.

An actor is a container for state, behavior, and the mailbox. All actors compose hierarchies, where an

actor is the supervisor for all its children thus having control over children’s lifecycle. This provides a

convenient mechanism for dealing with failures: a supervisor strategy determines the behavior in case

of a child’s failure. Akka champions the “let it crash” semantics: instead of dealing with preventing

25

 The diagram taken from http://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-

topology.html
26

 https://storm.incubator.apache.org/about/scalable.html
27

 https://developer.ibm.com/streamsdev/wp-content/uploads/sites/15/2014/04/Streams-and-Storm-April-2014-

Final.pdf
28

 http://akka.io/

63

 Architecture Design and Second Integrated Prototype

failures assume that actors are supposed to fail and crash frequently, and provide simple and robust

mechanisms for recovery.

When an actor terminates – all its children are terminated automatically. Actor hierarchy is illustrated in

Figure 6.3.

Various and extensible policies are available for managing the actor’s mailbox; for example, FIFO, or

priority-based.

Figure 6.3 - Akka Actors Hierarchy
29

The communication between actors is asynchronous. The decision about the location of each actor is

configurable, and can be done programmatically. Akka provides at-most-once and at-least-once delivery

mechanisms. The ordering is guaranteed in scope of the same sender-receiver pair.

Scalability is provided via transparent remoting and powerful and extensible routing mechanism.

Multiple instances of the same actor can be created to handle incoming messages in parallel. The router

agent receives a new message and routes it to the processing actors according to a routing strategy (e.g.

round-robin, random, custom, etc.).

There are several connectivity modules for Akka. Among them are ZeroMQ module and akka-camel

module, which supports a variety of protocols (HTTP, SOAP, JMS, and others).

Akka provides akka.extensions mechanism which allows extending the toolkit with new capabilities

(typed actors, serializations are examples of extensions).

According to user reports, Akka is very stable since v2.0 (current version is 2.3.6). The toolkit is

developed by Typesafe Inc30. The project has been open sourced, Typesafe is the major contributor.

29

 Picture source: http://doc.akka.io/docs/akka/2.3.6/general/supervision.html

64

 Architecture Design and Second Integrated Prototype

Akka is an important part of their software stack, which provides some confidence in project’s continuity.

There is a vivid development community around Akka, including Scala development community but not

limited to it.

According to the information on the web31, Akka has been tested to support up to 50 million messages

per second on a single machine. The memory footprint is very small: ~2.5 million actors per GB of heap.

Typesafe is known to operate a 2400 nodes Akka cluster.

6.4 Spark Streaming

Apache Spark (Zaharia, Chowdhury, et al. 2012) is a general purpose cluster computing system designed

to process large volumes of data in distributed and parallel manner. Spark Streaming32 (Zaharia, Das, et

al. 2013)33 is an extension of Spark API that enables processing of live data streams.

The programming model of Spark Streaming extends the Spark programming model and follows the

functional programming paradigm. The programming model is data-centric, in sense that its focus is on

the operations of data items. D-Stream (or, discretized stream) is a basic abstraction that represents

input data stream divided into batches (see Figure 6.4). The D-stream is represented as a sequence of

RDDs where every RDD contains data from a certain time interval. Programming logic is defined in the

form of operations on D-streams where input of an operation is a d-stream and the output is another d-

stream. A useful feature of Spark Streaming is window operations that are available “out of the box”.

Figure 6.4 - D-Stream is a major concept in Spark Streaming

Spark Streaming deals with failures by providing mechanisms for responding to a worker or a driver

node failure. The replication mechanism allows recomputing the RDD from the original data set. In

contrast the other frameworks that support at-least-once message delivery, Spark streaming provides

stateful exactly-once delivery semantics34.

Scala and Java APIs are available.

30

 http://typesafe.com
31

 http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine
32

 https://spark.apache.org/
33

 https://spark.apache.org/streaming/
34

 https://spark.apache.org/docs/latest/streaming-programming-guide.html#failure-of-a-worker-node

65

 Architecture Design and Second Integrated Prototype

Spark Streaming supports variety of data sources and sinks. Among them are various messaging systems

(e.g. Kafka, ZeroMQ), HDFS, Twitter, databases, dashboards, etc.

Among other nice features, there are modules implementing some machine learning and graph analysis

algorithms.

Performance benchmarks available on the web report throughput of 670K records per second. The same

benchmark run on Storm gave 115K records per second. That said, as we mentioned above,

performance benchmarks are highly application dependent and it is hard to rely on a specific benchmark

result in regard to our project.

Spark Streaming is part of the Apache Spark project which is a top-level project in Apache organization.

6.5 Streaming technologies – conclusion

All the evaluated technologies match our requirements for the stream processing platform. The

performance results look very promising even though need more thorough testing on SPEEDD workload.

All provide good rich support for connectivity and extensibility.

In terms of maturity of the technology, Spark Streaming and Storm seem to be more widely used and

tested than Akka. Storm seems to be most popular based on the amount of information and reference

available on the Web.

From the programming model perspective we tend to prefer Akka and Storm over Spark Streaming,

because the functional data-centric programming model implemented in Spark Streaming is less aligned

with Proton implementation architecture. Akka provides the strongest alignment and flexibility.

However the capabilities of Storm are good enough for our needs. Also, Storm is stronger than the two

other candidates in terms of supported languages (Akka and Spark are Scala/Java only).

Another important criterion mentioned above is the code reuse and collaboration with other projects.

Storm is the stream platform chosen by the FERARI project, and at the moment of current evaluation,

there has been already work in progress on porting Proton on Storm. Building SPEEDD on Storm can

provide better reuse opportunity and knowledge sharing than other platforms.

Weighing all the considered results we decided to choose Storm as our stream processing infrastructure.

6.6 Choice of the Messaging Platform

Our requirements to the messaging platform for building the event bus infrastructure for SPEEDD

include:

• Publish and subscribe capabilities

• Scalability and performance – at least 10 K/s

66

 Architecture Design and Second Integrated Prototype

• Ordering of messages – order of events is important. Although there are some capabilities in

Proton to deal with out-of-order events, these might not be present or be hard to implement for

other components of SPEEDD

• Ease of use in prototype – we need a light-weight simple technology that could run on a

developer’s laptop for development and testing purposes and still allow large deployment to

stand real-world scale message rates

• Fault-tolerance – as mentioned in 2.8.2, we need a robust messaging platform that would allow

continuous running of SPEEDD prototype on large amount of data coming at high rate in face of

occasional local failures

The technologies we considered as potential candidates for SPEEDD were RabbitMQ, Kafka, ActiveMQ,

and ZeroMQ – all are highly popular and widely used.

RabbitMQ is the leading implementation of AMQP protocol (Vinoski 2006). Implementing a standard is a

strong benefit as it allows for better integration with external systems (esp. in finance domain).

RabbitMQ is more mature than Kafka, and provides rich routing capabilities. However, there is no

guarantee on order delivery. Among the strengths – RabbitMQ outperforms ActiveMQ by factor of 3.

ZeroMQ is a library of messaging capabilities. It provides the best performance comparing to RabbitMQ

and ActiveMQ but is too low level and would require a significant development effort to build our

custom messaging solution using ZeroMQ-provided building blocks.

Among the strong sides of ActiveMQ is high configurability; however its reportedly poor performance

(22 messages per second in persistent mode35) does not match our needs.

Kafka provides partitioning of a fire hose of events into durable brokers with cursors – a very scalable

approach. It supports both online and batch consumers and producers. Designed from the beginning to

deal with large volumes of messages, Kafka provides a very simple routing approach – topic based only,

which is sufficient for SPEEDD messaging needs. Kafka guarantees ordered delivery within same

partition – good enough for SPEEDD. Performance-wise, Kafka outperforms RabbitMQ when durable

ordered message delivery is required (Kreps, Narkhede and Rao 2011) (publish: 500K messages per

second, consume: 22K messages per second).

Kafka is written in Scala (Java API is available). There are client libraries in all common languages.

Based on the above, our Kafka seems to be the best choice for the event bus infrastructure.

35

 http://bhavin.directi.com/rabbitmq-vs-apache-activemq-vs-apache-qpid

67

 Architecture Design and Second Integrated Prototype

7 Appendix – Setup Guide

7.1 Overview

There are two options for running the first version of the SPEEDD prototype:

1) running SPEEDD runtime in Docker containers provided as part of this deliverable

2) building the prototype from source code and running on any machine that satisfies the system

and software prerequisites (see https://github.com/speedd-project/speedd/wiki/Setting-Up-

Development-Environment#setup-development-environment-on-your-machine)

In the following we provide instructions for each option.

7.2 Running SPEEDD runtime in Docker containers

The easiest way to setup an instance of SPEEDD runtime cluster for development and testing purposes is

to use the container-based deployment based on the Docker36 technology. The docker image source

code is shared on github: https://github.com/speedd-project/speedd-docker

The following instructions are copied from the README file in the git repository. Note that the master

copy of the instructions is in the source repository.

This project configures the SPEEDD multi-node dockerized environment. It's comprised of the following

components:

• Zookeeper

• Storm cluster:

o Storm nimbus

o Storm supervisor

o Storm UI

• Kafka broker

• SPEEDD UI

• SPEEDD client

7.2.1 Pre-requisites

1. Install docker toolkit:
1.1. Windows

1.2. Mac OS X

Note: Because of an issue with default docker machine you have to create a new machine with

overlay storage driver using the following command:

docker-machine create -d virtualbox --engine-storage-driver overlay overlay

36

 https://www.docker.com/

68

 Architecture Design and Second Integrated Prototype

After creating the overlay machine please update the start.sh file under your Docker Toolbox

installation folder to have the following line:

Instead of: VM=default

Should be: VM=overlay

2. Start docker-machine and open the terminal window (e.g. Docker Quickstart Terminal)

3. Build prerequisite images (this step is required because we use our own forked version of the storm

and kafka images)

3.1. Build storm images

3.1.1. clone https://github.com/speedd-project/storm-docker.git

3.1.2. cd storm-docker

3.1.3. ./rebuild.sh

3.2. Build kafka image

3.2.1. clone https://github.com/speedd-project/kafka-docker.git

3.2.2. cd kafka-docker

3.2.3. docker build -t wurstmeister/kafka-docker --rm=true .

4. Create the 'projects' folder in your home directory and check out the speedd project's source code

into it. Then build the speedd-runtime project (mvn clean install -DskipTests

assembly:assembly - run it from the speedd-runtime folder)

7.2.2 Usage

Start a SPEEDD cluster for traffic management use case:

docker-compose -f docker-compose.yml -f docker-compose-tm.yml up -d

Note: The client and UI containers will wait for 2 minutes to have the kafka brokers up and

topics initialized. Also, it might take a few minutes to storm cluster to fully initialize. Please take

this into account before accessing the UI or starting SPEEDD topology.

Start a SPEEDD cluster for credit card fraud management use case:

docker-compose -f docker-compose.yml -f docker-compose-ccf.yml up -d

Destroy the SPEEDD cluster:

docker-compose -f docker-compose.yml -f docker-compose-tm.yml stop

Open SSH to the client:

ssh root@<docker-machine-ip> -p 49022

Note: The password is initialized to 'speedd'

Deploy SPEEDD topology (example for the traffic management use case):

69

 Architecture Design and Second Integrated Prototype

1. Open ssh to the client container

2. cd /opt/src/speedd/speedd-runtime/scripts/traffic

3. ./start-speedd-runtime-docker

Stream events into SPEEDD (example for the traffic management use case):

1. Open ssh to the client container

2. cd /opt/src/speedd/speedd-runtime/scripts/traffic

3. ./playevents-traffic-docker

Open SPEEDD UI:

open http://<docker-machine-ip>:43000 in your browser

Open Storm UI:

open http://<docker-machine-ip>:49080 in your browser

7.3 Building from sources

Although we provide a virtual machine image for convenience, it is possible to run the software on any

machine that satisfies the system and software requirements. For detailed instructions see the README

files as follows:

• SPEEDD runtime: https://github.com/speedd-project/speedd

• Traffic Management Dashboard installation instructions: https://github.com/speedd-

project/speedd/tree/master/speedd-ui

• Credit Card Fraud Management installation instructions: https://github.com/speedd-

project/speedd/tree/master/speedd_ui_bf

7.4 Offline pattern mining – setup and usage instructions

We outline the build instructions, runtime requirements and module execution procedure for the Offline

Machine Learning component of SPEEDD (SPEEDD-ML).

Instructions to build from source

(a) Dependencies

In order to build SPEEDD Machine Learning Module from source, you need to have Java

SE Development Kit (e.g., OpenJDK) version 7 or higher and SBT (v0.13.x) installed in your

system. All library dependencies are defined inside the build.sbt file. The module requires the

following projects to be locally build and published:

70

 Architecture Design and Second Integrated Prototype

1. Clone and publish locally the auxlib project:
$ git clone -b v0.1 --depth 1 https://github.com/anskarl/auxlib.git

$ cd auxlib

$ sbt ++2.11.7 publishLocal

2. Clone and publish locally the Optimus project (further instructions can be found here)

$ git clone -b v1.2.1 --depth 1 https://github.com/vagm/Optimus.git

$ cd Optimus

$ sbt publishLocal

3. Clone and publish locally the LoMRF project (further instructions can be found here).
$ git clone -b v0.4.2 --depth 1 https://github.com/anskarl/LoMRF.git

$ cd LoMRF

$ sbt publishLocal

Once you have successfully built and published the auxlib, Optimus and LoMRF projects,

you can either build a standalone version or a "cluster" version.

(b) LPSolve Installation Instructions

Weight learning of SPEEDD ML requires LPSolve to be installed in your OS. We provide

instructions for Windows, Linux and Mac OS X systems.

i. Linux distributions

For example, on a Debian-based system, type the following command:

$ sudo apt-get install lp-solve

To install Java Native Interface support for LPSolve v5.5.x you need follow the

instructions below:

• Download LPSolve dev, 64bit lp_solve_5.5.2.x_dev_ux64.zip or for

32bit lp_solve_5.5.2.x_dev_ux32.zip, from LPSolve official repository.

o Extract the file

o We only need the lpsolve55.so file.

• Download LPSolve java bindings (lp_solve_5.5.2.x_java.zip) from LPSolve

official repository.

o Extract the file

o We only need the lpsolve55j.so files

71

 Architecture Design and Second Integrated Prototype

• Create a directory containing the lpsolve55.so and lpsolve55j.so files,

e.g., $HOME/lib/lpsolve55

• Add this directory to LD_LIBRARY_PATH in your profile file:

o For BASH shell e.g., inside .profile, .bashrc or .bash_profile file in

your home directory:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib/lpsolve55

o For CSH/TCSH e.g. inside ~/.login file in your home directory:

$ set LD_LIBRARY_PATH = ($LD_LIBRARY_PATH $HOME/lib/lpsolve55
.)

or in ~/.cshrc file in your home directory

$ setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:$HOME/lib/lpsolve55:.

ii. Apple MacOS X

Either download and install from the LPSolve website or from your favorite

package manager.

For example, from macports:

$ sudo port install lp_solve

or from homebrew:

$ brew tap homebrew/science

$ brew install lp_solve

To install the Java Native Interface support for LPSolve v5.5.x you need follow

the instructions below:

• Download LPSolve dev, 64bit lp_solve_5.5.2.x_dev_ux64.zip or for

32bit lp_solve_5.5.2.x_dev_ux32.zip, from LPSolve official repository.

o Extract the file

o We only need the lpsolve55.dylib file.

72

 Architecture Design and Second Integrated Prototype

• Download LPSolve java bindings (lp_solve_5.5.2.x_java.zip) from LPSolve

official repository.

o Extract the file

o We only need the lpsolve55j.jnilib files

• Create a directory containing

the lpsolve55.dylib and lpsolve55j.jnilib files,

e.g., $HOME/lib/lpsolve55

• Add this directory to LD_LIBRARY_PATH inside .profile file in your home

directory:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib/lpsolve55

iii. Microsoft Windows

To install LPSolve v5.5.x in your system, follow the instructions below:

• Download LPSolve dev, 64bit lp_solve_5.5.2.x_dev_win64.zip or for

32bit lp_solve_5.5.2.x_dev_win64.zip, from LPSolve official repository.

o Extract the file

o We only need the lpsolve55.dll file.

• Download LPSolve java bindings (lp_solve_5.5.2.x_java.zip) from LPSolve

official repository.

o Extract the file

o We only need the lpsolve55j.jar and lpsolve55j.dll files

• Create a directory containing

the lpsolve55.dll, lpsolve55j.jar and lpsolve55j.dll files,

e.g., C:\path\to\lpsolve55

• Add this directory to the PATH environment variable in your system

environment variables

(c) Build SPEEDD-ML Module

To build the SPEEDD Machine Learning Module, give the following commands:

$ cd path/to/speedd/speedd-ml

$ sbt clean dist

After a successful compilation, the SPEEDD Machine Learning Module is located inside

the ./target/universal/speedd-ml-<version>.zip file. You can extract this file and add the

73

 Architecture Design and Second Integrated Prototype

path/to/speedd-ml-/bin in your PATH, in order to execute the SPEEDD Machine Learning

Module scripts from terminal.

(d) Initialize database schema

In the schema directory there are CQL files that define the schema for each use case. For

example, to initialize the schema in Cassandra DB for Traffic Management use case write the

following command:

$ cqlsh -f path/to/speedd/speedd-ml/schema/cnrs.cql

Runtime Requirements

SPEEDD-ML module requires Apache Cassandra 2.1.x and Apache Spark 1.5.1 (for

Scala 2.11) installed in your system.

• Apache Cassandra: To install Apache Cassandra follow the instructions available

here.

• Apache Spark for Scala 2.11: By default Apache Spark 1.5.1 is provided only for Scala

2.10. In order to compile Apache Spark 1.5.1 for Scala 2.11, download Spark 1.5.1

source file spark-1.5.1.tgz and give the following commands:

 $ tar xf spark-1.5.1.tgz

 $ cd spark

 $./dev/change-scala-version.sh 2.11

 $./make-distribution.sh --name scala_2.11 --tgz --skip-java-test -Phadoop-

2.4 -Pyarn -Dscala-2.11

The resulting Spark distribution will be packed in file spark-1.5.1-bin-scala_2.11.tgz.

SPEEDD-ML Execution and Configuration

74

 Architecture Design and Second Integrated Prototype

(a) Quick notes for running a local instance of the module

To start a local instance of the Cassandra DB:

$ /path/to/cassandra/bin/cassandra -f

To stop Cassandra, press CTRL+C.

To start a local Spark instance, in standalone mode:

$ cd /path/to/spark/

$./sbin/start-all.sh

To stop a Spark local instance:

$ cd /path/to/spark

$./sbin/stop-all.sh

(b) SPEEDD-ML Module Configuration

All configuration files of the SPEEDD ML module are located in the path/to/speedd-ml-

v0.1/etc. Depending on your installation and OS configuration you may need to adjust the

parameters of speedd-ml-0.1/etc/spark-defaults.conf file. The spark-defaults.conf file is a

standard Spark Configuration file (see Available Properties from Spark Documentation)

For example, you may need to change the spark master URL:

spark.master spark://localhost:7077

(c) SPEEDD-ML executable script files

• Data loading

o cnrs-loader.sh : loads data from CSV files into the Cassandra DB (Traffic

Management use case)

• Machine Learning

o speedd-wlearn.sh : performs weight leaning

Example parameters for loading raw input data in:

$ cnrs-loader.sh \

 -d /path/to/CSV/ \ # path to directory containing the CSV files

 -t input \ # load and transform for raw input data

75

 Architecture Design and Second Integrated Prototype

 -i suffx:csv.gz \ # load files that match to *.csv.gz (the files

can be gzipped)

Example parameters for weight learning:

$ speedd-wlearn.sh \

 -t CNRS \ # perform learning for the traffic

management use case

 -in /path/to/cnrs.mln \ # path to the initial MLN file

 -out /tmp/cnrs-out.mln \ # path to the resulting MLN file

 -i 1397041487,1397042487 \ # the temporal interval read input and

annotation data from the DB

 -bs 20 # perform online learning for micro-

batched with 20 time-points duration

76

 Architecture Design and Second Integrated Prototype

8 Appendix – User Reference: Traffic

Management Dashboard
schematic map of the

ring road showing

current state

shows data at ramp 18

(Liberation)

- blue bar shows duty cycle of

the traffic light

- red bar shows % occupancy of

the ramp

- green bar average speed as a

percentage of the speed limit

The three concentric circles show

current (1), predicted (2) and

historical average (3) data at the

specific location

Segment colours change depending on

the density of the portion of the road

- red -> high

- yellow -> medium

- green -> low

data regarding ramps that

(require attention) have an

event in the event list

associated with them will show

with a stronger colour

Figure 8.1 - Traffic Management Dashboard – Reference (1/2)

77

 Architecture Design and Second Integrated Prototype

list showing traffic

events flagged by the

automated system

selecting an event and clicking

“Explain” will cause the live feed

window to change to the cam nearest

to the location of the event

live feed from fixed

traffic cameras

clicking on the “Attach to

Report” button will attach a

snapshot to the selected event

Figure 8.2 - Traffic Management Dashboard – Reference (2/2)

78

 Architecture Design and Second Integrated Prototype

9 Appendix – User Reference: Credit Card

Fraud Management Dashboard

global transaction measures

clicking on the eye icon of any of the

top panels (ie. Transactions

Investigated) will cause the countries

in the world map to change colour

depending on the specific value

registered in the country

- red -> high

- yellow -> medium

- green -> low

- grey -> data not available

Figure 9.1 - Credit Card Fraud Management Dashboard – Reference (1/3)

79

 Architecture Design and Second Integrated Prototype

list showing events

flagged by the

automated system

selecting an event and clicking

“Explain” will cause the “Account

History” and “Score Contribution”

windows to change and show data

relating to the specific event

(transaction)

- country will also change colour on

the map

selecting an event and clicking

“Confirm Fraud” will update

the investigation case status as

“fraud confirmed”

Figure 9.2 - Credit Card Management Dashboard – Reference (2/3)

details

regarding the

historic

suspiciousness

rating of the

account the

flagged

transaction

pertains to

details about the

selected flagged

transaction

- the theme river visualisation shows the historical fraud

rating of the account in question: the wider the river, the

higher the risk score.

- colours refer to the transaction attributes shown in the

“Transaction – Score Contribution” window

- the wider the colour, in relation to the whole river, the

higher the contribution of the specific attribute to the total

fraud score

- colours show the same attribute as in

the “Account History” window

- the height of the bars relate to the

contribution of the specific attribute to

the total fraud score

- clicking anywhere on the theme

river will cause the “Transaction –

Score Contribution” window to

display the data corresponding to

the selected transaction

Figure 9.3 – Credit Card Management Dashboard – Reference (3/3)

80

 Architecture Design and Second Integrated Prototype

10 Appendix – Demonstrating SPEEDD

Prototype

10.1 Demo Scenarios

For demonstration purposes, demo scenarios were prepared for the traffic management and for the

credit card fraud detection use cases. The scenarios are available in a form of storyboards here:

http://www.speedd-project.eu/sites/default/files/credit_card_fraud_demo_v2.pdf,

http://www.speedd-project.eu/sites/default/files/traffic_management_demo.pdf.

10.2 Running demo scenarios

In the following sections we assume that you run the demo in the virtual machine created from the

provided image. In case you run your own environment, the paths have to be adjusted.

10.2.1 Traffic Management

1. cd ~/speedd/speedd-runtime/scripts/traffic

2. sudo ./start-speedd-runtime

3. start sending input events by running ./playevents-traffic

4. open a new terminal shell

5. cd ~/speedd/speedd-ui/bin

6. Run the dashboard by starting ./run.sh

7. Open the following URL in your browser to work with the dashboard UI: http://localhost:3000.

10.2.2 Credit Card Fraud Detection

1. cd ~/speedd/speedd-runtime/scripts/ccf

2. sudo ./start-speedd-runtime

3. start sending input events by running ./playevents-fraud

4. open a new terminal shell

5. cd ~/speedd/speedd_ui_bf/bin

6. Run the dashboard by starting ./run.sh

7. Open the following URL in your browser to work with the dashboard UI: http://localhost:3000.

10.2.3 Stopping SPEEDD prototype

1. cd ~/speedd/speedd-runtime/scripts

2. Kill the topology by running 'sudo ./kill-speedd-runtime'

3. Stop the UI by killing the process (or Ctrl-C in the terminal shell where the UI process has been

started)

81

 Architecture Design and Second Integrated Prototype

Note: It is important to stop the prototype running current demo scenario before running

another demo scenario (for example, if the traffic management demo is running, it is

important to stop it before running the credit card fraud demo)37.

37

 This is a temporal limitation caused by inability to run two topologies with same name on a single STORM cluster.

This issue will be fixed in the future versions of SPEEDD software.

82

 Architecture Design and Second Integrated Prototype

11 Appendix – Aimsun Integration

11.1 Aimsun Integration Architecture

Figure 11.1 - AIMSUN Integration Architecture

AIMSUN integration comes to enable implementing closed traffic control loop where SPEEDD runtime

receives simulated sensor readings in real time and applies control actions to prevent or mitigate

undesired traffic conditions. Another aspect of the integration is the ability to control the simulator

remotely which is important given the distributed nature of the SPEEDD project team.

Because the AIMSUN product is targeted at the single user scenario running on a Windows desktop

machine, integration with a distributed system has proved challenging, and has been only partially

accomplished. Some of the commands can only be executed locally on the AIMSUN machine.

The diagram in Figure 11.1 illustrates the integration architecture between the Aimsun simulator and

the SPEEDD runtime. The configuration and the calibration of the simulation are done as part of the

simulation design process and are not available at runtime. The integration uses AIMSUN API for C++

and Python. Following the SPEEDD event-driven architecture, the interaction between AIMSUN and

SPEEDD runtime is event-based, using SPEEDD kafka-based event bus.

Simulated traffic sensor readings are sent to speedd-traffic-in-events topic as input events. Actions

emitted by the Decision Making module are posted to the speedd-traffic-actions topic where they are

consumed by the AIMSUN integration module, and applied to adjust simulation parameters thus

mimicking the traffic control action.

Currently the following two traffic control actions implemented:

1. Control the traffic light phases

83

 Architecture Design and Second Integrated Prototype

2. Control the Speed limit of each section

In addition to the traffic control actions, it is possible to start the pre-configured simulation remotely.

Stopping or pausing of the simulation is not available in the remote mode yet.

The following lists the parameters for each AIMSUN command.

11.1.1 Control traffic light phases

1. Junction ID (Intersection ID)

2. Phase ID

3. New Phase time (seconds)

11.1.2 Control section speed limit

1. Section ID

2. New Speed limit (km/h)

84

 Architecture Design and Second Integrated Prototype

12 Appendix – SPEEDD Event Reference
This section contains reference information about the event types used in SPEEDD along with the

structure of the event objects.

12.1 Common attributes for all events emitted by Proton

Attribute Name Attribute Type Description

Certainty Double The certainty that this event happen (value

between 0 to 1)

OccurrenceTime Date No value means it equals the event

detection time, other option is to use one of

the defined distribution functions with

parameters

ExpirationTime Date Only till this time the cost and certainty

parameters of the event are valid, and only

till this time a proactive action is considered

Cost Double The cost of this event occurrence. Negative

if this is an opportunity

Duration Double Used in case the this event occur within an

interval

12.2 Credit Card Fraud Management Use Case

12.2.1 Transaction

Attribute Name Attribute Type Description

card_pan String Hashed card PAN

terminal_id String Unique terminal ID

cvv_validation Integer CVV validation response code

amount_eur Double Transaction amount in EUR

acquirer_country Integer Acquirer country code

card_country Integer Card country code

is_cnp Integer CNP (“Card Not Present”) transaction

indicator: 1 if CNP, 0 if CP

card_exp_date Date Card expiration date

12.2.2 SuddenCardUseNearExpirationDate

Attribute Name Attribute Type Description

card_pan String Hashed card PAN

TransactionsCount Integer Number of transactions in the pattern

transaction_ids String[] ids of transactions that contributed to the

pattern

timestamps Long[] Timestamps of the transactions that

contribute to the pattern

acquirer_country Integer Acquirer country code

card_country Integer Card country code

85

 Architecture Design and Second Integrated Prototype

12.2.3 TransactionsInFarAwayPlaces

Attribute Name Attribute Type Description

card_pan String Hashed card PAN

transaction_ids String[] ids of transactions that contributed to the

pattern

timestamps Long[] Timestamps of the transactions that

contribute to the pattern

acquirer_country Integer Acquirer country code

card_country Integer Card country code

12.2.4 TransactionStats

Attribute Name Attribute Type Description

country Integer Country code

average_transaction_amount_eur Double Average transaction amount over the

measured period

transaction_volume Double Total transaction volume

transaction_count Double Number of transactions counted

12.3 Traffic Management Use Case

12.3.1 AggregatedSensorRead

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

lane String Lane (e.g. slow, fast, onramp, offramp)

occupancy Double Fraction of time that the cross-section of

the sensor is occupied (%)

vehicles Integer Number of vehicles passed over the

sensor

average_speed Double Average speed of the vehicles over the

reported period

12.3.2 SimulatedSensorReadingEvent

Attribute Name Attribute Type Description

detectorId String Id of the simulation detector (imitating

sensor)

dm_location String Location-based partition id

vehicle_speed Double Average speed

vehicle_count_car Integer Number of cars passed over the sensor

vehicle_count_truck Integer Number of trucks passed over the sensor

density_car Double Average density of cars

density_truck Double Average density of trucks

occupancy Double Average occupancy of the section

86

 Architecture Design and Second Integrated Prototype

12.3.3 Congestion

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

average_density Double Average density of the vehicles over the

reported period

problem_id String Identifies the problem detected by

SPEEDD

12.3.4 PredictedCongestion

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

average_density Double Average density of the vehicles over the

reported period

problem_id String Identifies the problem detected by

SPEEDD

12.3.5 ClearCongestion

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

problem_id String Identifies the problem detected by

SPEEDD

12.3.6 OnRampFlow

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

average_flow Double Average flow of the traffic over the

reported period

average_speed Double Average speed of the vehicles over the

reported period

average_density Double Average density of the traffic over the

reported period

12.3.7 AverageDensityAndSpeedPerLocation

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

average_flow Double Average flow of the traffic over the

reported period

average_speed Double Average speed of the vehicles over the

reported period

average_density Double Average density of the traffic over the

reported period

87

 Architecture Design and Second Integrated Prototype

12.3.8 2minsAverageDensityAndSpeedPerLocation

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

average_flow Double Average flow of the traffic over the

reported period

average_speed Double Average speed of the vehicles over the

reported period

average_density Double Average density of the traffic over the

reported period

12.3.9 PredictedTrend

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

problem_id Double Identifies the problem detected by

SPEEDD

12.4 Traffic Control Actions

The following events are emitted by the Decision Making module in order to mitigate or prevent

congestion via controlling the metering rates on the ramp, i.e. the fraction of the green light.

12.4.1 UpdateMeteringRateAction

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

lane String Lane (e.g. slow, fast, onramp, offramp)

density Double Current density at the controlled section

newMeteringRate Double New value of the metering rate (fraction

of the green light)

controlType String auto | partial | full

12.4.2 setMeteringRateLimits

This event is emitted by the dashboard application in response to the operator’s command to limit the

automatic metering rates to the specified range.

Attribute Name Attribute Type Description

location String Id of the sensor location (collection

point)

upperLimit Double Maximal value of the metering rate

lowerLimit Double Minimal value of the metering rate

12.5 AIMSUN Simulation Control Commands

12.5.1 setTrafficLightPhaseTime

Attribute Name Attribute Type Description

88

 Architecture Design and Second Integrated Prototype

junctionID Integer Intersection id

phaseID Integer Phase of the traffic light

phaseTime Iinteger New phase time (seconds)

12.5.2 setSpeeddLimit

Attribute Name Attribute Type Description

sectionID Integer Controlled section of the road

speedLimit Integer New speed limit

89

 Architecture Design and Second Integrated Prototype

13 Bibliography

Artikis, Alexander, Marek Sergot, and Georgios Paliouras. "An Event Calculus for Event Recognition."

IEEE Transactions on Knowledge and Data Engineering (TKDE), 2014.

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer. "D³ data-driven documents." IEEE Transactions

on Visualization and Computer Graphics, vol. 17. no. 12, 2011: 2301-2309.

Engel, Yagil, and Opher Etzion. "Towards proactive event-driven computing." In Proceedings of the 5th

ACM international conference on Distributed event-based system (DEBS '11). New York, NY, USA:

ACM, 2011. 125-136.

Etzion, O. "Towards an Event-Driven Architecture: An Infrastructure for Event Processing." RuleML. 2005.

FIWARE Project. NGSI-9/NGSI-10 information model. 5 12, 2014.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/NGSI-9/NGSI-

10_information_model (accessed 01 20, 2016).

Hewitt, Carl, Peter Bishop, and Richard Steiger. "A Universal Modular ACTOR Formalism for Artificial

Intelligence." In Proceedings of the 3rd International Joint Conference on Artificial Intelligence

(IJCAI '73). Stanford, CA, USA: AAAI Press, 1973. 235-245.

Hunt, Patrick, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. "ZooKeeper: Wait-free

Coordination for Internet-scale Systems." USENIX Annual Technical Conference (USENIX ATC '10).

Boston, MA, USA, 2010. 145-158.

IBM Research. IBM Proactive Technology Online User Guide. Haifa, 2015.

Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log processing." In

Proceedings of the 6th International Workshop on Networking Meets Databases (NetDB). Athens,

Greece, 2011.

Oaks, Scott. Java Performance: The Definitive Guide. O’Reilly Media, Inc.,, 2014.

Tilkov, Stefan, and Steve Vinoski. "Node.js: Using JavaScript to Build High-Performance Network

Programs." IEEE Internet Computing, vol. 14, no. 6, 2010: 80-83.

Toshniwal, Ankit, et al. "Storm@twitter." In Proceedings of SIGMOD/PODS'14 International Conference

on Management of Data. Snowbird, UT, USA: ACM, 2014. 147-156.

Vinoski, Steve. "Advanced Message Queuing Protocol." IEEE Internet Computing, 2006: 87-89.

Zaharia, Matei, et al. "Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing." In Proceedings of 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI '12). San Jose, CA, USA: ACM, 2012. 15-28.

90

 Architecture Design and Second Integrated Prototype

Zaharia, Matei, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. "Discretized

streams: fault-tolerant streaming computation at scale." In Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP '13). Farmington, PA, USA: ACM, 2013. 423-

438.

