Project
Deliverable

Distribution

Scalable Data Analytics Scalable Algo-
rithms, Software Frameworks and Visu-
alisation ICT-2013.4.2a

FP7-619435 / SPEEDD
D6.2
Public

http://speedd-project.eu/

Computation and Communication Scalable
Algorithms I

Daniel Keren, Arnon Lazerson, Mickey Gabel, Ilya
Kolchinsky, Tsachi Sharfman, Assaf Schuster

Status: Final (Version 1.0)

June 2015

pagei

Project

Project ref.no.
Project acronym
Project full title
Porject site
Project start
Project duration
EC Project Officer

Deliverable
Deliverabe type
Distribution level
Deliverable Number
Deliverable title
Contractual date of delivery
Actual date of delivery
Relevant Task(s)
Partner Responsible
Other contributors
Number of pages
Author(s)

Internal Reviewers
Status & version

Keywords

FP7-619435

SPEEDD

Scalable ProactivE Event-Driven Decision making
http://speedd-project.eu/

February 2014

3 years

Aleksandra Wesolowska

report

Public

D6.2

Computation and Communication Scalable Algorithms I
M11 (December 2014)

June 2015

WP6Tasks T1 & T2

TI

38

Daniel Keren, Arnon Lazerson, Mickey Gabel, Ilya Kolchin-
sky, Tsachi Sharfman, Assaf Schuster

Final

Scalable Algorithms, Computational Overhead, Communica-
tion Minimization, Complex Event Processing, Monitoring
Data and Event Streams, Models of Machine Learning

D6.2: Computation and Communication Scalable Algorithms I

page ii

Contents

1 Introduction 2

1.1 History of the Document 2

1.2 Purpose and Scope of the Document 0L 2

1.3 Relationship with Other Documents 3

2 Lazy Evaluation Methods for Detecting Complex Events 4

2.1 Introduction L e e e 4

2.2 Related Work 6

2.3 Notations and Terminology e 7

2.3.1 Specification language oL o 8

2.3.2 The Eager Evaluation Mechanism 8

2.3.3 Implementation Issues o 10

24 LazyEBEvaluation e 10

2.4.1 Formal Definition of the Lazy NFAModel 11

242 ChainBased NFA 14

243 TreeBased NFA 17

2.4.4 Implementation Issues 20

2.4.5 Evaluation Metrics 20

2.5 Optimality of the Tree Based NFA, 20

2.6 Experimental Evaluation 23

2.7 Future Work L 25

3 Monitoring Distributed Models 26

3.1 Introduction e e 26

3.2 Distributed Monitoring of Least Squares 26

3.2.1 Basicsand Notations L e 27

3.2.2 Monitoring DLSQ with Convex Subsets 27

3.2.3 Infinite and Sliding Window L 29

3.3 Preliminary Evaluation 30

3.4 Conclusions and Future Directions 32

4 Conclusions 33
| =

D6.2: Computation and Communication Scalable Algorithms I

Contents page 1 of 38

Executive Summary

The deliverable presents algorithmic contributions by means of scalable algorithms for complex event
processing and for model tracking.

As part of the project goals for processing and manipulating rapid event streams, workpackage 6
deals with the development of novel scalable algorithmic approaches. The target is to present new
ideas which will be able to process complex events with less overhead (by means of cpu time, memory
requirements, 1/O, etc.), and with less communication. Less overhead will provide vertical scalability,
whereas reduced communication between distributed nodes will enable horizontal scalability.

We present in this deliverable two new algorithmic paradigms. The first of these paradigms may be
able to reduce the amount of computation and the amount of local resources required for complex event
processing. The second will enable distributed monitoring of sophisticated analytical and machine-
learning models while using very low communication between participating nodes.

The proposed approaches will enable scalable computation and scalable implementation of the
project’s eventual integrated platform. The platform will then be able to handle many more events
and using much less resources.

Initial findings show high potential for the proposed approaches. Overheads in preliminary exper-
iments are reduced dramatically. The potential gains will be further studied in our explorations and
experimentation. We will evaluate (and draw bounds on) the precise expected gain. We will experiment
with data and in particular with shared evaluation data and with the project’s Fraud use case.

L= D6.2: Computation and Communication Scalable Algorithms I

page 2 of 38

Introduction

1.1 History of the Document

Version Date Author Change Description

0.1 1/11/2014 Assaf Schuster (TT) Set up of the document

0.3 2/11/2014 Ilya Kolchinsky (TI) preliminary version of CEP paradigm

0.6 27/11/2014 Mickey Gabel (TI) preliminary version of distributed model monitoring
0.9 30/11/2014 Assaf Schuster (TT) Content integration

1.0 21/12/2014 Assaf Schuster (TI) Fixing remarks by internal reviewer

1.2 Purpose and Scope of the Document

The purpose of this document is to outline preliminary algorithmic scalability contributions. Scalability,
as the goal of SPEEDD/WP6, is a goal which immerge out of the need to handle big datasets using less
resources, for instance when fraud detection models operate on millions of daily transactions. Horizontal
scalability would mean that the size of the data mandates processing by a distributed system. Vertical
scalability is required when the data, or the stream of arriving events, is processed on a single machine,
hence better algorithms are necessary to meet the processing requirements. The approaches we present
are both in the vertical scalability scope, where minimizing the use of local resources is the focus of
the optimization, as well as in the horizontal scalability scope, which attempts to reduce the required
communication to a minimum. During later stages of the project these contributions may be extended
into complete solutions.

Two new approaches will be described. The first deals with the identification of complex events
while spending less local resources, mainly cpu time and memory space. The basic idea is to look for
the least probable event before scanning for the other events which compose the complex event. This
reduces the number of scans and the amount of intermediate states which need be stored.

The second novel algorithmic approach allows to distributively check the validity of known models
using uptodate data. Local constraints are developed to be checked at each participating node. As

L= D6.2: Computation and Communication Scalable Algorithms I

1.3. Relationship with Other Documents page 3 of 38

long as the constraints hold at all nodes no communication is needed. When the new data requires
training of new models, the local constraints are guaranteed to be violated and the nodes synchronize
by communicating indicative states. Once a decision is made that the old model is no longer relevant, a
new model may be trained, a model which is tailored to the newer data.

The application of the this last generic method will begin by applying it to linear regression. Linear
regression may be used for prediction purposes, in order to distributively identify some global conditions
which evolve and which require intervention. Then, at a later and more involved stage we will attempt
to apply this method to classification via SVM (clearly applicable to our usecases).

1.3 Relationship with Other Documents

We are already working on the integration of the CEP detection technique into the SPEEDD architecture.
This work will appear in later stages and later deliverables.

The work on horizontal scalability requires inter-client communication. This will rely on and make
use of architectural enhancements of Proton and Storm which are taking place as part of our work in
Ferarri project.

L= D6.2: Computation and Communication Scalable Algorithms I

page 4 of 38

Lazy Evaluation Methods for Detecting Complex Events

Abstract

The goal of Complex Event Processing (CEP) systems is to efficiently detect complex patterns over
a stream of primitive events. A pattern of particular interest is a sequence, where we are interested
in identifying the arrival of a number of primitive events on the stream in a predefined order. Many
popular CEP systems employ Non-deterministic Finite Automata (NFA) arranged in a chain topology
for detecting sequences. Existing NFA-based mechanisms incrementally extend previously observed
prefixes of a sequence until a match is reached. Consequently, each newly arriving event needs to be
processed to determine whether a new prefix is to be initiated or an existing one is to be extended. This
approach may be very inefficient when events at the beginning of the sequence are very frequent.

Our first contribution is to propose a chain topology NFA for detecting sequences in a lazy manner.
This lazy mechanism waits until the most selective event in the sequence arrives, and then adds events
to partial matches according to a predetermined order of selectivity. In addition, we propose a tree
topology NFA that does not require selectivity order to be defined in advance. We formally show that this
tree-structured NFA is at least as efficient as the chain-structured NFA arranged in the best performing
selectivity order. Finally, we present an experimental evaluation of queries on real-world stock trading
data which demonstrates a performance gain of two orders of magnitude, while requiring only half of
the memory resources.

2.1 Introduction

Complex Event Processing (CEP) is an emerging field with important applications for real-time systems.
The goal of CEP systems is to detect predefined patterns over a stream of primitive events. Examples
of applications of CEP systems include financial services Demers et al. (2006), RFID-based inventory
management Wang and Liu (2005), click stream analysis Sadri et al. (2004), and electronic health record
systems Harada and Hotta (2005). A pattern of particular interest is a sequence, where we are interested
in detecting that a number of primitive events have arrived on the stream in a given order.

As an example of a sequence pattern consider the following:

Example 1: A securities trading firm would like to analyze a real-time stream of stock price data

L= D6.2: Computation and Communication Scalable Algorithms I

2.1. Introduction page 5 of 38

in order to identify trading opportunities. The primitive events arriving on the stream are price quotes
for the various stocks. An event of the form X denotes that the price of stock X has changed to y,
where 7 is a running counter of the events for stock X (an event also includes a timestamp, which was
omitted from the notation for the sake of brevity). Say the trading firm would like to detect a sequence
consisting of the events A,—,1, Bp—p2, and C)—p3 occurring within an hour, where p1 < p2 < pa.

Modern CEP systems are required to process growing rates of incoming events. In addition, as this
technology becomes more prevalent, languages for defining complex event patterns are becoming more
expressive. A popular approach is to compile patterns expressed in a declarative language into Non-
deterministic Finite state Automata (NFA), which are in turn used by the event processing engine. Wu
et al. (2006), proposed the SASE system , which is based on a language that supports logic operators,
sequences and time windows. The authors describe how a complex pattern formulated using this lan-
guage is translated into an NFA consisting of a finite set of states and conditional transitions between
them. Transitions between states are triggered by the arrival of an appropriate event on the stream. At
each point in time, an instance of the state machine is maintained for every prefix of the pattern detected
in the stream up to that point. In addition, a data structure referred to as the match buffer, holds the prim-
itive events consisting of the match prefix. Gyllstrom et al. (2008) propose additional operators to SASE
such as iterations and aggregates . Demers et al. (2006, 2007) describe Cayuga, a general purpose event
monitoring system, based on a CEL language. It employs non deterministic automata for event eval-
uation, supporting typical SQL operators and constructs. The Complex Events Specification language
Tesla Cugola and Margara (2010) extends previous works by offering fully customizable policies for
event detection and consumption. NextCEP Schultz-Mgller et al. (2009) enables distributed evaluation
using NFA in clustered environment.

An NFA detects sequences by maintaining at every point in time all the observed prefixes of the
sequence until a match is detected. As an example, consider the following stream of events:

Azl;:3’ A;2>:5’ A?):87 B;:% B£=137 C;ZQ
In this case, after the first three events have arrived, {A'}, {A2} and {A3} are match prefixes for the
pattern described in Example 1. All these prefixes must be maintained by the NFA at this point in time,
since all of them may eventually result in a match. After the first five events have arrived, the NFA must
maintain five match prefixes (all combinations of A events and B events except for { A>B'}). Finally,
after the last event is received, the NFA detects two sequences matching the pattern, {A; B1C4} and
{AQB 1 C 1 } ! .

To the best of our knowledge, all previously proposed NFA matching mechanisms construct partial
matches according to the order of events in the sequence (i.e. every partial match is a prefix of a match).
We refer to this prefix detection strategy as an “eager” strategy, since every incoming event is processed
upon arrival in order to determine if it starts a new prefix, or extends an existing one. In cases where
the first events in a sequence pattern are very frequent, the NFA must maintain a large number of match
prefixes which may eventually not lead to any matches. Since the number of match prefixes to be kept
can grow exponential with the length of the sequence, such an approach may be very inefficient in terms
of memory and computational resources.

In this document we propose new NFA based matching mechanisms that overcome this drawback.
The proposed mechanism constructs partial matches starting from the most selective (i.e. least frequent)
event, rather than from the first event in the sequence. In addition, partial matches are extended by

! An important aspect of the semantics of an event definition language is the consumption policy. The consumption policy
specifies how to handle to a particular event once it is included in a match, i.e. whether it can still be reused for other matches,
or should be discarded. For the purpose of our discussion in this work, we assume Reuse Consumption Policy, which means
that an event instance can be included into an unlimited number of matches Etzion and Niblett (2010).

= D6.2: Computation and Communication Scalable Algorithms I

2.2. Related Work page 6 of 38

adding events in descending order of selectivity (rather than according to their order in the sequence).
As aresult, the number of partial matches held in memory is minimized. This also reduces computation
time, since when processing a given event there are less partial matches to extend.

Our proposed solution relies on lazy evaluation mechanism. In contrast to previously proposed NFA
based systems, which perform eager evaluation, the lazy evaluation mechanism can either process an
event upon arrival, or store in a buffer referred to as the input buffer to be processed a at a later time if
necessary. We present a new type of NFA that makes use of an input buffer to support lazy evaluation.
In addition, we propose two types of NFA topologies for detecting sequence patterns, a chain NFA and
a tree NFA.

A chain NFA requires specifying the selectivity order of the events in the sequence. For example,
for constructing an automaton detecting the sequence A,B,C, it is necessary to specify that B is expected
to be the most frequent, followed by A which is expected to be less frequent, followed by C which is
expected to be least frequent.

A tree NFA also employs lazy evaluation, but it does not require specifying the selectivity order of
the events in the sequence. We show that for every stream of events, a tree NFA is at least as efficient
as the best performing chain NFA. Finally, we perform an experimental evaluation on real-world stock
trading data which demonstrate that the tree NFA matching mechanism improves run-time performance
by two orders of magnitude in comparison to existing solutions, while using only half the memory.

2.2 Related Work

The detection of complex events over streams is a very active research field in recent years Cugola and
Margara (2012). The earliest systems designed for solving this problem fall under the category of Data
Stream Management Systems. Most prominent examples include NiagaraCQ Chen et al. (2000), Tele-
graphCQ Chandrasekaran et al. (2003), Aurora Balakrishnan et al. (2004) and STREAM Group (2003).
Those systems are based on SQL-like event specification languages with their focus being mainly on
centralized stream-based processing. Borealis Abadi et al. (2005); Balazinska et al. (2008) is a fully
distributed extension of Aurora, capable of balancing the workload among the participating nodes and
handling runtime failures. Some works incorporated the traditional content-based publish-subscribe
paradigm. Later, actual complex event processing systems were introduced. One example of an ad-
vanced CEP system is Amit Adi and Etzion (2004), based on a strongly expressive detecting language
and featuring a component called situation manager, capable of processing notifications received from
different sources in order to detect patterns of interest. SPADE Gedik et al. (2008) is a declarative stream
processing engine of System S. System S is a large-scale, distributed data stream processing middleware
developed by IBM. It provides a computing infrastructure for the applications that need to handle large
scale data streams. Cayuga Brenna et al. (2007); Demers et al. (2006, 2007) is a general purpose, high
performance, single server CEP system developed at Cornell University. Its implementation focuses on
multi-query optimization, which is directly applicable when our system is extended to handle multiple
queries.

Apart from SASE, thoroughly discussed in this document, many other event specification languages
were proposed. SASE+ Gyllstrom et al. (2008) is an expressive event processing language from the
authors of SASE. This language extends the expressiveness of SASE, by including iterations and ag-
gregates as possible parts of detecting patterns. CQL Arasu et al. (2006) is an expressive SQL-based
declarative language for registering continuous queries against streams and updatable relations. It allows
creating transformation rules with a unified syntax for processing both information flows and stored re-
lations. CEL (Cayuga Event Language)Brenna et al. (2007); Demers et al. (2006, 2007) is a declaration
language used by Cauyga system, supporting patterns with Kleene closure and event selection strategies

= D6.2: Computation and Communication Scalable Algorithms I

2.3. Notations and Terminology page 7 of 38

including partition contiguity and skip till next match. TESLA Cugola and Margara (2010) is a newer
declaration language, attempting to combine high expressiveness with a relatively small set of opera-
tors, achieving compactness and simplicity. In Barga et al. (2007) the authors present CEDR, an event
streaming system that introduces a new temporal stream model, based on several different timings, thus
aiming to unify and further enrich query language features. Even though our work focuses exclusively
on sequence patterns as defined in SASE, extensions to other operators are possible, including those
added to the standard set by the aforementioned languages.

Query rewriting as yet another optimization research avenue was widely studied as well. NextCEP
Schultz-Mgller et al. (2009) is a distributed complex event processing system, especially designed for
query rewriting and distribution. Event patterns are specified in a high-level query language and, before
being translated into event automata, are rewritten in a more efficient form. Automata are then distributed
across a cluster of machines for detection scalability, while different operators of the same pattern are
places on different hosts. Liu et al. (2010) describes NEEL, a CEP query language for expressing
nested CEP pattern queries. Pattern rewriting rules are designed for pushing negation into inner sub-
expressions, and a normalization procedure based on these rules is defined for simplifying a nested
complex event expression. In Ding et al. (2008), the authors attack the problem on exploiting event
constraints to optimize CEP over large volumes streams by developing a runtime query unsatisfiability
(RunSAT) checking technique that detects optimal points for terminating query evaluation. Neither of
the works mentioned above explicitly addresses sequence patterns optimization by re-ordering the initial
sequence, but instead focus on modifying the order of operations applied.

Unlike most recently proposed CEP systems, which use non-deterministic finite automata (NFA’s)
to detect patterns, ZStream Mei and Madden (2009) uses tree-based query plans for the representation
of query patterns. By carefully designing the underlying infrastructure and algorithms, ZStream is able
to unify the evaluation of sequence, conjunction, disjunction, negation, and Kleene closure as variants
of the join operator. While some ideas discussed in this work are close to ours, it considers a tree-based
model as opposed to our work, whose focus is on a model of finite automata.

To the best of our knowledge, the only work mentioning the concept of lazy evaluation in the context
of event processing is Akdere et al. (2008). Here, the authors describe “plan-based evaluation”, where,
similarly to our work, temporal properties of primitive events can be exploited to reduce network com-
munication costs. As this work focuses on network traffic minimization, we believe that it is orthogonal
to ours.

A large volume of work has been devoted to scaling the CEP detection by distributing the tasks
among several nodes. Lakshmanan et al. (2009) proposes a way to create an automatic partition of
event processing entities (agents) into groups called “strata” by analyzing the semantic dependencies
among the different agents using a stratification principle. Another work, Hirzel (2012), proposes a
pattern syntax and translation scheme organized around the notion of partitions, thus allowing for easy
parallelization of a query. Gu et al. (2007) describes an adaptive load diffusion algorithm to enable
scalable processing of multiway windowed stream joins. The load diffusion is achieved by a set of
semantics-preserving tuple routing algorithms. Even though our work does not explicitly address dis-
tributed environment, the described framework can be parallelized by applying a solution of such kind,
since each NFA instance is completely independent of the other ones.

2.3 Notations and Terminology

In this section, we formally describe the eager NFA matching mechanism. We present a subset of
the SASE language for defining sequence patterns. We formally describe the eager NFA matching
mechanism, how a given sequence is compiled into an NFA, and how this NFA is used in runtime to

= D6.2: Computation and Communication Scalable Algorithms I

2.3. Notations and Terminology page 8 of 38

detect the pattern.

2.3.1 Specification language

Most CEP systems enable users to define patterns using a declarative language. Common patterns
supported by such languages include sequences, conjunctions, disjunctions and negation of events. Ad-
ditional operators proposed in the literature include Kleene closures, time windows, filtering and trans-
forming rules, complex join operators, and aggregations. Examples for event specification languages in-
clude SASE Wu et al. (2006), SASE+ Gyllstrom et al. (2008), CQL Arasu et al. (2006), Cayuga Brenna
et al. (2007), NextCEP Sadri et al. (2004). As described in the following section, patterns expressed in
these languages will be compiled into a state machine for use by the detection mechanism.

The language we use in this document is based on SASE, thoroughly described in Agrawal et al.
(2008). SASE combines a simple, SQL-like syntax with high degree of expressiveness, allowing to
define a wide variety of patterns. A formal model exists which precisely describes the semantics and
expressive power of the language. In its most basic form, SASE event definition is composed of three
building blocks: PATTERN, WHERE and WITHIN.

Each primitive event in SASE has an arrival timestamp, a type and a set of attributes associated with
the type. An attribute is a data item related to a given event type, represented by a name and a value. In
this work, we assume that all attributes are either numeric or categorical, however it is easy to extend
the methods we present to other data types as well.

The PATTERN clause defines the pattern of simple events we would like to detect. Each event in
this pattern is represented by a unique name, and a type. The only information it provides is regarding
the types of the participating events, and the relations among them. In this work we limit the discussion
to sequence patterns. A sequence is defined using the operator SEQ(A a, B b,...), which provides an
ordered list of event types and gives a name to each event in the sequence.

The WHERE clause specifies constraints on the values of data attributes of the primitive events
participating in the pattern. These constraints may be combined using boolean expressions. We assume,
without loss of generality, that this clause is in the form of a CNF formula.

Finally, the WITHIN clause defines a time window over the entire pattern, specifying the maximal
allowed time interval (in some predefined time units) between the arrival timestamps of the first simple
event, and the last one. This time interval is denoted by W.

PATTERN SEQ(E a, E b, E ¢)

AND (b.pricejc.price)
WITHIN 4 hours

WHERE (a.ticker = MSFT) AND (b.ticker=GOOG) AND (c.ticker = AAPL) AND (a.price ; b.price)

2.3.2 The Eager Evaluation Mechanism

In this section we formally describe the structure of the eager NFA, and how it is used to detect patterns.
Formally, an NFA automaton is defined as follows:

A= (Q?E7q1aF)
where:
e () is a set of states;

e I is aset of directed edges, which can be of several types, as described below;

= D6.2: Computation and Communication Scalable Algorithms I

2.3. Notations and Terminology page 9 of 38

e ¢ is an initial state;
e ['is a final accepting state.

An edge is defined by the following tuple:
e = (g¢s, g4, action, type, condition)

where ¢ is the source state of an edge, g4 is the destination state, action is always one of those
described below, fype may be any of the event types specified in the PATTERN block, and condition is
a boolean predicate which has to be satisfied by an incoming event in order for the transition to occur.

The runtime engine runs multiple instances of a NFA in parallel (equal to the number of valid prefixes
over currently available primitive events in the time window), one for each partial match detected up to
that point. Each NFA instance is associated with a match buffer. The match buffer is used for storing
the primitive events constituting a partial match as we proceed through an automaton towards the final
state. It is always empty at ¢q;, and more events are gradually added to it during the evaluation. Let
tmin denote the timestamp of the earliest event in the match buffer, and now() denote the current time.
If the match buffer is empty, ¢,,,;, holds the current time. Note that the condition on an edge may also
reference events in the match buffer.

The match buffer should be thought of as a logical construct. As discussed in Section 2.3.3. there is
no need to allocate dedicated memory for each match buffer, since multiple match buffers can be stored
in a compact manner, that takes into account that certain events may be included in many buffers.

If, during the traversal of an NFA instance, the final state is reached, the content of a match buffer
is returned as a successful match for the pattern. If during evaluation the time constraint specified in the
WITHIN block is violated, the NFA instance and the associated match buffer are discarded.

The action associated with an edge is performed when the edge is traversed. The action can be one
of the following (the actions are simplified versions of the ones defined for SASE Agrawal et al. (2008)):

e fake - consumes the event from the input stream and adds it to the match buffer.

e ignore - skips the event (consumes an event from an input stream and throws it away instead of
storing in any kind of buffer).

Note that there may be several edges leading from the same state and specifying the same event type,
whose conditions are not mutually exclusive (i.e. an event can satisfy several conditions). In this case,
an event will cause more than one traversal from a given state.

A sequence of n primitive events will be compiled into a chain of n + 1 states consisting of an a
state corresponding to each primitive event in the sequence, followed by a final state F'. Each state in
the chain, except for the last one, has an edge leading to itself for every event type (referred to as self
loops) and an edge leading to the next state (referred to as connecting edges).

The self loops for all event types have an ignore action. The edge leading from the nt” state to the
next one has a fake action with the event type of the n'” event in the sequence.

To describe the conditions on the edges, we define an auxiliary predicate, known as the timing
predicate,> and denoted by p;. The timing predicate checks whether the match buffer still adheres to the
timing constraint, i.e. p; = tyin > now() — W. The condition on self loops is p; (i.e. the events in the
match buffer are still within the allowed time interval). The conditions in the WHERE part are mapped
to the conditions on the connecting edges as follows:

2We do not use timed automata because the SASE model which we extend does not allow it.

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 10 of 38

1. For each clause of the CNF, let ¢ denote the index of the latest primitive event it contains (in the
specified order of appearance in the pattern).

2. The condition on the edge connecting the i*" state with the following state is a conjunction of all
the CNF clauses with the index ¢ and the timing predicate.

Figure 2.1. illustrates the NFA compiled for the pattern described, in Example 1. The edge from g;to g2
will only contain a part of the global condition considering A, the next edge will specify the constraint
on B and the mutual constraint on A and B, and, finally, the final edge towards the accepting state will
validate the constraint on C and the mutual constraint on C and B.

*F] - » Q> > (3 - F
E a, a.ticker = MSFT E b, b.ticker = GOOG E c, c.ticker = AAPL
AND a.price < b.price AND b.price < c.price

Figure 2.1: NFA for Example 1

An algorithm is described in Agrawal et al. (2008) for automatic conversion of simple SASE pattern
queries (without iterations or compositions) into an NFA.

Runtime Behavior

As described above, the pattern detection mechanism consists of multiple NFA instances running simul-
taneously, where each instance represents a partial match. Each NFA instance consists of the current
state and a match buffer. Upon startup, the system consists of a single instance of the NFA at the initial
state and an empty match buffer. Every event received on the input stream will be applied to all the
NFA instances. In case the timing predicate is not satisfied on a given instance (i.e. the earliest event
in the match buffer is not within the allowed time interval), the instance and associated match buffer
are discarded. In case the timing predicate is satisfied, an event will cause at least one edge traversal at
each NFA instance (the self loop), but in some cases it may cause an additional traversal on a connecting
edge. If only the self loop is traversed the event will be ignored. If, on the other hand, both the self
loop and the connecting edge are traversed, the instance is duplicated, and on one copy the self loop is
traversed (i.e. it remains unchanged), and on the other the connecting edge is traversed (i.e. the current
state is modified to be the next state, and the incoming event is added to the match buffer).

2.3.3 Implementation Issues

Agrawal et al. Agrawal et al. (2008) describe a data structure referred to as the shared match buffer,
for storing the content of multiple match buffers in a compact manner. The shared match buffer can be
employed in both the eager and lazy NFA models to reduce memory consumption.

2.4 Lazy Evaluation

To demonstrate the effectiveness of the lazy evaluation mechanism, consider a scenario where in a certain
day primitive events corresponding to a and b (stocks of MSFT and GOOG) are very frequent, while
events corresponding to ¢ (stocks of AAPL) are relatively rare. More specifically, assume that within a

L= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 11 of 38

time window of ¢ we receive 100 instances of MSFT stock events denoted A! ,...,A19° followed by 100

P1°°°"°" "Pp100”?
instances of GOOG stock events denoted len 01,...,311,25)0, followed by a single instance of AAPL stock
event denoted CI}% .- In addition, let us assume that there is only a single B;i event such that p; < pog1.

In such a case, an eager NFA will evaluate the condition a.price ; b.price 10,000 times, and the condition
b.price ; c.price for every pair of a and b that satisfied the first condition (up to 10,000 times). We may
significantly reduce the number of evaluations if we defer the match detection process until the single
event for AAPL has arrived, then pair it with appropriate GOOG events and finally check which of these
pairs match a MSFT event. In this case we need to perform 100 checks of b.price ; c.price, and an
additional 100 checks of a.price ; b.price resulting in a total of 200 evaluations in comparison to at least
10,000 evaluations in the eager strategy. In addition, note that at every point in time, we hold a single
partial match, as opposed to the eager mechanism, which may hold up to 10,000 partial matches.

In this section we describe the lazy evaluation model, which is able to take advantage of varying
degrees of selectivity among the events in the sequence to significantly reduce the use of computational
and memory resources. For the purpose of our discussion, selectivity of a given event name will be
defined as an inverse of the frequency of arrival of events having this name We begin by outlining the
required modifications to the eager NFA model so that it can support lazy evaluation. We proceed to
describing how a lazy chain based NFA can be constructed assuming we are given the selectivity order
of the events participating in the sequence. We then present a lazy tree based NFA that does not require
specifying the selectivity order of the events. Finally, we discuss the metrics we use to evaluate the
computational and memory complexities of the detection methods.

2.4.1 Formal Definition of the Lazy NFA Model

The idea behind lazy evaluation is to enable instances to store incoming events, and if necessary, retrieve
them later for processing. To support this, an additional buffer referred to as the input buffer is associated
with each NFA instance, and an additional action referred to as store is defined. When an edge with store
action is traversed, the event causing the traversal in inserted into the input buffer. The input buffer stores
events in chronological order. Those events can then be accessed during later evaluation steps using a
modification on take edge, that we will define shortly.

An additional feature of lazy evaluation is that a sequence is constructed by adding events to partial
matches in descending order of selectivity (rather than in the order specified in the sequence). From now
on, we’ll refer to the order provided in the input query as sequence order, and to the actual evaluation or-
der as selectivity order. As an example, say we would like to detect the pattern SEQ(Aa, Bb,C ¢, Dd).
In addition, assume we wish to construct a lazy NFA that first matches a, then b, followed by d, and
finally c. In this case, our sequence order is A, B, C, D while our selectivity order is A, B, D, C.

Since events may be added to the match buffer in an order that is different from the sequence order, it
is necessary to specify to which item in the sequence they match. To support this, take action is modified
to include an event name that will be associated with the event it inserts into the match buffer (the names
are taken from the definition in the PATTERN block). The notation take(a) denotes that the name a will
be associated with events inserted by this take action. In an above example, to construct a lazy NFA
using the selectivity order A, B, D, C we’ll assign take(a) edge to its first state, take(b) to its second
state, take(d) to the third state and, finally, fake(c) to the fourth and final state.

Finally, the model must include a mechanism for accessing events in the input buffer. For that
purpose, we change the semantics of fake action. Whereas in the eager NFA model an event accepted by
this type of edge is always consumed from the input stream, we would like to extend this functionality
by adding a search operation on the contents of the input buffer as well. In the lazy NFA model, a
take action additionally triggers a search inside the input buffer, which returns events with appropriate

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 12 of 38

name to be examined for current match. If the result of this search combined with events appearing in
the input stream contains more than a single event with the required name, evaluation will be executed
non-deterministically by spawning additional NFA instances.

Continuing the example above, let our desired pattern be SEQ (A, B,C, D) and let our selectivity
order be A, B, D, C. Examine the state responsible for accepting an event named c. At this stage the
match buffer contains some instance of each of the types A, B and D. The input buffer will contain
all the events arrived from the input stream during evaluation, among them instances of C'. Since we
are searching for an event which is required to precede an already arrived event d, any possible match
can only be found in the input buffer and not in the input stream. When the outgoing rake(c) edge of
the current state is evaluated, a search will thus be performed in the input buffer and all ¢ events will be
returned. Assume that the search returns three appropriate events. Then, three take transitions will be
attempted by creating two new NFA instances.

Note that in the presented example the evaluation process as described is rather inefficient. First,
since the pattern requires c event to precede d, there is no need to examine events from input stream.
Obviously, since we already have d event in the match buffer, we can deduce that the only potential
candidates for ¢ have arrived in the past and are located in the input buffer. Second, since the pattern
requires b event to precede c, not all ¢ events located in the input buffer are to be returned and evaluated,
but only those succeeding the particular b instance located in the match buffer. In general, a “blind”
search through the whole input buffer and the input stream results in a very large number of operations,
which effectively nullifies any benefits gained by using lazy evaluation.

In order to overcome this problem, we introduce a mechanism of scoping parameters, defined and
discussed in the following subsection.

Scoping parameters

As demonstrated above, lazy evaluation NFA may introduce performance bottlenecks on executing
searches in the input buffer during take actions. This drawback follows from the fact that, in general,
only a certain range of events in the input buffer are of interest at a given state. Thus, scanning the whole
buffer, which may contain very large numbers of events, would significantly slow down the evaluation.
Moreover, the relevant range of events is always known is advance, and hence the redundant operations
can be avoided by providing a way to specify it at any state.

To support this functionality, we modify the definition of a state to include a pair of scoping param-
eters, defining the beginning and the end of the relevant scope respectively. Scope for the purpose of
this discussion is defined as a time interval (possibly open and including future time) in which the event
expected at a given state is required to arrive. The scoping parameters specify whether the source of
events considered by fake edges associated with this state should be the input buffer or the input stream.
In case the state should receive data from the input buffer, the scoping parameters also indicate what part
of the input buffer is applicable to this state.

We will demonstrate the concept of scoping parameters using the following example. Let the de-
tection pattern be SEQ (A, B,C). We will show the necessity of defining a scope on two different
selectivity orders: A, B,C and C, A, B.

1. Examine the evaluation of the sequence A, B, C' using selectivity order A, B, C. For the first state
detecting A, no constraints can be defined and the event can be taken either from the input buffer
or the input stream. Note, however, that, since in this stage the input buffer will contain no A
instances, in fact only the input stream should be considered. At the next state detecting B, we are
only interested in events following A (which was detected by previous state and is now located in
the match buffer). By definition of the input buffer however, it can only contain at this stage B

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 13 of 38

events which have arrived before A. Hence, there is no need to scan the input buffer, but only to
wait for the arrival of B from the input stream. Consequently, the scope for this state should begin
with the latest event in the match (A for our case), making all (earlier) events in the input buffer
irrelevant. Exactly the same holds for C, which is detected at the third state.

2. Examine the evaluation of the sequence A, B, C using selectivity order C, A, B. For the first
state detecting C, no limitations can be formulated, following the observations from previous
example. For the second state detecting A, we are limited to events preceding the already accepted
C. Consequently, any A event arriving on the input stream will be irrelevant due to sequence
order constraints. As for the input buffer, only the events which have arrived before C' are to
be considered. Therefore, the scope for this state should be open from the left (no constraint
on starting point, search is to be conducted from the beginning of the buffer) and limited from
the right by the timestamp of already matched C (search is to be conducted till the timestamp
of C arrival). Finally, for the third state detecting B, we have bounds both from the left and
from the right, as the event B is required to arrive after already accepted A and before C. Thus,
timestamps of A and C' will define the scope of this state and the relevant portion of the input
buffer. Obviously, B cannot be accepted from the input stream, since its scope is bounded by C
from the right.

More formally, the scoping parameters of a state g are denoted by ¢(s, f), where s is the start of the
scope and f is the finish of the scope. Both parameters values can be either events names or special
keywords (see below). When the value of some scoping parameter is an event name, an event with an
appropriate name is examined in the match buffer, and its timestamp is used for deriving the actual scope
as described below.

The starting scoping parameter s can accept one of the following values:

o The reserved keyword start - in this case, events are taken from the beginning of the input buffer.
This scoping parameter is applicable if no event preceding the event handled in this state according
to sequence order has already been handled by the NFA.

e A name of an event - in this case, only events with names succeeding the corresponding event
from the match buffer in the sequence order are read from the input buffer, The scoping event to
be used in this case is the latest event preceding the current event according to sequence order that
has already been handled by the NFA.

The finishing scoping parameter f can accept one of the following values:

e A name of an event - in this case, only events with names preceding the corresponding event from
the match buffer in the sequence order are read from the input buffer,

e The reserved keyword finish - in this case, events are also received from the input stream.

To summarize, a combination of both s and f unambiguously defines the time interval for events valid
for take edge at the given state, based on timestamps of events in the sequence order. This interval
can also be unlimited from each of its sides. If unlimited from the left, all events in the input buffer
are considered until the right delimiter. If unlimited from the right, all events in the input buffer are
considered starting from the left delimiter, and events from input stream (i.e. arriving as take operation
takes place) are considered as well.

Note that, apart from the first state, no state can possess a scope allowing for the event to be accepted
both from the input buffer and the input stream. This follows from the observation that, if an event is

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 14 of 38

allowed to be taken from the input stream, it must succeed in the sequence order all of the events already
located in the match buffer. It can be easily shown that the latest event in the match buffer will always
be the most recent event accepted, and hence the starting scoping parameter will prevent the state from
searching in the input buffer.

Before we can formalize the notion of scoping parameters, some preliminary definitions are needed.

Given an order ord and a particular event e included in this order, let Prec,,q (¢) denote all events
preceding e in ord. Similarly, let Succ,4 (¢) denote all events succeeding e in ord. Additionally, given
a set F of events and an order ord, let Latest,.q (E) be the latest event in E according to ord, and,
correspondingly, let Earliest,.q (E)be the earliest event in E according to ord. Finally, let seq and sel
denote the sequence order and the selectivity order, respectively.

Now we are ready to define the rules for setting scoping parameters. Let e; be the i*" event in the
selectivity order and let ¢ denote the corresponding state in the chain. Then, the scoping parameters for
q are defined as follows:

s(q) = Latestse; (Precse (e;) N Precseq (€4)) if Precse (€;) N Precseq (ei) # {}
start otherwise

Earliestse (Precse (€;) N Succseq (€7)) if Precse (€;) N Succseq (€;) # {}
f(a) = - .
finish otherwise

We’ll demonstrate the definitions above on examples from the beginning of the section.

1. Evaluation of the sequence A, B, C' using selectivity order A, B, C. For the first state detecting
A, the scoping parameters will be ¢ (start, end). For the next state detecting B, the scoping
parameters will be g3 (A, end). Finally for the following state detecting C, the scoping parameters
will be g3 (B, end).

2. Evaluation of the sequence A, B, C' using selectivity order C, A, B. For the first state detecting
C, the scoping parameters will be ¢; (start, end). For the next state detecting A, the scoping pa-
rameters will be g2 (start, C). Finally for the following state detecting B, the scoping parameters
will be g3 (A, C).

2.4.2 Chain Based NFA

In this section we will formally define the first of two new NFA types, which is the chain based NFA.

The chain based NFA utilizes the constructs for the lazy evaluation model so that events are evaluated
according to a given selectivity order (rather than according to the sequence order). It consists of n + 1
states, where each of the first n states is responsible for detecting one primitive event in the pattern,
and the last is the accepting state. The states are arranged according to the given selectivity order. We
assume this order for now to be given in advance.

We’ll denote by e; the i event in the selectivity order and by ¢; the corresponding state in the chain.
The scoping parameters for g; will be defined as specified above. Upon an arrival of an event a state is
responsible for, it will apply the scoping parameters to find an instance of e; which matches the events
already located in the match buffer.

Let E; denote the set of outgoing edges of ¢;. Then, E; will contain the following edges:

o /""" = (q;,q;,ignore, Precs. (€;) , true) - any event whose name corresponds to one of the

already taken events is ignored.

L= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 15 of 38

o €519 = (q;, q;, store, Succse (€;) , true)- any event which may be potentially taken in one of
the following states is stored into the input buffer.

° eft"’"e = (¢i, gi+1, take, e;, cond; N\ InScope;) - an event with a name e; is taken only if it satisfies
the conditions required by the initial pattern (denoted by cond;) and is located inside the scope

defined for this state (denoted by a predicate In.Scope;).

The chain based NFA will thus be defined as follows:

A:(Q7E7q17F7>

where:
Q={all <i<n}U{F}

n
E=|JE
=1

The following figure demonstrates the chain NFA for the pattern in Example 1. For simplicity, ignore
edges are omitted.

store E x, x.ticker = MSFT

OR x.ticker = GOOG store E x, x.ticker = MSFT
a; take a, take s take E
E c, c.ticker = AAPL E b, b.ticker = GOOG E a, a.ticker = MSFT
AND b.price < c.price AND a.price < b.price

Figure 2.2: Chain based NFA for Example 1

The following theorem formally claims the equivalence of the eager NFA and the chain based NFA
defined above.

Theorem 1: Given an order seq over a set of events names e1, - - - , e,, a chain based NFA for any
selectivity order sel over the same set of events names is equivalent to an eager NFA detecting a sequence
in respect to seq.

Proof: the proof is by induction on all selectivity orders.

For the case seq = sel (the sequence and the selectivity orders are identical) the scoping parameters
of any state will point to the end of the input buffer, and all events will be taken from input stream, hence
the conditions on edges will become the same as in the eager NFA. In addition, the order of states will be
the same as in the eager NFA. Consequently, the transition function between states is the same, making
the two automata identical.

For the induction step, assume that the claim holds for any selectivity order which can be obtained
from seq by performing k swap operations. W.l.o.g. let A; be some chain based NFA accepting the
sequence seq in some selectivity order selj, satisfying the condition above. We’ll prove that performing
an additional swap operation doesn’t change the language accepted by the NFA, i.e. that any new chain
based NFA Ay, obtained from A, by performing a swap between two event names is equivalent to Ay.
Then, by induction hypothesis Ay, is also equivalent to the original eager NFA.

L= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 16 of 38

Let Ay be identical to Aj with the events names F; and E; swapped. Assume w.l.o.g. that F;
precedes E; both in sel;, (the opposite case can be proven symmetrically).

Letey,---,e;,---€j,--- e, be asequence accepted by Aj. Examine the state of Aj, accepting e;.
There are two possibilities:

1. The event e; was accepted from the input buffer by a corresponding take edge and matched to the
events located in the match buffer at this point - then in Ay 1, when the state responsible for e;
is reached (we’re guaranteed it will eventually be reached since this match is accepted by Ay and
other than the swap between ¢; and e; no modifications were made), the event e; will necessarily
still be located in the input buffer - otherwise, events comprising a match are not located within the
predefined time window, which is a contradiction. In addition, Precs, (e;) € Precse, ., (i),
hence e; will be valid in respect to the scoping parameters of the state accepting it and will be thus
added to the match buffer.

2. The event e; was accepted from the input stream by a corresponding take edge and matched to
the events located in the match buffer at this point - then in Ay, 1, the event e; will either be
located in the input buffer and become part of the match (by same observations used in (1)) or
will eventually be accepted from the input stream. The latter is correct because: 1)all events
comprising a match are located within the time window (hence e; will arrive before the timeout);
2)the scoping parameters will necessarily allow to accept e; from input stream in A, q. This
follows from the observation that Precsey, ., (€;) N Succseq (€;)must be empty in order to allow
e; and all subsequent events till e; to be accepted in Ay,.

To summarize the above, in any case e; will be accepted to the match buffer during the evaluation in

Agt1
Now, we’ll examine the state of A}, accepting e;. Again, there are two possibilities:

1. The event e; was accepted from the input buffer by a corresponding fake edge and matched to the
events located in the match buffer at this point - then in Ay 1, the event e; will either be located
in the input buffer (arrived before the event preceding e; in sel, and thus also preceding e; in
both selectivity orders) or will eventually be accepted from the input stream - since all events
comprising a match are located within the time window, hence e; will necessarily arrive before
the timeout, and the scoping parameters of e; in Ay will necessarily allow to accept the event
from input stream (otherwise, it means that an event from Succseq (€;) is already located in the
input buffer and hence the evaluation would not reach e; in Ay, which is a contradiction).

2. The event e; was accepted from the input stream by a corresponding take edge and matched to
the events located in the match buffer at this point - then in Ay,1, when the state responsible
for e; is reached, the event e; will never be located in the input buffer, and the evaluation will
be stuck there until e; arrives. As mentioned above, we’re guaranteed that it will arrive before
the timeout. In addition, Precs, ., (ej) € Precs, (€;), hence the ending scoping parameter
of the corresponding state in A4 will necessarily allow to accept e; from the input stream.
Consequently, e;will be added to the match buffer upon its arrival.

Since no other modifications were made except for swapping between e; and e;, in can be concluded
that Ay, will accept the match.

The proof for the opposite direction (any match accepted by Ay, 1 is accepted by Ay) is symmetrical
and will be omitted.

In conclusion, we have proven the equivalence between A and Ag 1, and by induction hypothesis
Ap.y1 is also equivalent to the eager NFA A, which completes the proof. l

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 17 of 38

2.4.3 Tree Based NFA

Chain based NFA described in the previous section may significantly improve evaluation performance,
provided the correct order of selectivity. As could be seen from the examples above, the more drastic is
the difference between arrival rates of different events, the greater the potential improvement is.

There are, however, several drawbacks which severely limit the applicability of chain based NFA
in real-life scenarios. First, the assumption of specifying the selectivity order in advance is not always
realistic. In many cases, it is hard or even impossible to predict the actual selectivity of primitive events.
Note that the described model is very sensitive to wrong guesses, as specifying a low-selectivity event
before a high-selectivity event will yield large number of redundant evaluations and overall poor per-
formance. Second, even if it is possible to set up the system with a correct selectivity order, we can
rarely guarantee it to remain the same during the run. In many real-life applications the data is highly
dynamic, and arrival rates of different events are subject to change on-the-fly, causing an initially effi-
cient chain based automaton to start performing poorly from some point. Continual changes may come,
for example, in the form of bursts of usually rare events.

In order to overcome the problems described above, we introduce a notion of ad-hoc selectivity.
Instead of relying on a single selectivity order specified at the beginning of the run, the idea is to de-
termine the current selectivity on-the-fly and modify the actual evaluation chain of a match according
to the currently correct order. By checking and verifying the perfect selectivity order at each evaluation
step (at each state on a path towards the accepting state) we guarantee that, for any partial match, its
evaluation was executed in the best order possible at the moment.

To implement the desired functionality, we will make use of the input buffer introduced above.
According to its definition, the input buffer of a particular NFA instance contains all events that arrived
from the input stream within the specified time window. Hence, by maintaining counters on each event
name, incrementing a corresponding counter on each insertion of a new event and decrementing it on
event removal, we can derive the exact selectivity order on currently available data. These counters will
be examined by each state on each matching attempt, and the resulting value will be used for making a
decision regarding the next step in the evaluation order. In terms of NFA, this means that a state needs to
select the next state for a partial match based on the current contents of the input buffer. To achieve this,
a state needs to possess several outgoing fake edges (as opposed to a single one in chain based NFA),
which operate in the exact same way but point at different states. In other words, an automaton has to
possess the structure of a tree, whose branching factor and depth are equal to the number of event names
in the pattern. We will call NFA employing this structure tree based NFA and will formally define this
model below.

One important observation to be made regarding the aforementioned operation of inspecting the
contents of the input buffer is the following one: there is no need to start the evaluation process unless
there is at least one event corresponding to each event name in the pattern. Only when all of the events
counters are greater than zero, it does make sense to decide regarding the evaluation order, since other-
wise the missing event(s) may not arrive at all and partial matching process will be redundant. Thus, our
model has to make sure no operations are performed while the input buffer does not contain at least a
single event for each event name.

Figure 2.3 demonstrates the tree NFA for the pattern in Example 1. For simplicity, ignore edges are
omitted.

We will now present the formal definition of tree based NFA.

The NFA is structured as a tree of depth n — 1, the root of this tree being the initial state and the
leaves connected to the accepting state. Nodes located at each layer k; 0 < k < n — 1 (i.e. all nodes in
depth k) are all states responsible for all orderings of n events of length k. Each such node, possesses

= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 18 of 38

store E x, x.ticker = MSFT

OR x.ticker= AAPL
Q12
take
, C.ticker = AAPL
AND b.price < c.price
Qs take

E a, a.ticker = M di3
AND a.price < b.price

store E x, x.ticker = MSFT

take
E a, a.ticker = MSFT
AND a.price < b.price

store E ¥,

x.ticker = MSFT OR
x.ticker = GOOG OR
x.ticker = AAPL tak

£ b, bfcker = G%%é‘@” = GO0G AND b.price.< cgrice
take G \H(e\“
tak —F/ : -
Qo aKke > O . b.ticker = GOOG E a, a.ticker = MSFT F

E ¢, c.ticker = AAPL ND b.price < c.price AND a.price < b.pri

take
E a, a.ticker = MS

Q23

] _ / c.ticker = AAPL

E a, a.ticker =M D b.price < c.price
O) 031
take | -
_fidker = GOOG E b, b.ticker = GOOG

AND b.price < c.price

Qs AND a.price < b.price AND a.price < b.price

M

E ¢, cticker = AAPL. (3

Figure 2.3: Tree based NFA for Example 1

n—k outgoing edges, one for each event name which does not yet appear in the partial ordering this node
is responsible for. Those edges are connected to states at the next layer, responsible for all extensions
of the ordering of this particular node to length of k£ 4 1. The only exception to this rule are the leaves,
which has a single outgoing edge, connected directly to the final state.

More formally, the states for tree based NFA are defined as follows. Let Oy denote the set of all
sequences of events ey, - - - , e, in the pattern with no repetitions. Let

Qr = {qoralord € Oy}

denote the set of states at the layer & (note that Q9 = {qo}). Then the set of all states of the tree
based NFA is

n—1
Q=|]JQu{F}

k=0

90 = 40

To describe the edges and their respective conditions, some preliminary definitions are needed.

First, we’ll define scoping parameters for states of tree based NFA. Since, as mentioned earlier, each
state g,-q has an outgoing edge for each event e ¢ ord, the scoping parameters will be defined separately
for each such event. The definition is similar to the one used for chain based NFA, with the selectivity

L= D6.2: Computation and Communication Scalable Algorithms I

2.4. Lazy Evaluation page 19 of 38

order sel being removed and the partial order ord associated with a state used instead:

Latestorq (ord N Precseg (€)) if ord N Precgeq (€) # {}

start otherwise

S (QOrd7 6) = {

Earliestyrq (ord N Succgeq (€)) if ordN Succseq (€) # {}

end otherwise

f (QOrcbe) = {

Similarly to the chain based NFA, the predicate In.Scope,,q (€) will denote that an event e is located
inside the scope (s (gord, €) , f (dords €))-

Let c. denote the value of the counter of events associated with the name e in the input buffer. Let
se (qora) = min ({ce|e ¢ ord}) denote the most selective event according to the contents of the input
buffer during the evaluation step in which g, is the current state (i.e. the event with the smaller amount
of occurrences inside the input buffer). Finally, we’ll define the predicate ppe (gorq) (non-empty) as the
condition on the input buffer of state g4 to contain at least a single instance of each primitive event not
appearing in ord and another predicate pse (¢orq, €) to be true if and only if an evente corresponds to

event type se (Gord)-
Let E,,.q4 denote the set of outgoing edges of g,.4. Then, E,,.; will contain the following edges:
ignore

o e " = (qords Qora; ignore,ord,true) - any event whose name corresponds to one of the al-
ready taken events (appearing in the ordering this state corresponds to) is ignored.

e For each primitive event e ¢ ord:

— €3¢ = (Qords Gord, 5t0T€, €, Pne (dord) V ~Pse (dord, €))- while either py, or pse condition

is not satisfied, the incoming event is stored into the input buffer.

- 62?]2766 = (q0’l‘d7 dord,e> take» €, Pne (qud) A Pse (qO’!’d7 6) A CO’I’Lde A InSCOpeord (6)) - if the
contents of the input buffer satisfy p,. and ps. predicates and an incoming event with a
name e: a)satisfies the conditions required by the initial pattern (denoted by cond.); b)is
located inside the scope defined for this state, it is taken into the match buffer and the NFA
instance advances to the next layer of the tree.

e For states in the last layer (where |ord| = n), the take edges are of the form

store
ord,e

e = (qora, F, take, e, ppe (qord) N conde N InScopey.q (€))

The set of all edges for tree based NFA is defined as follows:

E= |J BE

{Ord|QDT'd€Q}

And the NFA itself is defined as follows:
A - (Q7E7q17F7)

where () and F are as defined above.

L= D6.2: Computation and Communication Scalable Algorithms I

2.5. Optimality of the Tree Based NFA page 20 of 38

2.4.4 Implementation Issues

The tree based NFA described in the previous section possesses an important drawback, which is the
total number of states exponential in n. To overcome this limitation, we propose to implement lazy
instantiation of NFA states - only those states reached by at least a single active instance will be in-
stantiated and will actually occupy memory space. After all NFA instances reaching a particular state
will be terminated, the state will be removed from the NFA as well. Even though the worst case com-
plexity remains exponential in this case, in practice, the relative event rates will change significantly
less frequently than the rate of NFA instance creation (in other words, a change in relative frequencies
of primitive events - which will lead to modification of our detection order and creation of new nodes
- is very rare when compared to a creation of an NFA instance which occurs on any event arrival).
This conclusion is supported by the experiments conducted by us, which are explained in the respectful
section.

2.4.5 Evaluation Metrics

As a measure of runtime complexity, we count the number of times a condition on a connecting edge
is evaluated. For instance, consider the pattern from Example 1 and two following streams of events:
Al_3.B)_7.Cp_gand A,_3,B2_13,C}_g. The evaluation of the first stream will cost us exactly three
operations (validation of conditions on edges q¢; — g2, g2 — ¢3 and g3 — F’), while the second stream
will cost only two (g1 — ¢o and g2 — gq3), since the condition on g2 — g3is not satisfied and the
evaluation stops at that point.

Memory consumption consists of the weighted sum of two basic metrics - peak number of simul-
taneously active NFA instances and, for the case of N F'A;,., model, peak number of buffered events

awaiting to be processed.

2.5 Optimality of the Tree Based NFA

In this chapter we will provide the formal proof of the following theorem.

Theorem 2: Let P be some sequence pattern, requesting sequence order seq. Let sel be a selection
order under which the chain based NFA as defined above provides the best performance in terms of
number of edge evaluations, and let A" be that chain NFA. Let A?;Ze be the tree based NFA for seq
as defined above. Then, the performance of Aggge is at least as good as that of Agzl‘”"

First, we’ll make an important observation. It states that, no matter which NFA is in use, the amount
of condition evaluations required for a successful match is always the same.

Lemma 1: given a subset of events from the input stream constituting a valid match for the pattern,
the amount of condition evaluations performed during the detection of this match is identical for any
chain based NFA and the tree based NFA, and equals length (seq).

Proof: since the match is a successful one, its respectful NFA instance will reach the final state F'.
For a chain based NFA, by its definition there will be a single edge transition executed for each primitive
event in the sequence, regardless of the selectivity order, since there is only a single valid path from the
initial to the final state. For a tree based NFA, the length of any path from the initial to the final state
equals the length of the sequence (as follows from its layers definition) and contains each primitive event
exactly once (as follows from the condition e ¢ ord for any outgoing fake edge of q,-q). Consequently,
the statement above is true for any chain based NFA and for a tree based NFA.

Corollary: while comparing between two chain based NFA, or between a chain based NFA and a
tree based NFA, in terms of edge conditions evaluated on a given input, only those combinations of

= D6.2: Computation and Communication Scalable Algorithms I

2.5. Optimality of the Tree Based NFA page 21 of 38

primitive events comprising unsuccessful matches are to be considered.

Before we proceed, we will formally define the framework for comparing a pair of NFA by number
of edge evaluations on unsuccessful matches from the given stream of events. We’ll assume all inter-
event conditions to only be defined between a pair of primitive events. The definitions below and the
proof can be easily extended to handle cases of conditions between multiple events.

Let .S be some ordered input stream of primitive events e, ea, - - - , €,. We’ll assume all events in .S
to fall within the time window defined by the pattern (the proof for the case in which this assumption is
dropped is very similar to the one shown below). We’ll denote the number of primitive events of type ey,
in S by ck.

Let m = (e, ea, -+ ,ey) denote some set of primitive events from S comprising an unsuccessful
match, where e, es,--- , e, are event names corresponding to the primitive events in the sequence
requested by the pattern. Then, by definition of m, there exists at least a single pair of primitive events
e;, ej such that the mutual condition between e; and e; as defined at the WHERE part of the pattern is
not satisfied. For the sake of simplicity and without loss of generality we’ll assume there is exactly one
such pair. We’ll call it a violating event pair of m and denote by e; (m) , e; (m).

Assume m was received as an input for some particular instance of either chain based or tree based
NFA. Let ord be the actual evaluation order in which primitive events are processed. Note that, for chain
based NFA, this order will always be the predefined selectivity order sel, and for tree based NFA it will
be inferred from the input during the run. Then, the automaton will recognize the match as failed when
the latter of the two events in the violating pair will be evaluated. Formally, we can define the number
of edge evaluations executed while processing m by order ord as follows:

coStord (m) = max (indexord (61' (m)) s INA€eT or (ej (m)))

Now we make our next important observation. Note that, for any pair e;, e; of events violating
their mutual condition, any match located in the input stream S' is unsuccessful. In other words, any
combination of this pair with other events from the stream containing exactly one instance of each event
type yields an unsuccessful match. Our next lemma will give an expression for the total number of edge
evaluations performed as a result of having a violating pair e;, e; in the input stream. W.L.o.g. we assume
that e; precedes e; in ord.

Lemma 2: For a violating pair e;, e;, denote by Uyq (e;,e;) the total amount of unsuccessful
matches evaluated by a chain based NFA or tree based NFA under order ord. Let E,.q (e;,e;) de-
note the set of all primitive events preceding the latter of e; and e; (i.e. e;) in ord. More formally,
let

Eora (6% ej) = {6k|k’ 7£ iNk 7é JN (indeword (ek) < indexord (ej))}

Then, the amount of unsuccessful matches is:

Uord (61', ej) = H Ck

€L EEord(ei 76]')

Proof: assuming evaluation order ord, all NFA instances constructed to process partial matches
containing e;, e; will be discarded once the latest of the violating pair is processed, since at that point
the violation will be discovered. Until that point, any combination of preceding primitive events with
the earlier of e;, e; will be treated as a unique partial match.

Corollary: The total amount of edge evaluations resulting from processing unsuccessful matches
containing a violating pair e;, e; is:

costord (€i,€5) = Upra (€4, €;5) - costorg (m) = H ci | - indexorq (€5)
ekeEo'rd(eivej)

= D6.2: Computation and Communication Scalable Algorithms I

2.5. Optimality of the Tree Based NFA page 22 of 38

To simplify the above definition and the continuation of the proof, we’ll define:
1= H ci
i
J

Lj

Now, the definition of cost,q (e;, €j) becomes:

Il

Ci

costorq (€4, €5) = -indexorq (€5)

Now, we will show that the order minimizing the average cost,,q (e;, e;) over all possible selections
of e;, e; is the one pushing more frequent events as far as possible.

Lemma 3: Given a sequence pattern and an input stream S with events e, eo, - - - , €, appearing
c1, ¢, - ,c3 times respectively, the evaluation order minimizing the average cost,,q (€;, €;) for any se-
lection of a violating event pair e;, e; is the one in which events appear in descending order of selectivity,
ie.:

Minord (AVGe, e; (costorg (€i,€5))) = (€kys €hyy -+ €k)5 Chy < Chy < v+ <

Proof: since the number of different choices of e; and e; is independent of the chosen order, we’ll
show the order maximizing the sum of all costs, and the same order will maximize the average as well.

Let ord = eq, e, -+ , e, be some order on the primitive events. Let SUM (ord) denote the sum of
all cost,yq for this order, and let SUM; (ord) denote the sum of cost,,q (€;, €;) for a given j and any
selection of ¢. In other words,

SUM; (ord) Zcostord (€i,€5)

SUM (ord) ZSUM (ord)
7j=2

We’ll explicitly calculate the expressions above:

) | i1
= (Z) 11
- C =1 C j—1

. Now we get:

T
—

SUM; (ord) =

J

For simplicity, we’ll denote o =) ;_; &

SUM (ord) ZSUM (ord) Zaj 1° H]-Za] H (j+1)=
J

j=2

—c1- (201 +co- (Bag+ (- (cp1 -1 anot) -+)))

Examining the expression above, it can be observed that the most dominant term is c;, and hence
assigning the minimal possible value to it will minimize the whole expression; the second most dominant
term is co and therefore it should accept the minimal value among the rest (i.e. the second minimal

L= D6.2: Computation and Communication Scalable Algorithms I

2.6. Experimental Evaluation page 23 of 38

value) etc. In other words, the order minimizing the expression above is the one in which events appear
in descending order of selectivity.

Corollary 1: Assume that conditions selectivity is uniform over the primitive event types, i.e. there
exists some 0 < a < 1 such that, for any ej, the amount of events of this type participating in violating
pairs is « - ¢x. Then, the order minimizing the overall cost for unsuccessful matches is one in which
events appear in descending order of selectivity.

Corollary 2: Given a sequence pattern and an input stream .S, the most efficient chain based NFA
(in terms of executed edge conditions evaluations) is the one one in which events appear in descending
order of selectivity.

The only statement left to prove is that, under the above assumptions, the evaluation order chosen
by a tree based NFA for input stream S is identical to the order shown to be the most effective, i.e. the
descending order of events selectivity. This will prove that the tree based NFA performs (at least) as
efficiently on any given input as does the best chain based NFA.

Lemma 4: Given a sequence pattern and an input stream S, the evaluation order in which primitive
events from the stream will be processed is according to their descending order of selectivity.

Proof: By construction of tree based NFA, at each state q,,.q the next transition is taken only if
the respective event is the most selective among those left for evaluation (i.e. pse (¢ord, €) predicate is
satisfied). Assuming identical rates between events at each evaluation stage, the decision made at each
tree layer will reflect the actual rates between events in S, and hence the resulting evaluation order will
be the descending order of selectivity.

The correctness of Theorem 2 immediately follows from Corollary 2 and Lemma 4, l.

2.6 Experimental Evaluation

In this section, we present the results of experiments executed in order to evaluate the performance of
chain-based and tree-based NFA in comparison to the eager model. Our metrics for this comparison
and analysis of both evaluation mechanisms are the runtime complexity and the memory consumption,
measured in a ways defined above.

Both models under examination were implemented in Java and integrated into the FINCoS frame-
work Mendes et al. . FINCoS is a set of benchmarking tools for evaluating performance of CEP systems,
developed at the University of Coimbra.

All experiments were run on a HP 2.53 Ghz CPU and 8.0 GB RAM. The data set we used is the
real-world historical data of stock prices data at the NASDAQ stock market, taken from EOD. This data
spans a 5-year period, covering over 2100 stock identifiers with prices updated on a per minute basis.
Each primitive event is of type ’Stock’ and possesses the following attributes: stock identifier (ticker),
timestamp and the current price of the stock.

In order to support efficient detection of the pattern described below, pre-processing was applied
to this preliminary data. For each event, a chronologically ordered list of -1 previous prices of the
respectful stock were added as new attributes, constructing a history of & successive stock prices.

During all measurements, the detection pattern for the system was specified as follows: a sequence
of three stock identifiers was requested, with each stock belonging to some predefined category. In addi-
tion, we require consecutive stocks in the sequence to be highly correlated (i.e. the Pearson correlation
coefficient between histories of stocks prices is above some predefined threshold). The correlation was
calculated for each pair of events based on a history list each event carries, built as described above.
The final stock in a sequence was required to be is a Google stock, while the first stock belongs to some
hi-tech company and, finally, the second stock belongs to some finance company. The time window for
event detection was set to the length of prices history.

= D6.2: Computation and Communication Scalable Algorithms I

2.6. Experimental Evaluation page 24 of 38

Using the previously described SASE language, the aforementioned pattern can be declared in the
following way:

PATTERN SEQ(Stock a, Stock b, Stock ¢)

WHERE (atickercFinance) AND (b.tickercHi-Tech) AND (cticker = GOOG) AND
(Corr (a.history, b.history) > T) AND (Corr (b.history, c.history) > T

WITHIN A

It can be observed that in the described pattern the final event, denoted as c, has a drastically smaller
frequency than its predecessors do (¢ and b are assumed to have the same frequency give or take, when
compared to that of ¢). One parameter of interest which affect the overall efficiency of the presented
evaluation models is its relative frequency in respect to a and b, which we will denote as f.. Intuitively,
the lower is the value of f., the more we would expect the performance gain of our proposed lazy
evaluation mechanisms to be.

In our experiment, we compare the runtime complexity and memory consumption of the eager se-
quence NFA, all the possible chain NFA and the lazy tree NFA.

Figure 2.4: Comparison of NFA by number of operations

Computation Resources

100000000 -ms— = = = = = = L L —

10000000

= Eaper
== ABC
=ie=BAC

1000000
i ACB

i BCA

Numberof Computations

o
Zab 100000 -

= CBA

= Tree

10000

05 1 15 2 25 3
Ratio of C events

=]

Figure 2.5: Comparison of NFA by memory consumption

Memory Consumption

20000

18000

== Eager 16000

== ABC

14000 (EER—te—

=ir=BAC
i A CE

12000 (GBbE=—¢ W > W g ¥ W ¥ W +

Memory Units

i BCA

=i CAB 10000

—t—CBA

8000
w—TrEE

6000

Q 0.5 1 f 2 25 3
Ratio of C events

= D6.2: Computation and Communication Scalable Algorithms I

2.7. Future Work page 25 of 38

Figure 4 describes the amount of computations performed by each of the NFA as a function of f_{c}
, while figure 5 presents the same comparison for memory consumption. It can be seen that both the tree
based NFA and the best fitting chain based NFA for the given input (either C-B-A or C-A-B since C is
a rare event while A and B share the same selectivity) achieve an improvement of one to three orders of
magnitude relatively to the regular, eager NFA. In terms of memory the above NFA are more efficient
by a constant factor of 3. On the other side, the chain NFA implementing selectivity orders which are
suboptimal relatively to the given input never achieve worse performance than that of the eager NFA.
The tree based NFA is always superior to all the other, by all metrics.

2.7 Future Work

The framework proposed is under initial implementation steps as part of SPEEDD/WP6 architecture
work. Once implemented, data from SPEEDD usecases will be used as input for further evaluating
the efficiency of the proposed solution. We strongly believe that in both traffic monitoring and fraud
detection there is a lot of space for enhancing the framework in such a way to allow for online processing
of very rapid streams. This will become especially important when traffic streams will be monitored
using gps data streams (as planned for the simulator work) collected from millions of cellular phones.
For fraud detection usecase scenarios, consider a future world with cardless shopping using cell phones,
making the required processing infrastructure extremely ambitious.

Further improvements can be made to the solution proposed in this document. First, as of now, the
only operator addressed is the sequence. Additional research is to be performed to apply the concepts
of lazy evaluation and reordering by selectivity on other operators, including conjunction, disjunction,
negation and more. Another enhancement to the described mechanism is taking into account the selec-
tivity of filtering conditions. As of now, selectivity order is computed based solely on frequencies of
arrival of primitive events. However, a very strict filtering condition can turn a frequent event into a rare
one, and this is to be considered. Finally, extension of the presented system to distributed environment
(horizontal scalability) is to be further researched.

= D6.2: Computation and Communication Scalable Algorithms I

page 26 of 38

Monitoring Distributed Models

3.1 Introduction

Statistical models are commonly used for prediction, interpretation, anomaly detection and more. For
example, machine learning is used to produce models for the SPEEDD fraud use case. Similarly, regres-
sion models can be used to predict traffic in the traffic use case. Learning the models once is not enough,
though; concept drifts can mean that the current model is no longer valid. Thus, in many real world
applications it is necessary to periodically re-learn the model. This approach can be very wasteful, since
learning algorithms are often orders of magnitude more demanding than applying an existing model.
In this chapter we consider the following approach: monitor the quality of the current model, and only
re-learn the model as needed.

The monitoring approach looks at incoming data and triggers an alert if the previously-learned model
is too different from the model that would have been built given the current data, without actually paying
the price of building the current model. This problem is made more difficult when data is distributed
across several nodes, since both the existing model and the (hypothetical) current model are both global
models — composed from the union of data at all nodes. Hence a distributed monitoring approach must
deal with communication efficiency, in addition to the problem of how to effectively monitor the quality
of a model without actually re-learning it.

We start with linear regression. Ordinary Least Squares regression is a well-known and very common
regression model, and is useful both for predicting new values given old ones, but also for understand-
ing behavior through discovered coefficients. Current work on distributed linear regression deals with
making model learning more efficient by parallelizing model construction, i.e. the first approach. Given
such a model 3, we describe a method to efficiently monitor its on-going deviation from a hypothetical
true global model — the second approach. Our monitoring approach is efficient both in terms of com-
munication between nodes, and in terms of local computation at each node. Preliminary experiments on
synthetic data show an order-of-magnitude reduction in communication.

3.2 Distributed Monitoring of Least Squares

L= D6.2: Computation and Communication Scalable Algorithms I

3.2. Distributed Monitoring of Least Squares page 27 of 38

3.2.1 Basics and Notations

Given n column vectors { X1, ..., X, } in R™ where n > m, and response scalars {y1, ..., yn }, we seek
the linear functional R™ — R given by an inner product with 3 = (81,. .., 3,)T, which minimizes the
square error between y; to the mapping of X;. In other words, we seek 3 which minimizes || X 3 — y||?,
where X is the n X m matrix of row vectors X = (X1,..., Xn)T, and y is the column vector composed
of response scalars y = (y1,...,yn)%.

The solution is known to be given by

B=Ale, ALY XTX;, c2 Xy (3.1)

Assume now that the data {(X;,y;)} are dynamic and distributed between nodes Nj...Ny. It is trivial
to see that the “global” A resp. c can be written as Zf Ajresp. >, c;?, where A;, c; are constructed at
Nj;. Therefore, we can write the global vector 3 as a function of the averages of A;, ¢;:

-1
45— (ZJkAJ> (%ﬁ) (4] (Y| =ate (3.2)
J J

We shall denote initial values at the nodes (i.e. at time 0, when the monitored model was computed)
by the superscript 0, but to avoid equation clutter, the global initial values will be denoted with a sub-
script. Values averaged over nodes (rather than summed) shall be denoted with °. Hence initial values

k 0 k 0
A — Zj:lAj o — Zj:lcj

0 k ,O—T,BO:AaléOZAalcOZ,BO ,

and current values

k
A
214 é = B=Ale=A"1c=p5

A=
k ’ ko7

3.2.2 Monitoring DLSQ with Convex Subsets

We want to impose node-independent condition on the data so that:

e Aslong as they hold, the global solution does not change by more than an allowed margin, e.g. it
holds that ||5y — B|| < e.

o The conditions are “as lenient as possible”, i.e. we wish to minimize the number of violations.

e The conditions allow quick “violation recovery” (i.e. when the conditions are violated at a subset
of the nodes, they can often be resolved with a low communication overhead, and not by collecting
the data at all nodes).

Convex Subsets

We propose to solve the monitoring problem by means of “good” convex subsets of the dataspace: that
is, to find a convex subset C in the space of matrices and vectors, such that (04,0.) € C, where 0 4 resp.
0. are the zero matrix resp. vector. We also want the time for a random walk starting at (04, 0.) to exit

L= D6.2: Computation and Communication Scalable Algorithms I

3.2. Distributed Monitoring of Least Squares page 28 of 38

C to be large: ass data slowly drifts over time, we want the total drift to remain in C. It must also hold
that

(04,0c) €C = ||(Ao +0a) " (eo + dc) — Ayteo|| < e 3.3)

Given such a subset C, the basic monitoring paradigm is simple. Given the initial values at node j

when the current model was computed, as long as (A4; — A?, cj — cg) € C, node j can remain silent. If

all nodes area silent, then || 3y — || = |80 — || < e. If a violation of the local condition does occur at
any node j, some form of violation recovery must take place, for example recomputing the global model
and restarting monitoring.

The correctness of this paradigm follows from the following observations. Write (/1, ¢) as the aver-
age of local deviations:

>(45,¢5)
k
525 (A%) + (4 = A0, — &)
k
>i(Aj =AY ¢ — o)
k

(Av é) =

= (A,) + G4

And from C’s convexity,

> (A4 — Af.cj — o))

Vj(Aj—Ag,Cj—C‘?)Gcz 2

eC (3.5)

3, (A= A%,¢;—c)
k

Denote (84, 0,) = 22 and combine Eq. (3.4) with Eq. (3.5):

vj (A] - Ag)a Cj — Cg)) €eC = (A’ é) = (AOa 60) + (514730) s (SA, Sc) eC
Substitute in Eq. (3.3) to finally obtain:
Vi(Aj— Al —d)eC = [[(Ag+da)" (@ +dc) — Ay =

160 — B =
B0 — Bl < € (3.6)

We next describe a method to find a convex subset C satisfying the condition of Eq. (3.3).

Some Mathematical Notions
‘We list some notions and well-known results on matrix norms.
Definition 1 Ler A be a matrix. Its operator norm (hereafter just norm) is defined as

|| Az]|
20 |||

(3.7)

We use the Lo norm throughout.

Lemma 1 for a matrix A and vector

Az|| < [|A]] {[]

Lemma 2 The norm of a symmetric matrix equals the maximal absolute value of its eigenvalues.

L= D6.2: Computation and Communication Scalable Algorithms I

3.2. Distributed Monitoring of Least Squares page 29 of 38

Lemma 3 For two matrices A, B, it holds that ||A + B|| < ||A|| + ||B||, ||AB|| < ||A]| || B]|-
Lemma 4 For two symmetric matrices A, B it holds that ||AB|| = || BA]|.

Lemma 5 If||A]| < 1, then li_)rn A" =0, and (I — A)~! can be expanded in a Taylor series, I + A +
n—oo
A? + A3 ... (the Neumann series of A).

Lemma 6 Let A be a square, positive definite matrix, and 6 a symmetric matrix of the same size as A

and such that ||A™Y|| < 1. Then A + § is invertible, and ||(A + 6)7!|| < #XJIH'

Obtaining a Convex Subset

We now return to the main problem: find a “large” convex subset C such that
(04,00) €C = ||(Ao+0a) "} (0 +8) — A téol| < e.

Applying Lemma 6, we will hereafter assume that |[54 A5 || < 1 (this assumption is not trivial, and we
are actively working to mitigate it).
We start by using the triangle inequality to obtain the bound

(Ao + 6.4) (G0 + 6c) — (Ao + 64) eol| + [|(Ao + 64) "e0 — Ag ' éo|
After some manipulations, and using Lemmas 1-6, this expression can be bounded by
[1AG " 0cl| + [|Ag "0 ol
1— || Ag aall

This bound allows a simple derivation of the sought convex subset C as follows. First, replace it with the
larger bound given in the left-hand side of

[1Ag 1 [18cll + [1Ag 1 118l 118all _

1—|IAg I [[8all B

[1AG 118l + 1A 111 Bol| + e)ll6al| < € 3.9)

and this constraint is convex. The main computational overhead at the nodes consists of computing
[|0.4]]; this can perhaps be alleviated by using some bounds.

Better results can be obtained by using the bound in Eq. (3.8). Note that threshold constraints (upper

bounds) on || Ay 16,|| and || A5 104 50|| are convex in 8., d4; also, the condition ||§4 A || < 1 is convex
in § 4. The constraint is then

|| Ag 8] | + || Ag 184 B0]| + €l Agtoal| < e (3.10)

3.8)

€ —

while this constraint is weaker (i.e. better) than the one in Eq. (3.9), it is computationally more demand-
ing, requiring more matrix operations at the nodes.

3.2.3 Infinite and Sliding Window

We differentiate between two different variations for computing the global model. In the infinite window
model the current hypothetical global model A is computed over all observations seen so far. In the
sliding window model with width W, the global model A is computed over the last ¥ observations
only. Our approach supports both models. For the infinite window model each node 7 uses the bound
with 04, = A; — Ag and 0., = ¢; — co where A; and ¢; are computed from all observations seen at the
node. For the sliding window model we simply subtract the observations that left the sliding window
from d 4, and ., (including observations used to compute flo and ¢y, if needed).

L= D6.2: Computation and Communication Scalable Algorithms I

3.3. Preliminary Evaluation page 30 of 38

3.3 Preliminary Evaluation

We evaluated communication performance of the monitoring algorithm using synthetic data. We used
the infinite window variant with the simplest violation resolution protocol: global syncrhonization. Each
node applies the local constraint from Eq. (3.9) to its own data. When a violation occurs at any node, it
is reported to a coordinator node. The coordinator polls all nodes for their local data, computes a new
global model by, and distributes it (with other associated initial values). Monitoring then resumes as
normal. The main loop of each node is summarized in Alg. 1.

Algorithm 1 Node N; main update loop with new vector z, scalar y.

A; 2Tz
¢ —xly
0
04, < A;j — A;
0
O¢; < Ci — ¢

if | Ag ™ [[10c: | + [1AG Il (180]l + €) |9l > € then
Report violation to coordinator.
Receive new [, fla ! from coordinator.
C? — ¢

end if

We first simulated 1000 rounds with k£ = 10 nodes, each receiving a new vector z of size m = 20 and
scalar y at each round. x is drawn i.i.d from N (0, 0?), and y = 372 +n where n ~ N (0, 1) is gaussian
white noise, o = 10 is the strength of the signal, and is the true model, drawn i.i.d 5 ~ N[0, 1]
(therefore ||5]|% ~ x30)

We are interested in two metrics. The most important metric is communication fraction: the number
of messages sent by the distributed algorithm divided by number of messages sent by a centralized
algorithm (always total rounds X k). The second metric is the model error metric |3y — f|; a correctly
functioning monitoring algorithm ensures |5y — 5|| < e. Ideally, both communication fraction and
model errors are low.

Figure 3.1 plots model error (blue) and rounds with violations (green vertical lines) for e = 3 (this
is a fairly restrictive bound: Pr[||5]| < 3] & 0.017). We disregard the first 100 “warm-up” rounds,
as we are interested in steady-state performance. Communication fraction is 0.112, and model error
lBo — B|| is very low (below 0.005, far below €), meaning that the algorithm maintains a very accurate
approximation with only 11% of communication. We observe that as time passes violations become
less and less frequent, as 5y becomes a better estimate for the data. Conversely, algorithms that rely on
centralization or periodic recomputation will still require fixed communication per round, regardless of
the behavior of the data.

To explore how ¢ affects communication, we repeated the simulation with e varying over a range.
The results are shown in Figure 3.2. Again we disregard the first 100 rounds. Observe that for all e > 0.5
communication fraction is below 1. This e is very restrictive, as Pr [||3]] < 0.5] < 2.2 x 10716, Thus for
almost any fixed true model 5 we can expect to get both communication saving and low error relative to
181l

Finally, Figure 3.3 shows how monitoring behaves in the face of abrupt changes. We repeated the
simulation, this time divided into 5 epochs, were 3 is randomized at the beginning of each epoch. As
before, we disregard the first 100 rounds (half of the first epoch). We see now that error is much larger,
expected the model abruptly changes every 200 rounds. Similarly, communication fraction is also larger,

= D6.2: Computation and Communication Scalable Algorithms I

3.3. Preliminary Evaluation page 31 of 38

0.0035 T T T T T T T 1

0.0030 T E.rror' g
— Violation

0.0025 —

0.0020 —

0.0015 &

Error |65 |

0.0010 —

0.0005 —

0.0000 I I I I I I I
100 200 300 400 500 600 700 800 900 1000

Round

Figure 3.1: Error and violations for the infinite window case with £ = 10 nodes, m = 20, ¢ = 3 and
o = 10; communication fraction is 0.112.

[y
o
-

=
o
=)

10

Communication fraction [log]

-
e
8

10° 10* 102
e [log]

_
e
3

Figure 3.2: Error and violations for the infinite window case with £ = 10 nodes, m = 20, ¢ = 3 and
o = 10; communication fraction is 0.112.

= D6.2: Computation and Communication Scalable Algorithms I

3.4. Conclusions and Future Directions page 32 of 38

0.6

T T I I I
— Error

— Epoch change []
— Violation

0.5

0.4

0.3

Error |65 |

0.2

0.1

|
|
|
|
|
0.0 | | | | |
100 200 300 400 500 600 700 800 900 1000
Round

Figure 3.3: Error and violations for the infinite window case with 5 epochs. Communication fraction is
0.199.

at 0.199, since the algorithm now has to adapt more often. Despite the frequent changes, model error is
still quite low, below 0.6, and communication is still one-fifth of centralized communication.

3.4 Conclusions and Future Directions

Consider the SPEEDD use case of fraud detection. Once a new fraud method appears, the previous mod-
els quickly become obsolete. We believe that the method proposed here aims at solving this problem,
by monitoring model relevancy and by pointing at the need to compile a new model. In fact, this may
also become relevant for traffic forecasting models, as well as for many other domains of application, as
data sources become geo-distributed and ever increasingly rapid. The data from the use cases will thus
be used to evaluate the proposed method.

We propose a communication-efficient monitoring algorithm for the least-squares regression models.
By monitoring the deviation of the existing model from the true model, our approach is able to avoid
costly communication and model computations. Each round, each node checks a simple local constraint
on its own local data, and if it is satisfied, communication is avoided. If not, violation is resolved by
collecting data from all nodes and computing a new global model. Note that our distributed monitoring
approach can easily be combined with an efficient distributed computation technique, enjoying the best
of both worlds.

There are several immediate and future steps. First, our bounds require ||§ A/la Yl < 1 which is
not trivial; our next step is to mitigate this issue. Second, we can allocate “slack” to each node to
avoid violations without the need for global syncrhonization. One possible scheme will have nodes with
“good” matrix A; (smallest eigenvalue is large) contributing more slack to nodes with more violations.
In general, more sophisticated violation recovery approaches could perform local rather than global
synchronization, for example by grouping nodes into a hierarchy. Finally, many more sophisticated
algorithms internally rely on linear regression or an (X7 X)~! step. The question is therefore how to
incorporate our approach.

L= D6.2: Computation and Communication Scalable Algorithms I

page 33 of 38

Conclusions

In this document we have described initial algorithmic breakthroughs towards horizontal and vertical
scalability. The first approach uses knowledge about the distribution of events which compose a target
CEP. The lazy approach would first search for those events composing the complex target which rarely
appear. It turned out such a lazy scheme may save lots of cycles and resources. The integration of these
ideas into the SPEEDD architecture is under way, and will take the rest of the project to implement
and experiment with. The data from the usecases will be used to evaluate the proposed technique, as
explained above.

The second approach focus on horizontal scalability in monitoring analytical models. The ideas
draw from previous and other EC projects (such as LIFT and Ferarri), but take them one step further
beyond monitonring global functions. Indeed, the monitoring of sophisticated models (such as SVM) is
both challenging and novel. This work will be pursued and refined in the rest of this project, as well as
evaluated experimentally using appropriate evaluation data and the SPEEDD usecases data.

L= D6.2: Computation and Communication Scalable Algorithms I

Bibliography page 34 of 38

Bibliography

http://www.eoddata.com.

D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang, W. Lindner, A. S. Maskey,
E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the borealis stream processing
engine. In In CIDR, pages 277-289, 2005.

A. Adi and O. Etzion. Amit - the situation manager. The VLDB Journal, 13(2):177-203, May 2004.
ISSN 1066-8888. doi: 10.1007/s00778-003-0108-y. URL http://dx.doi.org/10.1007/
s00778-003-0108~-vy.

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
"08, pages 147-160, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/
1376616.1376634. URL http://doi.acm.org/10.1145/1376616.1376634.

M. Akdere, U. Cetintemel, and N. Tatbul. Plan-based complex event detection across distributed sources.
Proc. VLDB Endow., 1(1):66-77, Aug. 2008. ISSN 2150-8097. URL http://dl.acm.org/
citation.cfm?id=1453856.14538609.

A. Arasu, S. Babu, and J. Widom. The cql continuous query language: Semantic foundations and
query execution. The VLDB Journal, 15(2):121-142, June 2006. ISSN 1066-8888. doi: 10.1007/
s00778-004-0147-z. URL http://dx.doi.org/10.1007/s00778-004-0147-z.

A. Artikis, C. Baber, P. Bizarro, C. Canudas de Wit, O. Etzion, F. Fournier, P. Goulart, A. Howes,
J. Lygeros, G. Paliouras, A. Schuster, and I. Sharfman. Scalable proactive event-driven decision
making. [EEE Technol. Soc. Mag., 33(3):35-41, 2014. doi: 10.1109/MTS.2014.2345131. URL
http://dx.doi.org/10.1109/MTS.2014.2345131.

H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, E. Galvez,
J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and S. Zdonik. Retrospective on aurora. The VLDB
Journal, 13(4):370-383, Dec. 2004. ISSN 1066-8888. doi: 10.1007/s00778-004-0133-5. URL
http://dx.doi.org/10.1007/s00778-004-0133-5.

M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-tolerance in the borealis
distributed stream processing system. ACM Trans. Database Syst., 33(1), 2008. URL http:
//dblp.uni-trier.de/db/journals/tods/tods33.html#BalazinskaBMS08.

L= D6.2: Computation and Communication Scalable Algorithms I

http://dx.doi.org/10.1007/s00778-003-0108-y
http://dx.doi.org/10.1007/s00778-003-0108-y
http://doi.acm.org/10.1145/1376616.1376634
http://dl.acm.org/citation.cfm?id=1453856.1453869
http://dl.acm.org/citation.cfm?id=1453856.1453869
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1109/MTS.2014.2345131
http://dx.doi.org/10.1007/s00778-004-0133-5
http://dblp.uni-trier.de/db/journals/tods/tods33.html#BalazinskaBMS08
http://dblp.uni-trier.de/db/journals/tods/tods33.html#BalazinskaBMS08

Bibliography page 35 of 38

R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming through time: A vision for
event stream processing. In CIDR, pages 363-374. www.cidrdb.org, 2007. URL http://dblp.
uni-trier.de/db/conf/cidr/cidr2007.html#BargaGAHO7.

M. Boley, M. Kamp, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient distributed
online prediction using dynamic model synchronizations. In Proceedings of the First International
Workshop on Big Dynamic Distributed Data, Riva del Garda, Italy, August 30, 2013, pages 13—18,
2013. URL http://ceur-ws.org/Vol-1018/paper6.pdf.

L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald, M. Thatte, and W. White.
Cayuga: A high-performance event processing engine. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD 07, pages 1100-1102, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-686-8. doi: 10.1145/1247480.1247620. URL http://
doi.acm.orqg/10.1145/1247480.1247620.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krish-
namurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. Telegraphcq: Continuous dataflow
processing for an uncertain world. In CIDR, 2003. URL http://dblp.uni-trier.de/db/
conf/cidr/cidr2003.html#ChandrasekaranDFHHKMRRSO3.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable continuous query system for internet
databases. SIGMOD Rec., 29(2):379-390, May 2000. ISSN 0163-5808. doi: 10.1145/335191.
335432. URL http://doi.acm.org/10.1145/335191.335432.

G. Cugola and A. Margara. Tesla: a formally defined event specification language. In J. Bacon, P. R.
Pietzuch, J. Sventek, and U. Cetintemel, editors, DEBS, pages 50-61. ACM, 2010. ISBN 978-1-
60558-927-5.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex event pro-
cessing. ACM Comput. Surv., 44(3):15:1-15:62, June 2012. ISSN 0360-0300. doi: 10.1145/2187671.
2187677. URL http://doi.acm.org/10.1145/2187671.2187677.

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive publish/subscribe
systems. In Proceedings of the 10th International Conference on Advances in Database Technology,
EDBT’06, pages 627—644, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-32960-9, 978-3-
540-32960-2. doi: 10.1007/11687238_38. URL http://dx.doi.org/10.1007/11687238_
38.

A. Demers, J. Gehrke, and B. P. Cayuga: A general purpose event monitoring system. In In CIDR,
pages 412422, 2007.

L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P. Hsiung, and K. S. Candan. Runtime semantic
query optimization for event stream processing. 2013 IEEE 29th International Conference on Data
Engineering (ICDE), 0:676—685, 2008. doi: http://doi.ieeecomputersociety.org/10.1109/ICDE.2008.
4497476.

O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co., Greenwich, CT, USA,
Ist edition, 2010. ISBN 1935182218, 9781935182214.

L= D6.2: Computation and Communication Scalable Algorithms I

http://dblp.uni-trier.de/db/conf/cidr/cidr2007.html#BargaGAH07
http://dblp.uni-trier.de/db/conf/cidr/cidr2007.html#BargaGAH07
http://ceur-ws.org/Vol-1018/paper6.pdf
http://doi.acm.org/10.1145/1247480.1247620
http://doi.acm.org/10.1145/1247480.1247620
http://dblp.uni-trier.de/db/conf/cidr/cidr2003.html#ChandrasekaranDFHHKMRRS03
http://dblp.uni-trier.de/db/conf/cidr/cidr2003.html#ChandrasekaranDFHHKMRRS03
http://doi.acm.org/10.1145/335191.335432
http://doi.acm.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/11687238_38
http://dx.doi.org/10.1007/11687238_38

Bibliography page 36 of 38

A. Friedman, I. Sharfman, D. Keren, and A. Schuster. Privacy-preserving distributed stream monitoring.
In 21st Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2013,2014. URL http://www.internetsociety.org/doc/
privacy-preserving-distributed-stream-monitoring.

M. Gabel, A. Schuster, and D. Keren. Communication-efficient distributed variance monitoring and
outlier detection for multivariate time series. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 37-47, 2014. doi: 10.1109/
IPDPS.2014.16. URL http://dx.doi.org/10.1109/IPDPS.2014.16.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the system s declarative stream pro-
cessing engine. In J. T.-L. Wang, editor, SIGMOD Conference, pages 1123-1134. ACM, 2008. ISBN
978-1-60558-102-6.

N. Giatrakos, A. Deligiannakis, M. N. Garofalakis, I. Sharfman, and A. Schuster. Distributed geometric
query monitoring using prediction models. ACM Trans. Database Syst., 39(2):16, 2014. doi: 10.
1145/2602137. URL http://doi.acm.org/10.1145/2602137.

T. S. Group. Stream: The stanford stream data manager. Technical Report 2003-21, Stanford InfoLab,
2003. URL http://ilpubs.stanford.edu:8090/583/.

X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion for multiway windowed stream joins. In
R. Chirkova, A. Dogac, M. T. ?zsu, and T. K. Sellis, editors, ICDE, pages 146-155. IEEE, 2007.
URL http://dblp.uni-trier.de/db/conf/icde/i1cde2007.html#GuYWO7.

D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On supporting kleene closure over event streams.
In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, ICDE, pages 1391-1393. IEEE, 2008. URL
http://dblp.uni-trier.de/db/conf/icde/icde2008.html#GyllstromADIOS.

L. Harada and Y. Hotta. Order checking in a cpoe using event analyzer. In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, CIKM ’05, pages 549-555,
New York, NY, USA, 2005. ACM. ISBN 1-59593-140-6. doi: 10.1145/1099554.1099700. URL
http://doi.acm.org/10.1145/1099554.1099700.

M. Hirzel. Partition and compose: Parallel complex event processing. In Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems, DEBS *12, pages 191-200, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1315-5. doi: 10.1145/2335484.2335506. URL http:
//doi.acm.org/10.1145/2335484.2335506.

M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient distributed
online prediction by dynamic model synchronization. In Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014.
Proceedings, Part I, pages 623-639, 2014. doi: 10.1007/978-3-662-44848-9_40. URL http://
dx.doi.org/10.1007/978-3-662-44848-9_40.

D. Keren, I. Sharfman, A. Schuster, and A. Livne. Shape sensitive geometric monitoring. /EEE Trans.
Knowl. Data Eng., 24(8):1520-1535, 2012. doi: 10.1109/TKDE.2011.102. URL http://doi.
ieeecomputersociety.org/10.1109/TKDE.2011.102.

D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and A. Deligiannakis. Ge-
ometric monitoring of heterogeneous streams. [EEE Trans. Knowl. Data Eng., 26(8):1890-1903,

L= D6.2: Computation and Communication Scalable Algorithms I

http://www.internetsociety.org/doc/privacy-preserving-distributed-stream-monitoring
http://www.internetsociety.org/doc/privacy-preserving-distributed-stream-monitoring
http://dx.doi.org/10.1109/IPDPS.2014.16
http://doi.acm.org/10.1145/2602137
http://ilpubs.stanford.edu:8090/583/
http://dblp.uni-trier.de/db/conf/icde/icde2007.html#GuYW07
http://dblp.uni-trier.de/db/conf/icde/icde2008.html#GyllstromADI08
http://doi.acm.org/10.1145/1099554.1099700
http://doi.acm.org/10.1145/2335484.2335506
http://doi.acm.org/10.1145/2335484.2335506
http://dx.doi.org/10.1007/978-3-662-44848-9_40
http://dx.doi.org/10.1007/978-3-662-44848-9_40
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.102
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.102

Bibliography page 37 of 38

2014. doi: 10.1109/TKDE.2013.180. URL http://doi.ieeecomputersociety.org/10.
1109/TKDE.2013.180.

G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion. A stratified approach for supporting high through-
put event processing applications. In DEBS, 2009.

M. Liu, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang, 1. Ari, and A. Mehta. Neel: The nested
complex event language for real-time event analytics. In M. Castellanos, U. Dayal, and V. Markl,
editors, BIRTE, volume 84 of Lecture Notes in Business Information Processing, pages 116-132.
Springer, 2010. ISBN 978-3-642-22969-5. URL http://dblp.uni-trier.de/db/conf/
birte/birte2010.html#LiuRDGWAMIO.

A. S. M. L. M Silberstein, D Geiger. Scheduling mixed workloads in multi-grids: the grid execution
hierarchy. In High Performance Distributed Computing, pages 291-302, 2006.

Y. Mei and S. Madden. Zstream: a cost-based query processor for adaptively detecting composite events.
In Proceedings of the 29th ACM SIGMOD Conference, pages 193-206. ACM, 2009.

M. R. Mendes, P. Bizarro, and P. Marques. Fincos: Benchmark tools for event processing systems.

M. G. L. S. A. S. N Giatrakos, A Deligiannakis. Distributed geometric query monitoring using prediction
models. In ACM Transactions on Database Systems (TODS), volume 39 (2), 16, 2014.

R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi. Expressing and optimizing sequence queries in database
systems. ACM Trans. Database Syst., 29(2):282-318, June 2004. ISSN 0362-5915. doi: 10.1145/
1005566.1005568. URL http://doi.acm.org/10.1145/1005566.1005568.

G. Sagy, D. Keren, I. Sharfman, and A. Schuster. Distributed threshold querying of general functions by
a difference of monotonic representation. PVLDB, 4(2):46-57, 2010. URL http://www.v1db.
org/pvldb/vold/pd6-sagy.pdf.

N. P. Schultz-Mgller, M. Migliavacca, and P. R. Pietzuch. Distributed complex event processing with
query rewriting. In DEBS, 2009.

I. Sharfman, A. Schuster, and D. Keren. Aggregate threshold queries in sensor networks. In 21th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2007), Proceedings, 26-30 March
2007, Long Beach, California, USA, pages 1-10, 2007a. doi: 10.1109/IPDPS.2007.370297. URL
http://dx.doi.org/10.1109/IPDPS.2007.370297.

I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions over
distributed data streams. ACM Trans. Database Syst., 32(4), 2007b. doi: 10.1145/1292609.1292613.
URL http://doi.acm.org/10.1145/1292609.1292613.

U. Verner, A. Mendelson, and A. Schuster. Scheduling periodic real-time communication in multi-gpu
systems. In 23rd International Conference on Computer Communication and Networks, ICCCN 2014,
Shanghai, China, August 4-7, 2014, pages 1-8, 2014a. doi: 10.1109/ICCCN.2014.6911778. URL
http://dx.doi.org/10.1109/ICCCN.2014.6911778.

U. Verner, A. Mendelson, and A. Schuster. Batch method for efficient resource sharing in
real-time multi-gpu systems. In Distributed Computing and Networking - I15th International
Conference, ICDCN 2014, Coimbatore, India, January 4-7, 2014. Proceedings, pages 347-
362, 2014b. doi: 10.1007/978-3-642-45249-9_23. URL http://dx.doi.org/10.1007/
978-3-642-45249-9_23.

L= D6.2: Computation and Communication Scalable Algorithms I

http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.180
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.180
http://dblp.uni-trier.de/db/conf/birte/birte2010.html#LiuRDGWAM10
http://dblp.uni-trier.de/db/conf/birte/birte2010.html#LiuRDGWAM10
http://doi.acm.org/10.1145/1005566.1005568
http://www.vldb.org/pvldb/vol4/p46-sagy.pdf
http://www.vldb.org/pvldb/vol4/p46-sagy.pdf
http://dx.doi.org/10.1109/IPDPS.2007.370297
http://doi.acm.org/10.1145/1292609.1292613
http://dx.doi.org/10.1109/ICCCN.2014.6911778
http://dx.doi.org/10.1007/978-3-642-45249-9_23
http://dx.doi.org/10.1007/978-3-642-45249-9_23

Bibliography page 38 of 38

F. Wang and P. Liu. Temporal management of rfid data. In Proceedings of the 31st International Con-
ference on Very Large Data Bases, VLDB ’05, pages 1128—-1139. VLDB Endowment, 2005. ISBN
1-59593-154-6. URL http://dl.acm.org/citation.cfm?1d=1083592.1083723.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In S. Chaud-
huri, V. Hristidis, and N. Polyzotis, editors, SIGMOD Conference, pages 407-418. ACM, 2006. ISBN
1-59593-256-9.

L= D6.2: Computation and Communication Scalable Algorithms I

http://dl.acm.org/citation.cfm?id=1083592.1083723

	Introduction
	History of the Document
	Purpose and Scope of the Document
	Relationship with Other Documents

	Lazy Evaluation Methods for Detecting Complex Events
	Introduction
	Related Work
	Notations and Terminology
	Specification language
	The Eager Evaluation Mechanism
	Implementation Issues

	Lazy Evaluation
	Formal Definition of the Lazy NFA Model
	Chain Based NFA
	Tree Based NFA
	Implementation Issues
	Evaluation Metrics

	Optimality of the Tree Based NFA
	Experimental Evaluation
	Future Work

	Monitoring Distributed Models
	Introduction
	Distributed Monitoring of Least Squares
	Basics and Notations
	Monitoring DLSQ with Convex Subsets
	Infinite and Sliding Window

	Preliminary Evaluation
	Conclusions and Future Directions

	Conclusions

