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Executive Summary

The deliverable presents algorithmic contributions by means of scalable algorithms for complex event
processing and for model tracking. This is the 2nd year version which includes the final versions as
accepted for publication at highly prestigeous conferences.

As part of the project goals for processing and manipulating rapid event streams, workpackage 6
deals with the development of novel scalable algorithmic approaches. The target is to present new
ideas which will be able to process complex events with less overhead (by means of cpu time, memory
requirements, I/O, etc.), and with less communication. Less overhead will provide vertical scalability,
whereas reduced communication between distributed nodes will enable horizontal scalability.

We present in this deliverable two new algorithmic paradigms. The first of these paradigms may be
able to reduce the amount of computation and the amount of local resources required for complex event
processing. The second will enable distributed monitoring of sophisticated analytical and machine-
learning models while using very low communication between participating nodes.

The proposed approaches will enable scalable computation and scalable implementation of the
project’s eventual integrated platform. The platform will then be able to handle many more events
and using much less resources.

Findings show very high potential for the proposed approaches. Overheads in experiments are re-
duced dramatically, sometimes by orders of magnitude.

The work will proceed in focussing on implementation and integration of the proposed algorithmic
breakthroughs, with SPEEDD data sources and use cases.
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1

Introduction

1.1 History of the Document

Version Date Author Change Description

0.1 1/11/2015 Assaf Schuster (TI) Set up of the document
0.3 2/11/2015 Ilya Kolchinsky (TI) preliminary version of CEP paradigm
0.6 23/11/2015 Mickey Gabel (TI) preliminary version of distributed model monitoring
0.9 24/11/2015 Assaf Schuster (TI) Content integration
1.0 7/12/2015 Assaf Schuster (TI) Fixing remarks by internal reviewer

1.2 Purpose and Scope of the Document

The purpose of this document is to outline algorithmic scalability contributions. Scalability, as the goal
of SPEEDD/WP6, is a goal which immerge out of the need to handle big datasets using less resources,
for instance when fraud detection models or traffic monitoring operate on millions of daily transactions
or measurements.

Horizontal scalability would mean that the size of the data mandates processing by a distributed
system. Vertical scalability is required when the data, or the stream of arriving events, is processed
on a single machine, hence better algorithms are necessary to meet the processing requirements. The
approaches we present are both in the vertical scalability scope, where minimizing the use of local re-
sources is the focus of the optimization, as well as in the horizontal scalability scope, which attempts to
reduce the required communication to a minimum. During the last stage of the project these contribu-
tions will be implemented and integrated into actual working solutions.

Two new approaches will be described. The first deals with the identification of complex events
while spending less local resources, mainly cpu time and memory space. The basic idea is to look for
the least probable event before scanning for the other events which compose the complex event. This
reduces the number of scans and the amount of intermediate states which need be stored. This new
approach was presented at DEBS 2015 and received the Best Research Paper Award.
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The second novel algorithmic approach allows to check the validity of known models in a distributed
manner using uptodate data. Local constraints are developed to be checked at each participating node.
As long as the constraints hold at all nodes no communication is needed. When the new data requires
training of new models, the local constraints are guaranteed to be violated and the nodes synchronize
by communicating indicative states. Once a decision is made that the old model is no longer relevant, a
new model may be trained, a model which is tailored to the newer data.

The application of this generic method will begin by applying it to linear regression. Linear re-
gression may be used for prediction purposes, in order to distributively identify some global conditions
which evolve and which require intervention. The method was presented at KDD 2015.

1.3 Relationship with Other Documents

This report is a continuation of Deliverable 6.2 in which preliminary version of the algorithmic break-
throughs were reported. Thus, this report contains more accurate, more formal, and more detailed
version of the algorithms whose preliminary description was given in 6.2. Furthermore, the evaluation
and experimentation of the algorithms, as well as their publication, was finalized during the 2nd year of
the project and are reported in this document.

We are already working on the integration of the CEP detection technique into the SPEEDD archi-
tecture. This implementation work will appear in later stages and later deliverables.

We are also working on the implementation of the horizontal scalability and its integration with
SPEEDD traffic data. Again, this implementation work will be reported in later deliverables.

D6.4: Computation and Communication Scalable Algorithms II
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2

Lazy Evaluation Methods for Detecting Complex Events

Abstract

The goal of Complex Event Processing (CEP) systems is to efficiently detect complex patterns over a
stream of primitive events. A pattern of particular significance is a sequence, where we are interested
in identifying that a number of primitive events have arrived on the stream in a predefined order. Many
popular CEP systems employ Non-deterministic Finite Automata (NFA) arranged in a chain topology
to detect such sequences. Existing NFA-based mechanisms incrementally extend previously observed
prefixes of a sequence until a match is found. Consequently, each newly arriving event needs to be
processed to determine whether a new prefix is to be initiated or an existing one extended. This approach
may be very inefficient when events at the beginning of the sequence are very frequent.

We address the problem by introducing a lazy evaluation mechanism that is able to process events
in descending order of selectivity. We employ this mechanism in a chain topology NFA, which waits
until the most selective event in the sequence arrives and then adds events to partial matches according
to a predetermined order of selectivity. In addition, we propose a tree topology NFA that does not
require the selectivity order to be defined in advance. Finally, we experimentally evaluate our mechanism
on real-world stock trading data, demonstrating a performance gain of two orders of magnitude, with
significantly reduced memory resource requirements.

2.1 Introduction

Complex Event Processing (CEP) is an emerging field with important applications for real-time systems.
The goal of CEP systems is to detect predefined patterns over a stream of primitive events. Examples
of applications of CEP systems include financial services [Demers et al. (2006)], RFID-based inventory
management [Wang and Liu (2005)] and click stream analysis [Sadri et al. (2004)]. A pattern of partic-
ular interest is a sequence, where we are interested in detecting that a number of primitive events have
arrived on the stream in a given order.

As an example of a sequence pattern, consider the following:

Example 1. A securities trading firm would like to analyze a real-time stream of stock price data in
order to identify trading opportunities. The primitive events arriving on the stream are price quotes for
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the various stocks. An event of the form xnp=y denotes that the price of stock x has changed to y, where
n is a running counter of the events for stock x (an event also includes a timestamp, omitted from the
notation for brevity’s sake). The trading firm would like to detect a sequence consisting of the events
ap=p1, bp=p2, and cp=p3 occurring within an hour, where p1 < p2 < p3.

Modern CEP systems are required to process growing rates of incoming events. In addition, as this
technology becomes more prevalent, languages for defining complex event patterns are becoming more
expressive. A popular approach is to compile patterns expressed in a declarative language into Non-
deterministic Finite state Automata (NFAs), which are in turn used by the event processing engine. Wu
et al. [Wu et al. (2006)] proposed the SASE system, which is based on a language that supports logic
operators, sequences and time windows. The authors describe how a complex pattern formulated using
this language is translated into an NFA consisting of a finite set of states and conditional transitions be-
tween them. Transitions between states are triggered by the arrival of an appropriate event on the stream.
At each point in time, an instance of the state machine is maintained for every prefix of the pattern de-
tected in the stream up to that point. In addition, a data structure referred to as the match buffer holds
the primitive events constituting the match prefix. Gyllstrom et al. [Gyllstrom et al. (2008)] propose
additional operators for SASE, such as iterations and aggregates. Demers et al. [Demers et al. (2006,
2007)] describe Cayuga, a general purpose event monitoring system, based on a CEL language. It em-
ploys non-deterministic automata for event evaluation, supporting typical SQL operators and constructs.
Tesla [Cugola and Margara (2010)] extends previous works by offering fully customizable policies for
event detection and consumption. NextCEP [Schultz-Møller et al. (2009)] enables distributed evaluation
using NFAs in clustered environments.

An NFA detects sequences by maintaining at every point in time all the observed prefixes of the
sequence until a match is detected. As an example, consider the following stream of events:

a1p=3, a
2
p=5, a

3
p=8, b

1
p=7, b

2
p=13, c

1
p=9.

In this case, after the first three events have arrived, {a1}, {a2} and {a3} are match prefixes for the
pattern described in Example 1. All these prefixes must be maintained by the NFA at this point in time,
since all of them may eventually result in a match. After the first five events have arrived, the NFA must
maintain five match prefixes (all combinations of a events and b events except for {a3b1}). Finally, after
the last event is received, the NFA detects two sequences matching the pattern, {a1b1c1} and {a2b1c1}.1

NFA based matching mechanisms are most commonly implemented by constructing partial matches
according to the order of events in the sequence (i.e., every partial match is a prefix of a match). We
refer to this prefix detection strategy as an “eager” strategy, since every incoming event is processed
upon arrival in order to determine whether it starts a new prefix or extends an existing one. When the
first events in a sequence pattern are very frequent, the NFA must maintain a large number of match
prefixes that may not lead to any matches. Since the number of match prefixes to be kept can grow
exponentially with the length of the sequence, such an approach may be very inefficient in terms of
memory and computational resources.

In this document we propose a new NFA based matching mechanism that overcomes this drawback.
The proposed mechanism constructs partial matches starting from the most selective (i.e., least frequent)
event, rather than from the first event in the sequence. In addition, partial matches are extended by adding
events in descending order of selectivity (rather than according to their order in the sequence). This not

1The consumption policy is important for the semantics of an event definition language. It specifies how to handle a
particular event once it is included in a match, i.e., whether it can be reused for other matches, or should be discarded. For
the purpose of our discussion in this work, we assume a reuse consumption policy, which means that an event instance can be
included in an unlimited number of matches [Etzion and Niblett (2010)].
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only minimizes the number of partial matches held in memory, but also reduces computation time, since
there are fewer partial matches to extend when processing a given event.

Our proposed solution relies on a lazy evaluation mechanism that can either process an event upon
arrival or store it in a buffer, referred to as the input buffer, to be processed at a later time if necessary. To
enable efficient search and retrieval of events from the input buffer, a new edge property called scoping
parameters is introduced. In addition, we present two new types of NFA that make use of the input
buffer and scoping parameters to detect sequence patterns; we call these types a chain NFA and a tree
NFA.

A chain NFA requires specifying the selectivity order of the events in the sequence. For example, to
construct an automaton for detecting the sequence a, b, c, it is necessary to specify that b is expected to
be the most frequent event, followed by a, which is expected to be less frequent, followed by c, which is
expected to be the least frequent.

A tree NFA also employs lazy evaluation, but it does not require specifying the selectivity order of
the events in the sequence. Instead, it computes the selectivity order at each step in an ad hoc manner.

We experimentally evaluate our mechanism on real-world stock trading data. The results demon-
strate that the tree NFA matching mechanism improves run-time performance by two orders of magni-
tude in comparison to existing solutions, while significantly reducing memory requirements. It is also
shown that for every stream of events, a tree NFA is at least as efficient as the best performing chain
NFA.

The remainder of this part of the document is organized as follows. Section 2.2 describes related
work. Section 2.3 briefly describes the eager NFA evaluation framework. It also provides the termi-
nology and notations used throughout the work. In Section 2.4 we introduce the concepts and ideas
of lazy evaluation, accompanied by intuitive explanations and examples. Formal definitions presented
there prepare the ground for the rest of the document. In Section 2.5 we proceed to describe how a lazy
chain NFA can be constructed using given frequencies of the participating events. We present a lazy tree
NFA in Section 2.6. Section 2.7 contains the experimental evaluation.

2.2 Related Work

The detection of complex events over streams has become a very active research field in recent years
[Cugola and Margara (2012)]. The earliest systems designed for solving this problem fall under the
category of Data Stream Management Systems. Those systems are based on SQL-like specification
languages and focus on processing data coming from continuous, usually multiple input streams. Exam-
ples include NiagaraCQ [Chen et al. (2000)], TelegraphCQ [Chandrasekaran et al. (2003)] and STREAM
[Group (2003)]. Later, the need to analyze event notifications of interesting situations – as opposed to
generic data – was identified. Then, complex event processing systems were introduced. One example of
an advanced CEP system is Amit [Adi and Etzion (2004)], based on a strongly expressive detection lan-
guage and capable of processing notifications received from different sources in order to detect patterns
of interest. SPADE [Gedik et al. (2008)] is a declarative stream processing engine of System S. System
S is a large-scale, distributed data stream processing middleware developed by IBM. It provides a com-
puting infrastructure for applications that need to handle large scale data streams. Cayuga [Brenna et al.
(2007); Demers et al. (2006, 2007)] is a general purpose, high performance, single server CEP system
developed at Cornell University. Its implementation focuses on multi-query optimization methods.

Apart from the SASE language, on which our mechanism is based, many other event specification
languages were proposed. SASE+ [Gyllstrom et al. (2008)] is an expressive event processing language
from the authors of SASE. This language extends the expressiveness of SASE by including iterations
and aggregates. CQL [Arasu et al. (2006)] is an expressive SQL-based declarative language for reg-
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istering continuous queries against streams and updatable relations. It allows creating transformation
rules with a unified syntax for processing both information flows and stored relations. CEL (Cayuga
Event Language) [Brenna et al. (2007); Demers et al. (2006, 2007)] is a declarative language used by the
Cauyga system, supporting patterns with Kleene closure and event selection strategies, including par-
tition contiguity and skip till next match. TESLA [Cugola and Margara (2010)] is a newer declarative
language, attempting to combine high expressiveness with a relatively small set of operators, achieving
compactness and simplicity. Even though our work focuses exclusively on sequence patterns, extensions
to other operators are possible, including those added by the aforementioned languages.

Unlike most recently proposed CEP systems, which use non-deterministic finite automata (NFAs) to
detect patterns, ZStream [Mei and Madden (2009)] uses tree-based query plans for the representation of
query patterns. The careful design of the underlying infrastructure and algorithms makes it possible for
ZStream to unify the representation of sequence, conjunction, disjunction, negation, and Kleene closure
as variants of the join operator. While some of the ideas discussed in this work are close to ours, it is not
based on state automata and employs matching trees instead.

Several works mention the concept of lazy evaluation in the context of event processing. In [Akdere
et al. (2008)], the authors describe “plan-based evaluation,” where, similarly to our work, temporal prop-
erties of primitive events can be exploited to reduce network communication costs. The focus of their
paper is on communication efficiency, whereas our goal is to reduce computational and memory require-
ments. [Dousson and Maigat (2007)] discusses a mechanism similar to ours, including the concept of
buffering incoming events into an intermediate storage. However, the authors only consider a setting
in which the frequencies of primitive events are known in advance and do not change. An optimiza-
tion method based on postponing redundant operations was proposed by [Zhang et al. (2014a)]. This
work focuses on optimizing Reuse Consumption Policy queries by dividing evaluation into a shared part
(pattern construction) and a per-instance part (result construction). The main goal of the authors is to
improve the performance of Kleene closure patterns and solve the problem of imprecise timestamps. In
comparison, our work focuses solely on sequence pattern matching.

The concept of lazy evaluation has also been proposed in the related research field of online pro-
cessing of XML streams. [Chan et al. (2002)] describes an XPath-based mechanism for filtering XML
documents in stream environments. This mechanism postpones costly operations as long as possible.
However, the goal in this setting is only to detect the presence or absence of a match, whereas our focus
is on finding all possible matches between primitive events. In [Green et al. (2004)], a technique for lazy
construction of a DFA (Deterministic Finite Automaton) on-the-fly is discussed. This work is motivated
by the problem of exponential growth of automata for XPath pattern matching. Our work solves a dif-
ferent problem of minimizing the number of runtime NFA instances rather that the size of the automaton
itself. In addition, while there is some overlap in the semantics of CEP and XPath queries, they were
designed for different purposes and allow different types of patterns to be defined.

2.3 Eager Evaluation

In this section we present a subset of the SASE language for defining sequence patterns. SASE itself
is thoroughly discussed in [Agrawal et al. (2008)]. We formally describe the eager NFA matching
mechanism, how a given sequence is compiled into an NFA, and how this NFA is used at runtime to
detect the pattern. Here we also introduce the notations and terminology to be used in later sections.

D6.4: Computation and Communication Scalable Algorithms II
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2.3.1 Specification Language
Most CEP systems enable users to define patterns using a declarative language. Common patterns
supported by such languages include sequences, conjunctions, disjunctions, and negation of events. As
described in Section 2.3.2, patterns expressed in these languages will be compiled into a state machine
for use by the detection mechanism.

The SASE language combines a simple, SQL-like syntax with a high degree of expressiveness,
making it possible to define a wide variety of patterns. The semantics and expressive power of the
language are precisely described in a formal model. In its most basic form, SASE event definition is
composed of three building blocks: PATTERN, WHERE and WITHIN.

Each primitive event in SASE has an arrival timestamp, a type, and a set of attributes associated with
the type. An attribute is a data item related to a given event type, represented by a name and a value.
Attributes can be of various data types, including, but not limited to, numeric and categorical.

The PATTERN clause defines the pattern of simple events we would like to detect. Each event in
this pattern is represented by a unique name and a type. The only information it provides is with regard
to the types of participating events and the relations between them. In this work we limit the discussion
to sequence patterns. A sequence is defined using the operator SEQ(A a, B b,...), which provides an
ordered list of event types and gives a name to each event in the sequence.

The WHERE clause specifies constraints on the values of data attributes of the primitive events
participating in the pattern. These constraints may be combined using Boolean expressions. We assume,
without loss of generality, that this clause is in the form of a CNF formula.

Finally, the WITHIN clause defines a time window over the entire pattern, specifying the maximal
allowed time interval (in some predefined time units) between the arrival timestamps of the first primitive
event and the last one. This time interval is denoted by W .

As an example, consider the pattern presented in Example 1. There is a single event type, which we
will denote by E. This event type has two data attributes: a categorical attribute called “ticker,” which
represents the stock for which the event has occurred, and a numerical attribute called “price,” which is
the price of the stock. Assuming the stocks a, b, and c are MSFT, GOOG and AAPL respectively, this
pattern can be declared in SASE, as depicted in Figure 2.1.

PATTERN SEQ(E a, E b, E c)
WHERE (a.ticker = MSFT) AND (b.ticker=GOOG) AND (c.ticker = AAPL) AND (a.price <b.price)
AND (b.price <c.price)
WITHIN 4 hours

Figure 2.1: SASE specification of a pattern from Example 1

2.3.2 The Eager Evaluation Mechanism
In this subsection we formally describe the structure of the eager NFA and how it is used to detect
patterns. Formally, an NFA is defined as follows:

A = (Q,E, q1, F ) ,

where:

• Q is a set of states;

• E is a set of directed edges, which can be of several types, as described below;
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Figure 2.2: NFA for Example 1

• q1 is an initial state;

• F is a final accepting state.

An edge is defined by the following tuple:

e = (qs, qd, action, name, condition) ,

where qs is the source state of an edge, qd is the destination state, action is always one of those described
below, name may be any of the event names specified in the PATTERN block, and condition is a Boolean
predicate that has to be satisfied by an incoming event in order for the transition to occur.

Evaluation starts at the initial state. Transitions between edges are triggered by event arrivals from
the input stream. The runtime engine runs multiple instances of an NFA in parallel, one for each partial
match detected up to that point. Each NFA instance is associated with a match buffer. As we proceed
through an automaton towards the final state, we use the match buffer to store the primitive events
constituting a partial match. It is always empty at q1, and events are gradually added to it during the
evaluation. This is done by executing an appropriate edge action.

The action associated with an edge is performed when the edge is traversed. It can be one of the
following (the actions listed below are simplified versions of the ones defined for SASE [Agrawal et al.
(2008)]):

• take – consumes the event from the input stream and adds it to the match buffer.

• ignore – skips the event (consumes an event from an input stream and discards it instead of storing
it in any kind of buffer).

A condition on an edge reflects the conditions in the WHERE part of the input pattern. It may reference
the currently accepted event name, as well as events in the match buffer.

If during the traversal of an NFA instance the final state is reached, the content of the associated
match buffer is returned as a successful match for the pattern. If during evaluation the time constraint
specified in the WITHIN block is violated, the NFA instance and the match buffer are discarded.

Figure 2.2 illustrates the NFA compiled for the pattern in Figure 2.1. Note that the final state can
only be reached by executing three take actions; hence, successful evaluation will produce a match buffer
containing three primitive events comprising the detected match.

The match buffer should be thought of as a logical construct. As discussed by Agrawal et al.
[Agrawal et al. (2008)], there is no need to allocate dedicated memory for each match buffer, since
multiple match buffers can be stored in a compact manner that takes into account that certain events may
be included in many buffers.

Note that there may be several edges leading from the same state and specifying the same event type,
whose conditions are not mutually exclusive (i.e., an event can satisfy several conditions). In this case,
an event will cause more than one traversal from a given state. If an event triggered the traversal of n
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Figure 2.3: Non-deterministic evaluation of NFA for Example 1. (a) The sole NFA instance is currently
at the second evaluation stage, with a single event in its match buffer. (b) A new event g arrives, and
now the NFA instance can either (1) accept the new event as a part of the potential match and proceed to
the next step, or (2) ignore it (by traversing a self loop) and keep waiting for a future event of the same
name. The problem is solved by duplicating the instance and applying both moves.

edges, the instance will be replicated n− 1 times. On each of the resulting n instances a different edge
will be traversed. As an example, consider the situation described in Figure 2.3. In 2.3a, there is some
instance of an NFA from Figure 2.2 with an event m in its match buffer, currently in state q2 (we mark
the current state of an instance with bold border). In 2.3b, an event g, g.ticker = GOOG has arrived.
This event triggers the traversal of two edges, namely the outgoing take edge and the outgoing ignore
edge. As a result, one new instance will be created to allow both traversals to occur.

Eager Sequence NFA Structure

This section describes the structure and construction of an NFA that detects a sequence pattern of n
primitive events.

A sequence pattern will be compiled into a chain of n + 1 states, with each of the first n states
corresponding to each primitive event in the sequence, followed by a final state F . Each state, except
for the last one, has an edge leading to itself for every event name (referred to as self-loops) and an edge
leading to the next state (referred to as connecting edges).

The self-loops for all event names have an ignore action. The edge leading from the kth state to the
next one has a take action with the event name of the kth event in the sequence. The purpose of the
self-loops is to allow detection of all possible combinations of events. This is achieved by exploiting
non-deterministic behavior as illustrated by Figure 2.3.

To describe the conditions on the edges, we define an auxiliary predicate, known as the timing
predicate, and denoted by pt. Let tmin denote the timestamp of the earliest event in the match buffer,
and now() denote the current time. If the match buffer is empty, tmin holds the current time. The
timing predicate checks whether the match buffer still adheres to the timing constraint, i.e., all primitive
events are located within the allowed time window W . More formally, pt = (tmin > now()−W ). The
condition on self-loops is pt. The conditions in the WHERE part are translated to the conditions on the
connecting edges as follows:

1. For each clause of the CNF, let i denote the index of the latest primitive event it contains (in the
specified order of appearance in the pattern).

2. The condition on the edge connecting the ith state with the following state is a conjunction of all
the CNF clauses with the index i and the timing predicate.
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For example, consider constructing a sequence NFA for the pattern in Figure 2.1. The edge from q1 to
q2 will only contain a part of the global condition on a, the next edge will specify the constraint on b and
the mutual constraint on a and b, and, finally, the final edge towards the accepting state will validate the
constraint on c and the mutual constraint on c and b.

Figure 2.2 demonstrates the result of applying the construction process described above on the pat-
tern in Figure 2.1.

Runtime Behavior

As described above, the pattern detection mechanism consists of multiple NFA instances running si-
multaneously, where each instance represents a partial match. Each NFA instance contains the current
state and a match buffer. Upon startup, the system creates a single instance with an empty match buffer,
whose current state is the initial state. Every event received on the input stream will be applied to all
NFA instances. If the timing predicate is not satisfied on a given instance (i.e., the earliest event in the
match buffer is not within the allowed time interval), the instance and the associated match buffer will
be discarded. Otherwise, an event will either cause a single edge traversal on an unconditional ignore
edge, or also an additional traversal on a take edge. In the former case the event will be ignored. In
the latter case the instance will be duplicated, and both possible traversals will be executed on different
copies.

2.4 Lazy Evaluation

In this section we present our main contribution, the lazy evaluation mechanism.
First, we will demonstrate the need for such a mechanism and show its effectiveness using the

continuation of Example 1. Consider a scenario where on a certain day primitive events corresponding
to a and b (MSFT and GOOG respectively) are very frequent, while events corresponding to c (AAPL)
are relatively rare. More specifically, assume that within a time window t we receive 100 instances of
MSFT stock events, denoted a1p1 ,...,a100p100 , followed by 100 instances of GOOG stock events, denoted
b1p101 ,...,b100p200 , followed by a single instance of an AAPL stock event, denoted c1p201 . In addition, let us
assume that there is only a single bipi event such that pi < p201. In such a case, an eager NFA will
evaluate the condition a.price <b.price 10,000 times, and the condition b.price <c.price for every pair
of a and b that satisfied the first condition (up to 10,000 times). We may substantially reduce the number
of evaluations if we defer the match detection process until the single event for AAPL has arrived, then
pair it with appropriate GOOG events, and finally check which of these pairs match a MSFT event. In
this case we need to perform 100 checks of b.price <c.price, and an additional 100 checks of a.price
<b.price, resulting in a total of 200 evaluations in comparison to at least 10,000 evaluations in the eager
strategy. In addition, note that at every point in time, we hold a single partial match, as opposed to the
eager mechanism, which may hold up to 10,000 partial matches.

The lazy evaluation model is able to take advantage of varying degrees of selectivity among the
events in the sequence to significantly reduce the use of computational and memory resources. For the
purpose of our discussion, selectivity of a given event name will be defined as an inverse of the frequency
of arrival of events that can be matched to this name. We present the required modifications to the eager
NFA model so that it can efficiently support lazy evaluation.

The idea behind lazy evaluation is to enable instances to store incoming events, and if necessary,
retrieve them later for processing. To support this, an additional buffer, referred to as the input buffer,
is associated with each NFA instance, and an additional action, referred to as store, is defined. When
an edge with a store action is traversed, the event causing the traversal is inserted into the input buffer.
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The input buffer stores events in chronological order. Those events can then be accessed during later
evaluation steps, using a modification on the take edge that we will define shortly.

An additional feature of lazy evaluation is that a sequence is constructed by adding events to partial
matches in descending order of selectivity (rather than in the order specified in the sequence). From
now on, we will refer to the order provided in the input query as the sequence order, and to the actual
evaluation order as the selectivity order. As an example, consider the pattern from Example 1 again.
Assume we wish to construct a lazy NFA that first matches b, then c, and finally a. In this case, our
sequence order is a, b, c while our selectivity order is b, c, a.

Since events may be added to the match buffer in an order that is different from the sequence order,
it is necessary to specify to which item in the sequence they match. To support this, the take action is
modified to include an event name that will be associated with the event it inserts into the match buffer
(the names are taken from the definition in the PATTERN block). The notation take(a) denotes that the
name a will be associated with events inserted by this take action. In the above example, to construct
a lazy NFA using the selectivity order b, c, a, we will assign take(b) edge to its first state, take(c) to its
second state and take(a) to the third and final state.

Finally, the model must include a mechanism for efficient access to events in the input buffer. For
that purpose, we change the semantics of the take action. Whereas in the eager NFA model an event
accepted by this type of edge is always taken from the input stream, in the lazy NFA model we extend
this functionality to also trigger a search inside the input buffer, which returns events to be examined for
a current match. If the result of this search, combined with events appearing in the input stream, contains
more than a single event with the required name, the sequence will be evaluated non-deterministically
by spawning additional NFA instances.

Note that invoking a full scan of the entire input buffer on each take action of each NFA instance
would be inefficient and redundant. It is not required since, in general, only a certain range of events in
the input buffer are relevant to a given take edge. Searching for a potentially matching event in any other
interval is unnecessary and will not result in a match.

We will demonstrate the above observation using the following example. Consider again the pattern
from Example 1. We will show the necessity of limiting the search interval on two different selectivity
orders: a, b, c and c, a, b.

1. Evaluate the sequence a, b, c using selectivity order a, b, c. For the first outgoing edge detecting a,
no constraints can be defined and the event can be taken either from the input buffer or the input
stream. Note however that, since at this stage the input buffer will contain no a instances, in fact
only the input stream should be considered. At the next state and the next outgoing edge detecting
b, we are only interested in events following the particular instance of a (which was detected at the
previous state and is now located in the match buffer). By definition of the input buffer, however,
at this stage it can only contain b events that arrived before a. Hence, there is no need to scan
the input buffer, but only to wait for the arrival of b from the input stream. The same holds for c,
which is detected at the take edge from the third to the final state.

2. Evaluate the sequence a, b, c using selectivity order c, a, b. For the first outgoing edge detecting
c, no limitations can be formulated. It will only take events from the input stream, since the input
buffer is empty. For the second outgoing take edge detecting a, we are limited to events preceding
the already accepted c instance. Consequently, any a event arriving on the input stream will be
irrelevant due to sequence order constraints. As for the input buffer, only the events that arrived
before c are to be considered. Finally, examine the third edge detecting b. Since we are searching
for an event which is required to precede an already arrived c, any possible match can only be
found in the input buffer and not in the input stream. Moreover, since the pattern requires a to
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precede b, not all b events located in the input buffer are to be returned and evaluated, but only
those succeeding the accepted a instance and preceding the accepted c instance located in the
match buffer.

Figure 2.4 illustrates the two examples above.

Figure 2.4: Scoping Parameters Example

Since the relevant range of events is always known in advance, the redundant operations can be
avoided by providing a way to specify it for any such edge. To this end, we modify the definition of
a take edge to include a pair of scoping parameters. Scoping parameters specify the exact behavior of
an edge, defining the beginning and the end of the relevant scope respectively. For the purpose of this
discussion, scope is defined as a time interval (possibly open and including future time) in which the
event expected by a given edge is required to arrive. The scoping parameters specify whether the source
of events considered by this edge should be the input buffer or the input stream. If the data should
be received from the input buffer, the scoping parameters also indicate what part of the input buffer is
applicable.

More formally, the scoping parameters of an edge e are denoted by e(s, f), where s is the start of the
scope and f is the end of the scope. The values of both parameters can be either event names or special
keywords start or finish. When the value of some scoping parameter is an event name, an event with
an appropriate name is examined in the match buffer, and its timestamp is used for deriving the actual
scope as described below.

The parameter s can accept one of the following values:

• The reserved keyword start: in this case, events are taken from the beginning of the input buffer.
This scoping parameter is applicable if no event preceding the event taken by this edge according
to sequence order has already been handled by the NFA.

• A name of a primitive event: in this case, only events matched to names succeeding the corre-
sponding event from the match buffer in the sequence order are read from the input buffer.

The parameter f can accept one of the following values:

• A name of a primitive event: in this case, only events matched to names preceding the correspond-
ing event from the match buffer in the sequence order are read from the input buffer,

• The reserved keyword finish: in this case, events are also received from the input stream.

D6.4: Computation and Communication Scalable Algorithms II



2.5. Chain NFA page 14 of 51

We will demonstrate the definitions above on examples from the beginning of the section, illustrated
also in Figure 2.4.

1. Evaluation of the sequence a, b, c using selectivity order a, b, c. For the first edge detecting a, the
scoping parameters will be e1 (start, finish). For the next edge detecting b, the scoping param-
eters will be e2 (a, finish). Finally, for the following edge detecting c, the scoping parameters
will be e3 (b, finish).

2. Evaluation of the sequence a, b, c using selectivity order c, a, b. For the first edge detecting c, the
scoping parameters will be e1 (start, finish). For the next edge detecting a, the scoping param-
eters will be e2 (start, c). Finally, for the following edge detecting b, the scoping parameters will
be e3 (a, c).

To summarize, a combination of s and f defines the time interval for valid events for the given take edge,
based on timestamps of events. This interval can also be unlimited from each of its sides. If unlimited
from the left, all events in the input buffer are considered until the right delimiter. If unlimited from the
right, all events in the input buffer are considered, starting from the left delimiter, and events from input
stream (i.e., arriving as a take operation takes place) are considered as well.

The following sections will explain how scoping parameters are calculated for different types of lazy
NFA.

2.5 Chain NFA

In this section we will formally define the first of two new NFA types, the chain NFA.
The chain NFA utilizes the constructs of the lazy evaluation model, evaluating events according to

a selectivity order given in advance. It consists of n + 1 states, arranged in a chain. Each of the first
n states is responsible for detecting one primitive event in the pattern, and the last one is the accepting
state. The states are sorted according to the given selectivity order, which we will denote by sel.

We will also denote by ei the ith event in sel and by qi the corresponding state in the chain. The
state qi will have an outgoing edge take(ei), a store edge for all events which are yet to be processed
(succeeding ei in sel), and an ignore edge for all already processed events (preceding ei in sel).

More formally, let Ei denote the set of outgoing edges of qi. Let Precord (e) denote all events
preceding an event e in an order ord. Similarly, let Succord (e) denote all events succeeding e in ord.
Then, Ei will contain the following edges:

• eignorei = (qi, qi, ignore, Precsel (ei) , true): any event whose name corresponds to one of the
already taken events is ignored.

• estorei = (qi, qi, store, Succsel (ei) , true): any event that might be taken in one of the following
states is stored in the input buffer.

• etakei = (qi, qi+1, take, ei, condi ∧ InScopei): an event with the name ei is taken only if it sat-
isfies the conditions required by the initial pattern (denoted by condi) and is located inside the
scope defined for this edge (denoted by a predicate InScopei).

The chain NFA will thus be defined as follows:

A = (Q,E, q1, F, ) ,

where:
Q = {qi|1 ≤ i ≤ n} ∪ {F}

D6.4: Computation and Communication Scalable Algorithms II



2.6. Tree NFA page 15 of 51

E =

n⋃
i=1

Ei

Figure 2.5 demonstrates the chain NFA for the pattern shown in Figure 2.1. For simplicity, ignore
edges are omitted, as are InScopei predicates.

Figure 2.5: Chain NFA for Example 1

We will now define how scoping parameters for take edges of the chain NFA are calculated. Given
a set E of events, let Latestord (E) be the latest event in E according to ord, and, correspondingly,
let Earliestord (E) be the earliest event in E according to ord. Finally, let seq denote the original
sequence order as specified by the input pattern.

The scoping parameters for a take edge etakei accepting a primitive event ei will be defined as follows:

s
(
etakei

)
=

{
Latestsel (Precsel (ei) ∩ Precseq (ei))

start

if Precsel (ei) ∩ Precseq (ei) 6= ∅
otherwise

f
(
etakei

)
=

{
Earliestsel (Precsel (ei) ∩ Succseq (ei))

finish

if Precsel (ei) ∩ Succseq (ei) 6= ∅
otherwise

A formal proof of the equivalence of the eager NFA and the chain NFA was omitted due to space
considerations. The correctness of this claim implies that any eager sequence NFA can be modified into
a chain NFA using any selectivity order without affecting the language it accepts.

2.6 Tree NFA

Chain NFA described in the previous section may significantly improve evaluation performance, pro-
vided we know the correct order of selectivity. As shown in the examples above, the more drastic the
difference between the arrival rates of different events, the greater the potential improvement.

There are, however, several drawbacks which severely limit the applicability of chain NFA in real-
life scenarios. First, the assumption of specifying the selectivity order in advance is not always realistic.
In many cases, it is hard or even impossible to predict the actual selectivity of primitive events. Note
that the described model is very sensitive to wrong guesses, as specifying a low-selectivity event before
a high-selectivity event will yield many redundant evaluations and overall poor performance. Second,
even if it is possible to set up the system with a correct selectivity order, we can rarely guarantee that
it will remain the same during the run. In many real-life applications the data is highly dynamic, and
arrival rates of different events are subject to change on-the-fly. Such diversity may cause an initially
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efficient chain NFA to start performing poorly at some point. Continual changes may come, for example,
in the form of bursts of usually rare events.

To overcome these problems we introduce the notion of ad hoc selectivity. Instead of relying on a
single selectivity order specified at the beginning of the run, we determine the current selectivity on-the-
fly and modify the actual evaluation chain according to the order reflecting the current frequencies of the
events. Our NFA will thus have a tree structure, with each of its nodes (states) “routing” the incoming
events to the next “hop” according to this dynamically changing order. By performing these “routing
decisions” at each evaluation step, we guarantee that any partial match will be evaluated using the most
efficient order possible at the moment.

To implement the desired functionality, we require that each state have knowledge regarding the
current selectivity of each event name. We will use the input buffer introduced above to this end. By its
definition, the input buffer of a particular NFA instance contains all events that arrived from the input
stream within the specified time window. For each event name, we will introduce a counter containing
the current number of events matched with this event name inside the buffer. This counter will be
incremented on each insertion of a new event with the corresponding name and decremented upon its
removal.

Matching the pattern requires at least one event corresponding to each event name to be present in
the input buffer. Hence, we will add a condition stating that no evaluation will be made by a given
instance until all the counters are greater than zero. Only when all of the event counters are greater than
zero does it make sense to determine the evaluation order, since otherwise the missing event(s) may not
arrive at all and the partial matching process will be redundant. After the above condition is satisfied,
we can derive the exact selectivity order based on the currently available data by sorting the counters.

The above calculation will be performed by each state on each matching attempt, and the resulting
value will be used to determine the next step in the evaluation order. In terms of NFA, this means that
a state needs to select the next state for a partial match based on the current contents of the input buffer.
To this end, a state has several outgoing take edges as opposed to a single one in chain NFA. Each edge
takes a different event name and the edges point to different states. We will call the NFA employing this
structure a tree NFA and will formally define this model below.

Figure 2.6 illustrates a tree NFA for the pattern in Figure 2.1. For simplicity, ignore edges are
omitted.

In formal terms, a tree NFA is structured as a tree of depth n− 1, the root being the initial state and
the leaves connected to the accepting state. Nodes located at each layer k; 0 ≤ k ≤ n− 1 (i.e., all nodes
in depth k) are all states responsible for all orderings of k event names out of the n event names defined
in the sequence. Each such node has n− k outgoing edges, one for each event name which does not yet
appear in the partial ordering this node is responsible for. Those edges are connected to states at the next
layer, responsible for all extensions of the ordering of this particular node to length of k + 1. The only
exceptions to this rule are the leaves, which have a single outgoing edge, connected directly to the final
state.

For instance, in the example in Figure 2.6, layer 0 contains the initial state q0, layer 1 contains states
q1, q2, q3, and layer 2 contains the states q12, q13, q21, q23, q31, q32.

More formally, the states for a tree NFA are defined as follows. Let Ok denote the ordered subsets
of size k of the event names e1, · · · , en. Let

Qk = {qord|ord ∈ Ok}
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Figure 2.6: Tree NFA for Example 1

denote the set of states at the layer k (note that Q0 = {q0}). Then the set of all states of the tree NFA is

Q =

n−1⋃
k=0

Qk ∪ {F}

q0 = q�.

To describe the edges and their respective conditions, some preliminary definitions are needed.
First, we will complete the definitions required for the scoping parameters. Since each state qord

corresponds to some evaluation order prefix ord, we will set orde = ord for each outgoing edge e of
qord. As mentioned earlier, it is enough for orde to be a partial order ending with ê. In other words, each
take edge in the tree derives the corresponding scope for its target event name from the order used for
reaching this edge.

Similarly to the chain NFA, the predicate InScopeord (e) will denote that an event e is located within
the corresponding scope (s (qord, e) , f (qord, e)).

Let ce denote the value of the counter of events associated with the name e in the input buffer.
Let se (qord) = min ({ce|e /∈ ord}) denote the most selective (i.e., most infrequent) event in the input
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buffer during the evaluation step in which qord is the current state. Finally, we will define the predicate
pne (qord) (non-empty) as the condition on the input buffer of state qord to contain at least a single
instance of each primitive event not appearing in ord and another predicate pse (qord, e) to be true if and
only if an event e corresponds to event type se (qord). Let Eord denote the set of outgoing edges of qord.
Then, Eord will contain the following edges:

• eignoreord = (qord, qord, ignore, ord, true): any event whose name corresponds to one of the already
taken events (appearing in the ordering this state corresponds to) is ignored.

• For each primitive event e /∈ ord:

– estoreord,e = (qord, qord, store, e,¬pne (qord) ∨ ¬pse (qord, e)): when either the pne or pse con-
dition is not satisfied, the incoming event is stored into the input buffer.

– etakeord,e = (qord, qord,e, take, e, pne (qord) ∧ pse (qord, e) ∧ conde ∧ InScopeord (e)):
if the contents of the input buffer satisfy the pne and pse predicates and an incoming event
with a name e (1) satisfies the conditions required by the initial pattern (denoted by conde);
and (2) is located within the scope defined for this state, it is taken into the match buffer and
the NFA instance advances to the next layer of the tree.

• For states in the last layer (where |ord| = n), the take edges are of the form
estoreord,e = (qord, F, take, e, pne (qord) ∧ conde ∧ InScopeord (e)).

The set of all edges for tree NFA is defined as follows:

E =
⋃

{ord|qord∈Q}

Ei,

and the NFA itself is defined as follows:

A = (Q,E, q1, F, ) ,

where Q and E are as defined above.
It can be observed that a tree NFA contains all the possible chain NFAs for a given sequence pattern,

with shared states for common prefixes. Thus, the execution of a tree NFA on any input is equivalent to
the execution of some chain NFA on that input. The conditions on tree NFA edges are designed in such
a way that the most selective event is chosen at each evaluation step. Hence, this chain NFA is always
the one whose given selectivity order is the actual selectivity order as observed from the input stream.
An example can be seen in Figure 2.6. Nodes and edges marked in bold illustrate the evaluation path for
an input stream satisfying count(AAPL) ≤ count(GOOG) ≤ count(MSFT ), i.e., corresponding to
the selectivity order c,b,a.

The scoping parameters for a tree NFA are calculated the same way as for a chain NFA, as described
in Section 2.5.2

2Contrary to the chain NFA, the tree NFA does not have a predefined selectivity order sel to be used for calculating the
scoping parameters. Instead, for an edge etakeord,e we will substitute sel with the partial order ord. This order is the effective
selectivity order applied on the current input.
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2.6.1 Implementation Issues
When implementing the tree NFA, the number of states might be exponential in n. To overcome this
limitation, we propose to implement lazy instantiation of NFA states – only those states reached by at
least a single active instance will be instantiated and will actually occupy memory space. After all NFA
instances reaching a particular state are terminated, the state will be removed from the NFA as well.
Even though the worst case complexity remains exponential in this case, in practice there will be fewer
changes in the event rates than there will be new instances created. This conclusion is supported by our
experiments, which are explained in the following section.

2.7 Experimental Evaluation

We evaluated the performance of chain and tree NFA in comparison to the eager model. Our metrics for
this comparison and analysis of both evaluation mechanisms are the runtime complexity and the memory
consumption.

As a measure of runtime complexity, we counted how many times a condition on an edge is evalu-
ated. For instance, consider the pattern from Example 1 and two successive streams of events: a1p=3,b1p=7,c1p=9

and a1p=3,b2p=13,c1p=9. The evaluation of the first stream will cost us exactly three operations (validation
of conditions on edges q1 → q2, q2 → q3 and q3 → F ), while the second stream will cost only two
(q1 → q2 and q2 → q3), since the condition on q2 → q3 is not satisfied and the evaluation stops at that
point.

We measured memory consumption by two metrics, corresponding to the two kinds of data stored by
the NFA during runtime. The first metric was the peak number of simultaneously active NFA instances,
and the second was the peak number of buffered events waiting to be processed. Note that those metrics
are not completely independent, as an NFA instance also includes a match buffer and an input buffer
containing stored events.

All NFA models under examination (eager, chain and tree) were implemented in Java and integrated
into the FINCoS framework [Mendes et al.]. FINCoS, developed at the University of Coimbra, is a set
of benchmarking tools for evaluating the performance of CEP systems.

All experiments were run on a HP 2.53 Ghz CPU and 8.0 GB RAM. We used the real-world historical
data of stock prices from the NASDAQ stock market, taken from [EOD]. This data spans a 5-year period,
covering over 2100 stock identifiers with prices updated on a per minute basis. Each primitive event is of
type ’Stock’ and has the following attributes: stock identifier (ticker), timestamp, and current price. We
also assumed that each event has an attribute specifying to which sector the stock belongs, e.g., hi-tech,
finance or pharmaceuticals.

In order to support efficient detection of the pattern described below, preprocessing was applied to
this preliminary data. For each event, h-1 chronologically ordered previous prices of the respective stock
were added as new attributes, constructing a history of h successive stock prices.

During all measurements, the detection pattern for the system was specified as follows: a sequence of
three stock identifiers was requested, with each stock belonging to some predefined category. In addition,
we required consecutive stocks in the sequence to be highly correlated (i.e., the Pearson correlation
coefficient between stocks price histories was above some predefined threshold). The correlation was
calculated for each pair of events based on a history list each event carries, built as described above. The
final stock in a sequence was required to be a Google stock, the first stock belonged to the hi-tech sector,
and the second stock belonged to the finance sector. The time window for event detection was set to the
length of the price history.
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Using the previously described SASE language, the aforementioned pattern can be declared in the
following way:

PATTERN SEQ(Stock a, Stock b, Stock c)
WHERE (a.ticker∈Finance) AND (b.ticker∈Hi-Tech) AND (c.ticker = GOOG) AND
(Corr (a.history, b.history)¿T) AND (Corr (b.history, c.history)¿T)
WITHIN h

In the described pattern, events a and b share approximately equal frequencies, which also fluctuated
slightly over time, making each of the event types slightly more dominant part of the time. Event c, on
the other hand, is significantly less frequent. One parameter of interest that affects the overall efficiency
of the presented evaluation models is the relative frequency of c with respect to a and b, which we will
denote as fc. The lower the value of fc, the larger the expected performance gain of our proposed lazy
evaluation mechanisms. The value of fc is controlled by modifying the input stream, either duplicating
or filtering out c events.

In our first experiment, we compared the runtime complexity and memory consumption of the eager
sequence NFA, all the possible chain NFAs, and the tree NFA.

Figure 2.7: Comparison of NFAs by number of operations (logarithmic scale) for sequence a,b,c

Figure 2.7 describes the number of computations performed by each NFA as a function of fc. The
following observations can be made:

1. Eager NFA shows the same, very poor performance for any value of fc.

2. Lazy chain NFAs constructed with c as the second or the third event (namely abc, bac, acb and
bca) display equally suboptimal performance because detecting the pattern using these orders
implies creation and manipulation of large numbers of NFA instances, just as with eager NFA.

3. Lazy chain NFAs constructed with c as a first event, namely cba and cab, perform one to three
orders of magnitude better. This exactly matches our expectations, as starting the evaluation pro-
cess only when the rarest event arrives allows us to significantly reduce the number of instances,
and hence the number of calculations.
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4. Tree NFA demonstrates slightly better performance than that of the best chain NFA (cab in our
case). This minor improvement is due to the changes in the relative frequencies of a and b events,
to which tree NFA was able to adapt as a result of its dynamic structure.

As the ratio of c events to all events grows and approaches 1, all the graphs are expected to eventually
converge to the upper value. This is because, when all events in a pattern share the same frequency, no
selectivity order is optimal (or, interchangeably, all orders are equally optimal), and thus changing the
evaluation order will not improve performance.

In our next experiment we evaluated patterns with the most selective event c placed at the beginning
or in the middle, producing the target sequences c,b,a and a,c,b. We used the same set of conditions as
in the previous experiment. The results of the performance evaluation of the system when invoked on
those patterns are shown in Figure 2.8. The main observation is that the performance of any lazy NFA
is independent of the sequence order, as selectivity orders ending with c will always perform poorly,
whereas those starting with c will show better results. The only notable difference is the performance
of eager NFA, which significantly improves on the c,b,a pattern. The reason is that in this case the
sequence order is also the most efficient selectivity order. It can be seen that, for any pattern, the tree
NFA remains superior.

Figure 2.8: Comparison of NFAs by number of operations (logarithmic scale) for sequences c,b,a and
a,c,b
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Now we proceed to the memory consumption comparison. As mentioned above, there are two
different kinds of data stored by the NFA: instances and incoming primitive events. As presented in our
theoretical analysis results, eager NFA tends to keep significantly larger numbers of instances in memory
simultaneously than does lazy NFA. As for primitive events, lazy NFA stores them in the input buffer,
while eager NFA keeps most of them inside the match buffers of the pending instances. Hence, memory
requirements for buffering of events are virtually identical for all NFA types. This theoretical observation
was also supported by our experiments. Therefore, in order to compare memory consumption, only the
peak number of instances held simultaneously in memory should be considered.

Figure 2.9: Comparison of NFAs by memory consumption for sequence a,b,c

Figure 2.9 demonstrates the peak number of instances generated by the different types of NFAs
discussed above when detecting the sequence a,b,c on inputs of various sizes. Only some of the chain
NFA graphs are shown. Other automata produced outputs very similar to one of the displayed ones and
were omitted for the sake of clarity. It can be observed that:

1. Lazy chain NFAs with c as a first event require memory for a smaller number of instances than the
other NFAs. This is because evaluation in these automata occurs only upon arrival of a c event, at
which point the whole match is already located in the input buffer. Hence, there is no need to wait
for additional input from the stream and evaluation ends almost immediately in most cases.

2. Lazy chain NFAs corresponding to selectivity orders starting with a consume significantly more
memory, which is comparable to the memory consumed by the eager NFA. As the previous graph
shows, NFAs based on those orders use many instances simultaneously. The number of such
instances is proportional to that of eager NFA; hence, they use approximately equivalent memory
in terms of NFA instances.

3. Lazy chain NFAs corresponding to selectivity orders starting with b display better, yet still do not
achieve optimal memory utilization due to selectivity of mutual conditions between a and b.

4. Memory consumption of the tree NFA is comparable to that of the most efficient chain NFA, also
in keeping with our theoretical analysis.

In our last experiment we compared the performance of the NFAs discussed above on data with dynam-
ically changing frequencies of all primitive events. For this experiment alone, synthetic data was used,
generated using the FINCoS framework [Mendes et al.]. An artificial stream was produced in which the
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rarest event was switched after each 100,000 incoming events. Then, all NFAs were tested against this
input stream, while after each 10,000 incoming events the number of computations was measured.

Figure 2.10 demonstrates the results. As in the previous graph, some of the chain NFAs were omit-
ted due to very similar results. The x-axis represents the number of events from the beginning of the
stream. It can be thought of as the closest estimate to the time axis. The y-axis represents the number of
computations per 10,000 events.

Figure 2.10: Comparison of NFAs by number of operations on highly dynamic input (logarithmic scale)
for sequence a,b,c

This figure illustrates the superiority of the tree NFA over its competitors and its high adaptivity to
changes in event selectivity. At any single point there is one selectivity order that is the most efficient
given the current event frequencies. The performance gain of the chain NFA based on that order over
the other chain NFAs reaches up to two orders of magnitude. However, as soon as the event frequencies
change, this NFA loses its advantage. On the other hand, the tree NFA shows consistent improvement
over all chain NFAs regardless of the input selectivity.

2.8 Future Work

The framework proposed is under initial implementation steps as part of SPEEDD/WP6 architecture
work. Once implemented, data from SPEEDD usecases will be used as input for further evaluating
the efficiency of the proposed solution. We strongly believe that in both traffic monitoring and fraud
detection there is a lot of space for enhancing the framework in such a way to allow for online processing
of very rapid streams. This will become especially important when traffic streams will be monitored
using gps data streams (as planned for the simulator work) collected from millions of cellular phones.
For fraud detection usecase scenarios, consider a future world with cardless shopping using cell phones,
making the required processing infrastructure extremely ambitious.

Further improvements can be made to the solution proposed in this document. First, as of now, the
only operator addressed is the sequence. Additional research is to be performed to apply the concepts
of lazy evaluation and reordering by selectivity on other operators, including conjunction, disjunction,
negation and more. Another enhancement to the described mechanism is taking into account the selec-
tivity of filtering conditions. As of now, selectivity order is computed based solely on frequencies of
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arrival of primitive events. However, a very strict filtering condition can turn a frequent event into a rare
one, and this is to be considered. Finally, extension of the presented system to distributed environment
(horizontal scalability) is to be further researched.
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3

Monitoring Distributed Models

3.1 Introduction

Statistical models are commonly used for prediction, interpretation, anomaly detection and more. For
example, machine learning is used to predict traffic in the traffic use case. Learning the models once is
not enough, though; concept drifts can mean that the current model is no longer valid. Thus, in many
real world applications it is necessary to periodically re-learn the model. This approach can be very
wasteful, since learning algorithms are often orders of magnitude more demanding than applying an
existing model. In this chapter we consider the following approach: monitor the quality of the current
model, and only re-learn the model as needed.

The monitoring approach looks at incoming data and triggers an alert if the previously-learned model
is too different from the model that would have been built given the current data, without actually paying
the price of building the current model. This problem is made more difficult when data is distributed
across several nodes, since both the existing model and the (hypothetical) current model are both global
models – composed from the union of data at all nodes. Hence a distributed monitoring approach must
deal with communication efficiency, in addition to the problem of how to effectively monitor the quality
of a model without actually re-learning it.

We start with linear regression. Ordinary Least Squares regression is a well-known and very common
regression model, and is useful both for predicting new values given old ones, but also for understand-
ing behavior through discovered coefficients. Current work on distributed linear regression deals with
making model learning more efficient by parallelizing model construction, i.e. the first approach. Given
such a model β, we describe a method to efficiently monitor its on-going deviation from a hypothetical
true global model – the second approach. Our monitoring approach is efficient both in terms of com-
munication between nodes, and in terms of local computation at each node. As will be descrived below,
experiments on SPEEDD data show dramatic reduction in communication volume (hence, improvement
in scalability).

D6.4: Computation and Communication Scalable Algorithms II



3.2. Problem Definition page 26 of 51

3.2 Problem Definition

Let {(x1, y1), . . . , (xn, yn)} be a set of n observation pairs of m < n independent variables and one
dependent variable, where xi are column vectors in Rm, and yi are the corresponding response scalars.
We seek a linear transformation β ∈ Rm, β = (β1, . . . , βm)T , that minimizes the sum of squared errors
between yi to the mapping of xi. In other words, we seek a model β that minimizes ‖Xβ − y‖2, where
X is the n × m matrix of row vectors X , (xT1 , . . . , x

T
n )T , and y is the column vector composed of

response scalars y , (y1, . . . , yn)T .
The optimal solution to this convex problem, known as ordinary least squares (OLS), is given

by Hayashi (2000)
β =

(
XTX

)−1
XT y . (3.1)

3.2.1 Monitoring OLS of Distributed Streams
Assume that the observations {(xi, yi)} are distributed across k nodes, and that these observations are
dynamic – they change over time, as nodes receive new observations that replace older ones. As data
evolves, it is possible that the previously computed model no longer matches the current true model. We
wish to maintain an accurate estimation β0 of the current global OLS model, β. The question is then
when to update the model.

The simplest way is to update β every time a new observation arrives at the nodes, using a straight-
forward or incremental procedure. Though this gives the most accurate model, it is also wasteful. It
requires communicating the update every time, and potentially disseminating the updated model to all
nodes. It is especially wasteful when the current global model is similar to the old one.

Another simple solution is the periodic algorithm: sending updates once every T times Wolff et al.
(2009); Bhaduri and Kargupta (2008) guarantees a reduction in communication. The problem is that a
fixed update schedule must balance communication and error a priori. For large T the estimate error
may be unbounded for a long interval, yet if model changes are infrequent we waste communication.

Recent approaches monitor the prediction error |y − Xβ0|, where X, y are the current observa-
tions Song et al. (2013); Bhaduri and Kargupta (2008), the model’s R2 fit Bhaduri et al. (2011), or
prediction error between divergent local models and the hypothetical global model Kamp et al. (2014b).

Monitoring prediction error is not always sufficient, however. First, prediction is not the only
application of regression. In some settings Hayashi (2000); Ronen et al. (2014) we are interested
in model coefficients, rather than prediction performance. Yet prediction error may be small even
when the difference between models is large. Consider the following example in m = 3 dimen-
sions, with the precomputed model β0 = (1, 2, 3)T , the current model β = (1, 1, 1)T , and with the
observation x = (−0.95, 2.05,−0.95)T , y = βTx = 0.15. In this case the prediction error is small,
|xTβ0 − y| = 0.15, yet the models are very different: ‖β0 − β‖ = 2.236.

Monitoring model fit is also tricky. Figure 3.1a shows the R2 fit of the true model β in an interpo-
lation problem (described in Section 3.5.2). The fit of the true model varies widely, and it is not clear
where to set the R2 monitoring threshold. Figure 3.1b shows an example where both the model error
‖β − β0‖ and the fit of the monitored model β0 are increasing.

Thus, we aim to monitor the model estimation error itself. Let β0 be the existing model, previously
computed at some point in the past (the synchronization time), and let β be the hypothetical OLS model
from current observations1. Given an error threshold ε, our goal is to raise an alert if

‖β0 − β‖ > ε ,

1β is hypothetical since we don’t actually compute it.
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Figure 3.1: (a) Model fit for the traffic dataset from Section 3.5.2, and (b) comparison with model error.
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Figure 3.2: Monitoring distributed OLS models is difficult. Current local models β1, β2 are identical to
the precomputed models β10 , β

2
0 but the combined global model is very different, β − β0 = 0.44.

while minimizing communication. Note that monitoring model error is a more general approach: lim-
iting model error allows us to bound prediction error |xTβ0 − xTβ| through Cauchy-Schwarz but not
vice versa. Indeed, Lopes and Sayed (2006) estimate the expected model error and use it to get expected
prediction error.

3.3 Monitoring Distributed Least Squares With Convex Subsets

Monitoring distributed OLS models is difficult because the global model cannot be inferred from the
local model at each node. Let βj be the current local model in node j, i.e. the model computed from the
local subset (in j) of the global data; βj0 denotes the previously computed local model. Even when all
current local models βj are similar to the precomputed local models βj0, the current global model β may
be very different from the precomputed model β0. Consider the example in Figure 3.2 with k = 2 nodes
and m = 1. The global model deviation is very large, β − β0 = 0.44, even though local models are
identical: β1 = β10 and β2 = β20 . In other words, similarity of current local models to their respective
precomputed models does not imply that the current global model is similar to the precomputed model.

To overcome this difficulty, we turn to geometric monitoring. Geometric monitoring Keren et al.
(2014, 2012) is a communication-efficient approach that monitors whether a function of distributed data
streams crosses a threshold. The key idea is to impose constraints on local data at the nodes, rather
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than on the function of the global aggregate. Given a function of the average of all local data and the
threshold, we compute a convex safe zone for each node. As we show below, convexity plays a key role
in the correctness of this scheme. As long as local data stay inside the safe zones, we guarantee that
the function of the global average does not cross a threshold. Nodes communicate only when local data
drifts outside the safe zone, which we call a safe zone violation. Once that happens, violations can be
resolved, for example by gathering data from all nodes and recomputing β0 and the safe zones.

To summarize, we want to impose conditions on the local data at each node so that as long as they
hold, ‖β−β0‖ ≤ ε. The conditions should be as “lenient” as possible – we wish to minimize the number
of violations.

3.3.1 Notation

Define A ,
∑n

i=1 xix
T
i = XTX and c ,

∑n
i=1 xiyi = XT y, and rewrite Eq. (3.1) as β = A−1c. Let

Oj be the set of local observations in node j, meaningOj’s are disjoint and their union is the set of global
observations. The global matrix A can be written as the sum of local matrices A =

∑k
j=1A

j , where
Aj is constructed from the local observations at node j: Aj ,

∑
(x,y)∈Oj xx

T . Similarly, c =
∑k

j=1 c
j

where cj is constructed from the local observations at node j: cj ,
∑

(x,y)∈Oj xy. Therefore, we can
rewrite Eq. (3.1) as a function of the sums of Aj , cj :

β =

∑
j

Aj

−1∑
j

cj

 = A−1c (3.2)

In our notation we use {Aj , cj}k instead of the original observations {xi, yi}n. Let A0 =
∑k

j=1A
j
0

and c0 =
∑k

j=1 c
j
0 be the global sums of local values at nodes during the last sync time (when β0 was

computed), and A =
∑k

j=1A
j , c =

∑k
j=1 c

j be the current values. We define the local drifts as the
deviation of local data from its initial values during sync: ∆j = Aj −Aj0 and δj = cj − cj0.

We can now express global β and β0 as a function of the averages of Aj , cj and Aj0, c
j
0. This will

allow us to bound model changes inside a convex subset. Recall β = A−1c. Similarly, β0 = A−10 c0.
Values averaged over nodes (rather than summed) shall be denoted with a “hat”: Ẑ = 1

k

∑k
j=1 Zj for

some value Zj for each node j.
Hence initial average values of A, c and the local model are:

Â0 =
1

k

k∑
j=1

Aj0 , ĉ0 =
1

k

k∑
j=1

cj0 , β̂0 = Â−10 ĉ0 ,

and their current values are

Â =
1

k

k∑
j=1

Aj , ĉ =
1

k

k∑
j=1

cj , β̂ = Â−1ĉ .

Note ( 1kA)−1 = kA−1 thus β̂ = Â−1ĉ = A−1c = β and likewise β̂0 = β0. In other words, we can
compute the OLS model from the averages of local Aj , cj rather than the sums:

β =

1

k

∑
j

Aj

−11

k

∑
j

cj

 = Â−1ĉ (3.3)
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3.3.2 Convex Safe Zones
We propose to solve the monitoring problem by means of “good” convex subsets, called safe zones, of
the data space. Each node monitors its own drift: as long as current values at local nodes (Aj , cj) are
sufficiently similar to their values at sync time (Aj0, c

j
0), β0 is guaranteed to be close to β.

Formally, we define a convex subset C in the space of matrix-vector pairs, such that (0m×m, 0m) ∈ C
and

(∆, δ) ∈ C =⇒ ‖(Â0 + ∆)−1(ĉ0 + δ)− Â−10 ĉ0‖ ≤ ε , (3.4)

for any drift (∆, δ), where 0m×m and 0m are the m×m zero matrix and length m zero vector. Ideally,
C should be “big”: as local data slowly drifts over time, it is desirable that drifts remain in C (otherwise
communication is needed). Convexity plays a key role in our paradigm: if all drifts are in C, then their
average is also in C.

Given such a subset C, the basic monitoring paradigm is simple. As long as (Aj −Aj0, cj − c
j
0) ∈ C,

node j can remain silent. If all nodes are silent, then ‖β̂0 − β̂‖ = ‖β0 − β‖ ≤ ε. If a violation of the
local condition does occur at any node j, some form of violation recovery must take place, for example
recomputing the global model and restarting monitoring.

We now prove the correctness of the paradigm.

Lemma 1. Let C be a convex subset that satisfies Eq. (3.4). If (∆j , δj) ∈ C for all j, then ‖β−β0‖ ≤ ε.

Proof. Express Â, ĉ using the average of local deviations:

(Â, ĉ) =
1

k

∑
j

(Aj , cj)

= (Â0, ĉ0) +
1

k

∑
j

(Aj −Aj0, c
j − cj0)

= (Â0, ĉ0) +
1

k

∑
j

(∆j , δj) (3.5)

And from C’s convexity,

∀j (∆j , δj) ∈ C =⇒ 1

k

∑
j

(∆j , δj) ∈ C (3.6)

Denote (∆̂, δ̂) = 1
k

∑
j(∆

j , δj) and rewrite Eq. (3.5) and (3.6):

(Â, ĉ) = (Â0, ĉ0) + (∆̂, δ̂)

∀j (∆j , δj) ∈ C =⇒ (∆̂, δ̂) ∈ C

Substitute in Eq. (3.4) to finally obtain:

∀j (∆j , δj) ∈ C =⇒ ‖(Â0 + ∆̂)−1(ĉ0 + δ̂)− Â−10 ĉ0‖ =

‖β̂ − β̂0‖ = ‖β − β0‖ ≤ ε

which completes the proof.
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3.3.3 Infinite and Sliding Window
We differentiate between two different variations for computing the global model: sliding window and
infinite window. In the sliding window model, β is computed from the lastW samples seen at each node,
and similarly β0 is computed from the last W samples before sync. Conversely, in the infinite window
model β is computed over all observations seen thus far, while β0 is computed from all observations
seen until last sync. Figure 3.3 illustrates these two models. Though the sliding window is clearly more
practical, the infinite window model may be useful in some settings and so we discuss both.

Sliding Window In the sliding window model each node computes Aj from the W samples seen at
node j, while Aj0 (and hence Â0) is built from the last W samples before sync. Computing ∆j and
δj , however, requires substracting observations that left the sliding window. If Aj0, c

j
0 and Aj , cj do not

overlap (Figure 3.3, top), then clearly ∆j = Aj − Aj0 and δj = cj − cj0. It is also possible, however,
that the current window overlaps the window used to build β0. Figure 3.3 (middle) illustrates this case:
∆j , δj become the sum of new samples from Aj , cj minus the sum of old (non-overlapping) samples
from Aj0, c

j
0.

The convex constraint C on (∆, δ) for this model is:

ε‖Â−10 ∆‖+ ‖Â−10 δ‖+ ‖Â−10 ∆β0‖ ≤ ε , (3.7)

where ‖A‖ is the L2 operator norm of the matrix A. The derivation of the convex constraint C is quite
technical, and the details are available in Section 3.4.1.

Algorithm 1 Node j update with new observation x, y.
1: (Aj , cj) ← (Aj + xTx , cj + xT y)
2: Insert new x, y to head of sliding window.
3: Retrieve old xw, yw exiting end of sliding window.
4: (Aj , cj) ← (Aj − xTwxw , cj − xTwyw)
5: (∆j , δj) ← (Aj −Aj0 , cj − c

j
0)

6: if ε‖Â−10 ∆j‖+ ‖Â−10 δj‖+ ‖Â−10 ∆jβ0‖ ≤ ε then
7: Report violation to coordinator.
8: Receive new β0, Â−10 from coordinator.
9: (Aj0 , c

j
0) ← (Aj , cj)

10: end if
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Alg. 1 shows the resulting monitoring algorithm each node runs. Note monitoring does not require
any matrix inversions. Each node applies the local constraint from Eq. (3.7) to its own data. When a
violation occurs at any node, it is reported to a coordinator node.

The coordinator (Alg. 2) polls all nodes for their local data, computes a updated global model β0 and
distributes it to all nodes, along with updated Â−10 used in the constraint. Monitoring then resumes. This
is the simplest violation resolution protocol, but our method is compatible with recent communication
reduction techniques from the field of distributed streams, such as reference point prediction Giatrakos
et al. (2012), individualized constraints or slack Keralapura et al. (2006); Gabel et al. (2014a), and local
violation resolution Keren et al. (2014). Similarly, our distributed monitoring approach can easily be
combined with an efficient distributed computation technique to compute Â−10 , β0, enjoying the best of
both worlds. The current model can be computed during sync using any of several existing algorithms,
be they exact, iterative, or distributed Guestrin et al. (2004); Lopes and Sayed (2006).

Algorithm 2 Coordinator violation resolution algorithm.
1: Poll all nodes for Aj , cj .
2: Compute updated Â−10 , β0 from Aj , cj and distribute.

Infinite Window In this model the local drifts of each node i are ∆j = Aj − Aj0 and δj = cj − c0
as before, but Aj and cj are computed from all observations ever seen at the node. We can use the
same convex constraint from Section 3.3.3, but in this case ∆j grows indefinitely, and so the condition
‖Â−10 ∆‖ < 1 is not easy to satisfy, and may cause frequent synchronizations. Instead, we start from
Eq. (3.9) and develop a more lenient constraint for this model. The resulting algorithm will be similar
to Alg. 1, but without lines 2–4 and with the updated constraint in line 6. The coordinator algorithm is
the same.

The convex constraint for the infinite window case is

‖Â−10 δ‖+ ‖Â−10 ĉ0‖ ≤ ε . (3.8)

Section 3.4.2 details its derivation.
Note that δ accumulates more samples as time passes, while Â0 remains fixed. As δ’s “weight”

(number of samples) grows beyond Â0’s, the constraint no longer holds and syncrhonization is needed.
One way to avoid this is to replace ‖Â−10 δ‖ in Eq. 3.8 with ‖∆−1δ‖, which is correct (using the same
line of arguments in Section 3.4.2). Alternatively, note that after each sync the samples from all δj’s are
added to the new Â0, so its “weight” is roughly doubled. Thus Â0’s weight grows exponentially, and
synchronizations become increasingly rare.

3.3.4 Norm Constraint and the Sliding Window

The sliding window model constraint Eq. (3.7) requires ‖Â−10 ∆j‖ < 1 (embodied as ε‖Â−10 ∆j‖+ · · · ≤
ε). This requirement depends only the independent variables Xj , and does not depend in any way on
the dependent variable yj . It is quite possible that β is close to β0, yet the norm constraint is violated,
incurring extra communication. Fortunately, for many reasonable data distributions, if window size W
is linear in the number of independent variables m then the norm constraint is satisfied almost surely.
The details are in Section 3.4.3.

The analysis assumes that consecutive observations in the data stream are independent. Consider,
however, the case where some variables come from an over-sampled sensor, or measure slowly chang-
ing phenomena. In such cases ‖∆‖ grows faster, linear in the number of identical observations, and
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Figure 3.4: DILSQ model error (black) and syncs (bottom vertical lines) per round, compared to
PER(100) error (green), for k = 10 simulated nodes with m = 10 dimensions, and threshold ε = 1.35.
Both algorithms reduce communication to 1%, but DILSQ only syncs when β changes (bottom purple
line shows ‖β‖). PER(100) syncs every 100 rounds, but is unable to maintain error below the threshold
(dashed horizontal line).

will overwhelm A−10 faster. This can result in more frequent violations of the constraint, hence more
communication. Such cases can be mitigated by increasing the window sizeW , subsampling (since data
changes slowly anyway), or by the use of generalized least squares Hayashi (2000) with an appropriate
scaling matrix for the time series process (Section 3.3.5).

3.3.5 Regularization and Variants
Our scheme generalizes very well to more sophisticated least squares variants Hayashi (2000). We show
two examples.

In regularized least squares the minimized function includes a regularization term to mitigate the
effects of outliers and avoid overfitting. A commonly used form is Tikhonov regularization, also known
as ridge regression, which finds β that minimizes ‖Xβ − y‖2 + ‖RTRβ‖2, where R is a suitable
regularization matrix R. For R = 0 the problem reduces to ordinary least squares, and for R = λI it
reduces to L2 regularization. The optimal solution to this problem is

β =
(
XTX +RTR

)−1
XT y .

This solution is quite similar to Eq. (3.1) and indeed we can monitor it using the same technique: com-
pute Bj

0 = Aj0 + 1
kR

TR and the resulting B0, B̂0, and use them in Lemma 1 instead of Aj0, A0, Â0.
Similarly, generalized least squares handles correlated measurements and errors by minimizing the

Mahalanobis distance (Y − Xβ)TS−1(Y − Xβ), where S is the covariance matrix of the residuals
(errors). Again, GLS reduces to OLS if S = I . As before, we can monitor the optimal solution

β =
(
XTS−1X

)−1
XT ỹ , where ỹ , S−1y

by monitoring B =
∑

i S
−1xix

T
i and d =

∑
i xiỹi. GLS is particularly useful in time series analysis,

where S is the process’ structured covariance (or autocorrelation) matrix Saudargienė (1999).

3.4 Deriving Constraints

This section contains detailed technical proofs.
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3.4.1 Sliding Window Constraint
To find a convex subset C satisfying the condition of Eq. (3.4), we first review some notions and well-
known results on norms of real matrices Roman (1995). We use the L2 norm throughout.

Definition 1. Let A be a matrix. Its operator norm, or spectral norm, hereafter just norm, is defined as

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

It follows that for a matrix A and vector x, ‖Ax‖ ≤ ‖A‖‖x‖.
Moreover, for any two matrices A,B: ‖A + B‖ ≤ ‖A‖ + ‖B‖ and ‖AB‖ ≤ ‖A‖‖B‖. If A is

a symmetric matrix, ‖A‖ = maxi |λi| where λi are the eigenvalues of A. Additionally, if A,B are
symmetric then ‖AB‖ = ‖BA‖.

Lemma 2. For square A with ‖A‖ < 1, (I-A) is invertible, the inverse being the Neumann series Miller
(1981): (I −A)−1 = I +A+A2 +A3 + . . . .

Lemma 3. If A is square and ‖A‖ < 1, then

‖(I +A)−1‖ = ‖I −A+A2 −A3 + . . . ‖ ≤ 1

1− ‖A‖
.

Proof. Apply Lemma 2 and the triangle inequality:

‖ (I +A)−1 ‖ = ‖I −A+A2 −A3 +A4 − . . . ‖

≤ ‖I‖+ ‖A‖+ ‖A2‖+ · · · ≤ 1

1− ‖A‖
,

since it is the sum of a geometric series.

We begin by subtracting and adding (Â0 + ∆)−1ĉ0 to the bounded expression in Eq. (3.4):

‖(Â0 + ∆)−1(ĉ0 + δ)− Â−10 ĉ0‖ =

‖(Â0 + ∆)−1δ +
(

(Â0 + ∆)−1 − Â−10

)
ĉ0‖ .

Applying the triangle inequality, we obtain:

‖(Â0 + ∆)−1δ‖︸ ︷︷ ︸
E1

+
∥∥∥((Â0 + ∆)−1 − Â−10

)
ĉ0

∥∥∥︸ ︷︷ ︸
E2

. (3.9)

Next, note that

(Â0 + ∆)−1 =
(
Â0

(
I + Â−10 ∆

))−1
=
(
I + Â−10 ∆

)−1
Â−10

and, assuming ‖Â−10 ∆‖ < 1, we apply Lemma 2 to obtain:

(Â0 + ∆)−1

=
(
I − Â−10 ∆ + Â−10 ∆Â−10 ∆− . . .

)
Â−10 (3.10)

= Â−10 − Â
−1
0 ∆Â−10 + Â−10 ∆Â−10 ∆Â−10 − . . . (3.11)
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Note the assumption ‖Â−10 ∆‖ < 1 is not trivial, and we discuss it in Section 3.3.4 and Section 3.4.3.
We now apply Eq. (3.10) and Lemma 3 to E1 in Eq. (3.9):

E1 = ‖(Â0 + ∆)−1δ‖

=
∥∥∥(I − Â−10 ∆ + Â−10 ∆Â−10 ∆− . . .

)
Â−10 δ

∥∥∥
≤ ‖I − Â−10 ∆ + Â−10 ∆Â−10 ∆− . . . ‖‖Â−10 δ‖

≤ ‖Â−10 δ‖
1− ‖Â−10 ∆‖

(3.12)

Similarly, we apply Eq. (3.11) to E2:

E2 =
∥∥∥((Â0 + ∆)−1 − Â−10

)
ĉ0

∥∥∥
=
∥∥∥(Â−10 − Â

−1
0 ∆Â−10 + (Â−10 ∆)2Â−10 − · · · − Â

−1
0

)
ĉ0

∥∥∥
=
∥∥∥−(Â−10 ∆ + (Â−10 ∆)2 − . . .

)
Â−10 ĉ0

∥∥∥
=
∥∥∥(I + Â−10 ∆− (Â−10 ∆)2 + . . .

)
Â−10 ∆β0

∥∥∥ (3.13)

Applying Lemma 3 to Eq. (3.13) we obtain:

E2 ≤
∥∥∥I + Â−10 ∆− (Â−10 ∆)2 + . . .

∥∥∥ ‖Â−10 ∆β0‖

≤ ‖Â−10 ∆β0‖
1− ‖Â−10 ∆‖

(3.14)

Substituting Eq. (3.12) and (3.14) in Eq. (3.9) and rearranging, we arrive at the convex constraint C
on (∆, δ):

ε‖Â−10 ∆‖+ ‖Â−10 δ‖+ ‖Â−10 ∆β0‖ ≤ ε . (3.15)

This convex constraint allows us to apply Lemma 1. Satisfying Eq. (3.15) guarantees Eq. (3.4) is
also satisfied, since the bounded expression is larger. Moreover, this bound is a subset of ‖Â−10 ∆‖ < 1,
a necessary condition for correctness, meaning we don’t have to check it explicitly.

3.4.2 Infinite Window Constraint
A matrix A is positive definite, denoted A � 0, if xTAx > 0 for all non-zero vectors x. This implies
a partial ordering of square matrices: we denote A � B if A − B � 0. Note A � B � 0 =⇒
‖A‖ > ‖B‖. Moreover, A � B � 0 =⇒ B−1 � A−1 � 0. Finally, observe that ‖(A + B)−1u‖ ≤
‖A−1u‖, since A + B � A and therefore A−1 � (A + B)−1. Similarly, ‖

(
(A+B)−1 −A−1

)
u‖ =

‖
(
A−1 − (A+B)−1

)
u‖ ≤ ‖A−1u‖.

We apply the above to Eq. (3.9). Note that by construction, ∆j =
∑

i∈Sj xix
T
i , where Sj is the

set samples seen by node j since the last sync time, is symmetric and positive definite. Similarly, Â0

is symmetric positive definite by construction. Thus, E1 = ‖(Â0 + ∆)−1δ‖ ≤ ‖Â−10 δ‖, and E2 =∥∥∥((Â0 + ∆)−1 − Â−10

)
ĉ0

∥∥∥ ≤ ‖Â−10 ĉ0‖.
The final convex constraint for the infinite window case is therefore

‖Â−10 δ‖+ ‖Â−10 ĉ0‖ ≤ ε . (3.16)
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3.4.3 Window Size And Dimensions

We will show that sliding window W linear in m will avoid overwhelming ‖Â−10 ∆j‖ in Eq. (3.7).
For any matrix A, denote its largest and smallest eigenvalues by λmax(A) and λmin(A). Recall that

Â0 = 1
kA

j
0 and that in the sliding window model2, ∆j = Aj − Aj0, and that all these matrices are

symmetric by construction. Moreover, if A is symmetric then ‖A‖ =
√
λmax(ATA) = |λmax(A)|.

Finally, λmax(A−1) = 1
λmin(A)

, and therefore

‖Â−10 ‖ =

∥∥∥∥1

k
A−10

∥∥∥∥ =
k

|λmin(A0)|
=

k

λmin(A0)
.

Applying the above to the norm constraint:

‖Â−10 ∆j‖ ≤ ‖Â−10 ‖‖∆
j‖ =

k

λmin(A0)
|λmax(Aj −Aj0)|

≤ k

λmin(A0)
|λmax(Aj)− λmin(Aj0)| . (3.17)

The last step is obtained from Knutson and Tao (2001):

A,B symmetric =⇒ λmax(A+B) ≤ λmax(A) + λmax(B)

and since λmax(−B) = −λmin(B).
The bound in Eq. (3.17) depends on the distribution of the data. Assume the elements ofX are drawn

i.i.d from N(0, 1), then the Marchenku-Pastur law Marčenko and Pastur (1967) limits the spectrum of
the Wishart matrix XTX .

Lemma 4. Let X ∈ Rw×m drawn as above such that m
W converges to 0 < b ≤ 1 as W and m grow

to infinity3. Let M = 1
WXTX , and denote its largest and smallest eignevalues by λmax(M), λmin(M).

Then almost surely

λmax(M)→
(

1 +
√
b
)2

, λmin(M)→
(

1−
√
b
)2

.

Bai and Yin Bai and Yin (1993) extended this result to any zero-mean distribution with unit variance
and finite fourth moment Rudelson and Vershynin (2010). These can be achieved using Gabel et al.
(2014a), for example.

Note A0 =
∑k

1 A
j
0 = X̃0

T
X̃0, where X̃0 ∈ RkW×m is the concatenation of all local data matrices.

Applying Lemma 4 to Eq. (3.17), we obtain

k|λmax(Aj)− λmin(Aj0)|
λmin(A0)

=
kW

∣∣∣λmax( 1
WAj)− λmin( 1

WAj0)
∣∣∣

kWλmin( 1
kWA0)

=
|λmax( 1

WAj)− λmin( 1
WAj0)|

λmin( 1
kWA0)

,

which converges almost surely to

fk(b) ,
|(1 +

√
b)2 − (1−

√
b)2(

1−
√

b
k

)2 =
4
√
b(

1−
√

b
k

)2 . (3.18)

2We discuss the worst case, when Aj , Aj0 do not overlap. When they do, ∆j’s effective window size is less than W .
3Trivially, if W = m

b
.
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In practice, Eq. (3.7) is the sum of 3 norms, so we require ‖Â−10 ∆j‖ < 1
3 . Solving 0 < fk(b) <

1
3

for b with k > 1 yields

m

W
≤ gk , 72k2 + k − 24k

3
2 − 4

√
3

√
108k4 + 15k3 − 72k

7
2 − k

5
2 .

For given k > 1, selecting W ≥ m
gk

guarantees ‖Â−10 ∆j‖ < 1
3 almost surely. The constant 1

gk
grows

slowly: for k = 2, the window size W must be at least 1
g2
≈ 111.06m; for k = 10, W ≥ 1

g10
≈

129.02m; and for k = 100, W ≥ 1
g100
≈ 139.22m. In fact, gk converges: limk→∞gk = 1

144 , so a
window size of W ≥ 144m is sufficient for any k.

3.5 Evaluation

We evaluated performance of our monitoring algorithm, DILSQ, for DIstributed Least SQuare monitor,
using simulations with two synthetic and two real-world distributed datasets. For each dataset, we run
through the data, simulate the nodes (Alg 1) and the coordinator (Alg 2), count messages, and keep track
of the resulting true models β and the current monitored models β0. Our simulations use discrete time
(rounds), and we use the OLS variant of our algorithm with sliding window (Section 3.3.3), except for
the gas sensor dataset which uses the GLS variant (Section 3.3.5).

Our baseline is the naive algorithm, where each node sends every new measurement to a centralized
location each round. We compare DILSQ to the T -periodic algorithm, denoted PER(T ), a simple sam-
pling algorithm that sends updates every T rounds. Though PER cannot guarantee maximum error, it
can achieve arbitrarily low communication.

Our main performance metric is communication, measured in normalized messages – the average
messages sent per round by each node Bhaduri et al. (2011). Note that communication of the naive
algorithm is always 1. When calculating and reporting results, we skip the first (incomplete) window (or
the first epoch for the drift dataset described below).

DILSQ is designed to communicate as little as possible while always maintaining maximum model
error below ε. It guarantees maximum model error below the user-selected threshold ε, but PER does
not. Hence, when comparing the two, we find a posteriori the maximum period T (hence minimum
communication) for which the maximum error of PER(T ) is equal or below that of DILSQ. Note this
gives PER an unrealistic advantage. First, in a realistic setting we cannot know a priori the optimal
period T . Second, model changes in realistic settings are not necessarily stationary: the rate of model
change may evolve, which DILSQ will handle gracefully while PER cannot.

3.5.1 Synthetic Datasets
We use two types of synthetic dataset. In the fixed dataset, the true model βtrue ∈ Rm is fixed, with
elements drawn i.i.d from N [0, 1]4. We generate R rounds with k nodes, each receiving at each round
a new data vector x of size m and scalar y. x is drawn i.i.d from N(0, 1), and y = xTβtrue + n where
n ∼ N(0, σ2) is Gaussian white noise of strength σ. In the drift dataset the coefficients of βtrue change
rapidly during 25% of one epoch, and are fixed during the rest of the epoch. We generate observations
for E epochs using the same procedure. For each experiment we generate new data.

Default parameter values are k = 10 nodes, m = 10 dimensions, noise magnitude σ = 10 (to
generate interesting results given the large window), window size W = 1300 and maximum error

4therefore ‖β‖2 ∼ χ2
m
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Figure 3.5: Communication for DILSQ (black) and periodic algorithm tuned to achieve same max error
(green) at different threshold values. DILSQ communication on fixed model drops to zero for more
permissive ε (not shown on logarithmic scale).

threshold ε = 0.5, which is quite strict5. We generate R = 16900 rounds for the fixed dataset, or E = 5
epochs of 3900 rounds each for drift dataset.

Figure 3.4 shows the behavior of the monitoring algorithm over such a simulation on the drift dataset
with ε = 1.35 and 3 epochs. For this configuration, DILSQ achieves communication of 0.01 messages
per node per round, and the model error is always below the threshold. Conversely, the equivalent
PER(100) algorithm is unable to maintain the error below the threshold, which would require a higher
update frequency. When model changes in β are large and frequent DILSQ performs more syncrhoniza-
tions, resulting in updated β0 = β that decreases the error. When β is stable (it is never truly constant
due to noise), syncrhonizations are much rarer. The periodic algorithm, on the other hand, syncrhonizes
every 100 iterations even during the periods where β changes very little.

Effect of Threshold

Figure 3.5 shows the communication required for different threshold levels for the DILSQ algorithm,
and the minimal communication required to match DILSQ using the PER algorithm with optimal period,
as discussed above.

For the fixed model dataset (Figure 3.5a) neither algorithm needs to sync very often to provide an
accurate estimate. While PER appears to require lesser communication here, note that the true model
is fixed, and that PER has an unrealistic advantage of choosing the optimal period after seeing all data.
When the model is fixed there is no reason to monitor at all: had there been no noise, a single initial syn-
chronization would have been sufficient, regardless of threshold. PER is simply the minimal posteriori
sampling rate to overcome noise. Indeed, for more permissive threshold values (or smaller noise mag-
nitude σ) both DILSQ and PER achieve zero communication (beyond initial sync) for the fixed dataset
(not shown in this log-scale figure).

5 Given that elements of both β0 and β are i.i.d N(0, σ), then ‖β−β0‖√
2σ
∼ χm. The probability that a random e = β − β0

will overwhelm ε is P = 1− CDFχm( ε√
2σ

) > 1− 10−8.
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Figure 3.6: Communication vs. different parameters for the fixed (green) and drift (black) datasets.
Default parameter values are given in Section 3.5.1. (a) shows DILSQ is scalable: communication
increases slowly with number of nodes. (b) shows communication is fairly constant when noise is small
(σ < 10). Comm. is zero for fixed model at low noise (not shown). (c) shows the required window
size W is linear in m: communication does not increase when W is suitably sized (purple). (d) shows
performance with fixed dataset. If W < 144m data periodically saturates the norms in Eq. (3.7).

Performance on the drift dataset (Figure 3.5b) is more interesting. When ε is very strict, both algo-
rithms perform roughly the same, with normalized messages of 0.25–0.75. As ε grows DILSQ develops
an increasing advantage over PER with optimal period. The optimal period must be low enough to match
the quickly changing model, and is wasteful on the intervals where β is quiescent. For our dataset, βtrue
is constant during roughly 75% of each epoch. For datasets with larger quiescent periods (or smaller
window), the advantage of DILSQ will be even larger.

Scalability

Figure 3.6 explores how performance of DILSQ scales with different parameters.
Figure 3.6a shows communication for different values of the number of nodes k. We observe com-

munication increases slowly, remaining below 10% even with 500 nodes.
Figure 3.6b shows normalized messages obtained at different noise magnitudes. Below a certain
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Figure 3.7: Velocity measurements from 8am–9am (pink dots), and interpolated velocity at 9am: true
model (dashed) and DILSQ approximation (black).

level of noise, communication is fairly constant, reflecting the choice of threshold ε. At lower values
of noise (not shown), DILSQ requires no communication for the fixed model dataset, beyond the first
window of W observations.

Figure 3.6c compares communication with the number of independent variables m on the drift
dataset, confirming our analysis in Section 3.3.4. When window size W is fixed, communication grows
linearly with dimension m. However, if W grows linearly with m, we see that communication remains
very low (and in fact decreases a little). In both cases we keep epoch length to be 3W to maintain the
same rate of change of β across the window.

Similarly, Figure 3.6d shows what happens when the window size is too small compared to the
value predicted in Section 3.3.4. It depicts communication obtained on the fixed dataset, as a function
of window size W . As window size decreases below 144m (see Section 3.4.3), constraint violations are
more frequent as data periodically overwhelms the norms in Eq. (3.7). As we will see below, in practical
settings a much lower W can be used, since data values have finite ranges, change slowly, and model
changes are more frequent.

3.5.2 Traffic Monitoring
Consider the following interpolation problem: given periodical traffic measurements (average velocity
every minute) from a small number of sensors embedded along a long road, we wish to infer the current
average velocity at every point along the road. We aim to solve this problem using polynomial regres-
sion. Note that in this case we have no good way to measure the true error of our model, since we do
not have sensors in other locations. Moreover, as Figure 3.1 (derived from the same data below) shows,
monitoring model fit (R2) is also problematic (Section 3.2.1). Instead, we rely on the fact that we can
limit the model error ‖β − β0‖.

We used two weeks’ worth of velocity data collected during November 2014 from k = 6 sensors
located along the Grenoble south ring in France Morbidi et al. (2014); Canudas De Wit et al. (2015).
Reported measurements of each sensor are aggregated once per minute, and when measurements are
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Figure 3.8: Communication for DILSQ (black) and periodic algorithm (green) on the traffic dataset at
different ε values.

unavailable average velocity was assumed to be unchanged. The road is composed of several sections,
and we model it as the interval [1, 18], where the sensors are located at l ∈ {1, 3, 7, 11, 14, 18} . Since we
are doing polynomial regression, the data from every sensor at location l is always x = [1, l, l2, l3, l4],
and y is the velocity measured by the sensor. Given model β built from measurements from the last hour
(W = 60), the interpolated velocity at location i ∈ [1, 18] is [1, i, i2, i3, i4]β.

Figure 3.7 shows the result of one such a prediction for 9am on Nov 1 2014, produced using ε = 25.
The pink dots represent average velocity measurements of each sensor between 8am to 9am. The dashed
purple line is velocity interpolated using the polynomial defined by the exact least squares model β,
while the black line is interpolated using the polynomial from the DILSQ approximation β0. Observe
the resulting interpolation is fairly accurate, with errors below 10km/h across of range of interpolated
positions6.

Figure 3.8 explores the communication of DILSQ and matching PER with various levels of ε, for
window sizes 60 and 30. DILSQ is superior to PER across all ranges except the unrealistically strict ε =
5 (average ‖β‖ is roughly 100). For one hour window, DILSQ obtains 0.12 normalized messages for ε =
25 used in Figure 3.7, and can reduce communication to 0.03 for ε = 85. For a much smaller window
size of half an hour, DILSQ requires more communication but still achieves considerable communication
reduction: it requires 20% communication for ε = 25 and can use as little as 5% for ε = 85. Finally,
we observe that the communication gap between DILSQ and PER increases considerably with smaller
window size, as β changes more quickly and is more sensitive to noise.

3.5.3 GLS on Gas Sensor Time Series
Data in this experiment consists of measurements collected by an array of 16 chemical sensors recorded
at a sampling rate of 25Hz for 5 minutes, resulting in 7500 data points for each sensor. This dataset
is described in Ziyatdinov et al. (2015), and is publicly available Lichman (2013). The original goal
in Ziyatdinov et al. (2015) is to identify certain gas classes given high-level frequency features. Since

6Note there are many data points per location, and the curve tries to minimize error across them all. This, along with our
use of a 4th degree polynomial, account for the smooth interpolation curve.
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Figure 3.9: Communication for DILSQ and periodic algorithm with same max model error at various ε
and φ values for gas sensors data.

the original target variable is nominal and fixed throughout the run in each experiment, we defined a
different regression problem. We divided the 16 sensors to k = 4 “nodes”, where in each node three
sensors serve as the data xwhile the remaining sensor serves as the response y. We also added a constant
variable 1 to x, to allow intercept in the model, hence m = 4. The regression task is therefore to predict
the value of the 4th sensor in each node using the first three.

Note that in this setting measurement errors cannot be assumed to be independent, so an OLS mod-
els is ill-suited here. Instead, we assume errors are an AR(1) process and monitor the generalized least
squares model Hayashi (2000). We used an AR(1) parameter value φ = 0.95 for the autocorrelation ma-
trix Saudargienė (1999). Average ‖β‖ is 0.3, so we use ε = 0.1, resulting in 0.17 normalized messages
for DILSQ. We note that using an OLS model with the same ε resulted in 1.15 normalized messages –
the OLS model had to be updated very frequently as it was unstable.

Figure 3.9a shows the obtained communication for various ε values in the range [0.01,1]. For ε < 0.1
DILSQ is clearly superior: PER must communicate every round (T = 1) in order to match DILSQ,
which achieves communication between 0.2 and 1 (for ε = 0.01). When ε is more permissive, however,
PER is superior and can obtain the same maximum error with less communication: with an extremely
permissive ε = 1, DILSQ requires 0.04 normalized messages while PER requires 0.015 for the same
maximum error (though, of course, optimal T must be known a priori to achieve this performance).

Figure 3.9b shows communication at different values of φ. DILSQ is almost always superior to PER
by a large margin. Surprisingly, the optimal φ in terms of communication lies somewhere between 0.99
and 1 (but below 1, since we know OLS achieves poor performance). φ can be fitted using OLS regres-
sion of the residuals, and it would be interesting to see whether tuning φ for minimal communication
results in the same value.

3.6 Related Work

Due to the ubiquity of linear regression, a great deal of research was dedicated to solving for the regres-
sion model not only in a centralized setting, but over distributed systems as well; for a comprehensive
survey, see Sayed (2014). Typically, the distributed nodes compose a graph, each holding a portion
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of the data, and the goal is to solve for the regression model of the aggregated data. It is well-known
that the accurate solution involves calculating a matrix-vector pair from the data (denote it A, c), and
then calculating A−1c. Since the global matrix-vector pair can be expressed as the sum of local pairs
at the nodes, a path is defined over the graph, and the global pair is obtained by traversing this path; a
Hamiltonian path is desirable, in order to reduce the time required to traverse the graph Lin et al. (2014).
Spanning trees have also been applied to this end Paskin et al. (2005). Eventually, the local estimates at
the nodes converge, via message passing with neighbors, to a global consensus Mateos and Giannakis
(2012). In Tu and Sayed (2012) it was suggested that diffusion strategies outperform consensus-seeking
methods.

Variants include taking advantage of the global matrix’s sparseness in order to reduce traffic Guestrin
et al. (2004), and gradient-based methods run either sequentially or with some degree of parallelism Ma-
teos et al. (2010); Lopes and Sayed (2006); Sayed (2014); Yang and Brent (2004). Such techniques were
also applied in online distributed learning, where the sought classifier can sometimes be expressed as
the solution of a linear regression problem Zhang et al. (2014b).

While efficient solutions were developed for computing the linear regression model over distributed
nodes, there are, to the best of our knowledge, only very few papers dealing with monitoring it – that
is, imposing local conditions which imply that the global solution did not change by more than a pre-
defined amount since the last time it was computed (Section 3.3). In Song et al. (2013), a heuristic is
applied, and the nodes do not broadcast if the newly arriving data conforms with the current model up
to some tolerance. In Bhaduri and Kargupta (2008) distributed monitoring was applied to monitor the
prediction error (Section 3.2.1) and quadratic fit error R2 Bhaduri et al. (2011), but not the error in the
model itself. In Gupta et al. (2013), a one-dimensional regression problem is addressed – monitoring
the ratio of two aggregated variables. We address the general, high-dimensional problem.

3.6.1 Distributed Monitoring
The last decade witnessed a sharp increase in work on imposing local conditions for monitoring the
value of a function defined over distributed nodes. While the general problem is NP-complete Keren
et al. (2014), considerable progress has been made for real-life problems. Most work dealt with the
simpler cases of linear functions Keralapura et al. (2006); Kashyap et al. (2008), as well as monotonic
functions Michel et al. (2005). Some papers addressed non-linear problems, e.g., monitoring the value
of a single-variable polynomial Shah and Ramamritham (2008), and analysis of eigenvalue perturba-
tion Huang et al. (2007). Jelasity et al. (2005) describes a gossip-based protocol for monitoring several
aggregates (some non-linear), which eventually converges to the monitored value, but cannot guarantee
user-specified error bounds. In Sharfman et al. (2007b) a geometric approach for monitoring arbitrary
functions over distributed streams was proposed, and later extended and generalized Keren et al. (2012);
Lazerson et al. (2015). However, nearly all work on geometric monitoring addressed functions which
are either polynomials (typically quadratic), or defined by compositions of polynomial with simple func-
tions such as medians and quotients. To the best of our knowledge, the problem addressed in this report
– monitoring the linear regression model (as opposed to its fit error) – was never addressed over a dis-
tributed setting. Note that the monitored function contains the highly complicated operation of matrix
inversion, which is not linear or convex, and which, when written explicitly, becomes intractable even for
relatively low dimensions (e.g., the analytic expression for the inverse of a 20×20 matrix involves poly-
nomials with 20! monomials). Therefore, a straightforward application of previous work on geometric
monitoring is impossible.
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3.7 Conclusions and Future Directions

We propose a communication-efficient monitoring algorithm for the least-squares regression models. By
monitoring the deviation of the existing model from the true model, our approach is able to avoid costly
communication and model computations. Each round, each node checks a simple local constraint on its
own local data, and if it is satisfied, communication is avoided. If not, violation is resolved by collecting
data from all nodes and computing a new global model. Our distributed monitoring approach can easily
be combined with an efficient distributed computation technique, enjoying the best of both worlds.

Consider the SPEEDD use case of traffic forecasting models. We have shown that even in the case
that these models rely on many sources of data (e.g., all GPS devices in a city), it is possible to keep track
of the predictor model and its matching to the incoming data streams. In this sense, we have shown that
the monitoring system is scalable to as many input sources as needed. The method is also applicable to
many other domains of application, as data sources become geo-distributed and ever increasingly rapid.
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4

Conclusions

In this document we have described two algorithmic breakthroughs towards horizontal and vertical scal-
ability. The first approach uses knowledge about the distribution of events which compose a target CEP.
The lazy approach would first search for those events composing the complex target which rarely ap-
pear. It turned out such a lazy scheme may save lots of cycles and resources. This result was accepted
to publication in DEBS 2015 and received the Best Research Paper Award. The integration of these
ideas into the SPEEDD architecture (using open source platform) is under way, and will take the rest of
the project to implement and experiment with. We are also working on extending this new algorithmic
framework into more elaborate queries, as well as other challenges such as multiple contiguous queries.

The second approach focuses on horizontal scalability in monitoring analytical models. The ideas
draw from previous and other EC projects (such as LIFT and Ferarri), but take them one step further
beyond monitonring global functions. Indeed, the monitoring of sophisticated models (such as SVM) is
both challenging and novel. The paper describing this approach was published in the prestigeous con-
ference KDD 2015. The implementation and integration of the technique will be completed towards the
end of SPEEDD project, and will use real-life traffic SPEEDD data. The algorithmic breakthrough will
be pursued to online monitoring of other interesting machine models, such as LDA-based classification.

D6.4: Computation and Communication Scalable Algorithms II



Bibliography page 45 of 51

Bibliography

http://www.eoddata.com.

A. Adi and O. Etzion. Amit - the situation manager. The VLDB Journal, 13(2):177–203, May 2004.
ISSN 1066-8888. doi: 10.1007/s00778-003-0108-y. URL http://dx.doi.org/10.1007/
s00778-003-0108-y.

J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 147–160, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi: 10.1145/
1376616.1376634. URL http://doi.acm.org/10.1145/1376616.1376634.
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Pietzuch, J. Sventek, and U. Çetintemel, editors, DEBS, pages 50–61. ACM, 2010. ISBN 978-1-
60558-927-5.

G. Cugola and A. Margara. Processing flows of information: From data stream to complex event pro-
cessing. ACM Comput. Surv., 44(3):15:1–15:62, June 2012. ISSN 0360-0300. doi: 10.1145/2187671.
2187677. URL http://doi.acm.org/10.1145/2187671.2187677.

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive publish/subscribe
systems. In Proceedings of the 10th International Conference on Advances in Database Technology,
EDBT’06, pages 627–644, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-32960-9, 978-3-
540-32960-2. doi: 10.1007/11687238 38. URL http://dx.doi.org/10.1007/11687238_
38.

A. Demers, J. Gehrke, and B. P. Cayuga: A general purpose event monitoring system. In In CIDR,
pages 412–422, 2007.

C. Dousson and P. L. Maigat. Chronicle recognition improvement using temporal focusing and
hierarchization. In Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, pages 324–329, 2007. URL http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/
IJCAI07-050.pdf.

D6.4: Computation and Communication Scalable Algorithms II

http://ceur-ws.org/Vol-1018/paper6.pdf
http://doi.acm.org/10.1145/1247480.1247620
http://doi.acm.org/10.1145/1247480.1247620
https://hal.archives-ouvertes.fr/hal-01059126
https://hal.archives-ouvertes.fr/hal-01059126
http://dblp.uni-trier.de/db/journals/vldb/vldb11.html#ChanFGR02
http://dblp.uni-trier.de/db/journals/vldb/vldb11.html#ChanFGR02
http://dblp.uni-trier.de/db/conf/cidr/cidr2003.html#ChandrasekaranDFHHKMRRS03
http://dblp.uni-trier.de/db/conf/cidr/cidr2003.html#ChandrasekaranDFHHKMRRS03
http://doi.acm.org/10.1145/335191.335432
http://doi.acm.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/11687238_38
http://dx.doi.org/10.1007/11687238_38
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-050.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-2007/PDF/IJCAI07-050.pdf


Bibliography page 47 of 51

O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co., Greenwich, CT, USA,
1st edition, 2010. ISBN 1935182218, 9781935182214.

A. Friedman, I. Sharfman, D. Keren, and A. Schuster. Privacy-preserving distributed stream monitoring.
In 21st Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2013, 2014. URL http://www.internetsociety.org/doc/
privacy-preserving-distributed-stream-monitoring.

M. Gabel, D. Keren, and A. Schuster. Communication-efficient distributed variance monitoring and
outlier detection for multivariate time series. In Proc. IPDPS, 2014a.

M. Gabel, A. Schuster, and D. Keren. Communication-efficient distributed variance monitoring and
outlier detection for multivariate time series. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pages 37–47, 2014b. doi: 10.1109/
IPDPS.2014.16. URL http://dx.doi.org/10.1109/IPDPS.2014.16.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the system s declarative stream pro-
cessing engine. In J. T.-L. Wang, editor, SIGMOD Conference, pages 1123–1134. ACM, 2008. ISBN
978-1-60558-102-6.

N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster. Prediction-based ge-
ometric monitoring over distributed data streams. In Proc. SIGMOD. ACM, 2012. URL http:
//dl.acm.org/citation.cfm?id=2213867.

N. Giatrakos, A. Deligiannakis, M. N. Garofalakis, I. Sharfman, and A. Schuster. Distributed geometric
query monitoring using prediction models. ACM Trans. Database Syst., 39(2):16, 2014. doi: 10.
1145/2602137. URL http://doi.acm.org/10.1145/2602137.

T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Trans. Database Syst., 29(4):752–788, 2004. doi: 10.1145/
1042046.1042051. URL http://doi.acm.org/10.1145/1042046.1042051.

T. S. Group. Stream: The stanford stream data manager. Technical Report 2003-21, Stanford InfoLab,
2003. URL http://ilpubs.stanford.edu:8090/583/.

C. Guestrin, P. Bodı́k, R. Thibaux, M. A. Paskin, and S. Madden. Distributed regression: an efficient
framework for modeling sensor network data. In Proc. IPSN, 2004. doi: 10.1145/984622.984624.
URL http://doi.acm.org/10.1145/984622.984624.

R. Gupta, K. Ramamritham, and M. K. Mohania. Ratio threshold queries over distributed data sources.
PVLDB, 2013. URL http://www.vldb.org/pvldb/vol6/p565-gupta.pdf.

D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On supporting kleene closure over event streams.
In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, ICDE, pages 1391–1393. IEEE, 2008. URL
http://dblp.uni-trier.de/db/conf/icde/icde2008.html#GyllstromADI08.

F. Hayashi. Econometrics. Princeton University Press, 2000. ISBN 0691010188.

L. Huang, X. Nguyen, M. N. Garofalakis, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, and N. Taft.
Communication-efficient online detection of network-wide anomalies. In INFOCOM, 2007.

M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large dynamic networks. ACM
TOCS, 2005.

D6.4: Computation and Communication Scalable Algorithms II

http://www.internetsociety.org/doc/privacy-preserving-distributed-stream-monitoring
http://www.internetsociety.org/doc/privacy-preserving-distributed-stream-monitoring
http://dx.doi.org/10.1109/IPDPS.2014.16
http://dl.acm.org/citation.cfm?id=2213867
http://dl.acm.org/citation.cfm?id=2213867
http://doi.acm.org/10.1145/2602137
http://doi.acm.org/10.1145/1042046.1042051
http://ilpubs.stanford.edu:8090/583/
http://doi.acm.org/10.1145/984622.984624
http://www.vldb.org/pvldb/vol6/p565-gupta.pdf
http://dblp.uni-trier.de/db/conf/icde/icde2008.html#GyllstromADI08


Bibliography page 48 of 51

M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient distributed
online prediction by dynamic model synchronization. In Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014.
Proceedings, Part I, pages 623–639, 2014a. doi: 10.1007/978-3-662-44848-9 40. URL http:
//dx.doi.org/10.1007/978-3-662-44848-9_40.

M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient distributed
online prediction by dynamic model synchronization. In Proc. ECML PKDD, 2014b. ISBN 978–3–
662–44847–2.

S. R. Kashyap, J. Ramamirtham, R. Rastogi, and P. Shukla. Efficient constraint monitoring using adap-
tive thresholds. In ICDE, 2008.

R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of
thresholded counts. In Proc. SIGMOD, 2006.

D. Keren, I. Sharfman, A. Schuster, and A. Livne. Shape sensitive geometric monitoring. IEEE Trans.
Knowl. Data Eng., 24(8):1520–1535, 2012. doi: 10.1109/TKDE.2011.102. URL http://doi.
ieeecomputersociety.org/10.1109/TKDE.2011.102.

D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and A. Deligiannakis. Ge-
ometric monitoring of heterogeneous streams. IEEE Trans. Knowl. Data Eng., 26(8):1890–1903,
2014. doi: 10.1109/TKDE.2013.180. URL http://doi.ieeecomputersociety.org/10.
1109/TKDE.2013.180.

A. Knutson and T. Tao. Honeycombs and sums of Hermitian matrices. Notices Amer. Math. Soc., 2001.
URL http://www.ams.org/notices/200102/fea-knutson.pdf.

A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M. N. Garofalakis, and V. Samoladas. Monitoring
distributed streams using convex decompositions. PVLDB, 2015. URL http://www.vldb.org/
pvldb/vol8/p545-lazerson.pdf.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

W. Lin, J. Cao, and X. Liu. E3: Towards energy-efficient distributed least squares estimation in sensor
networks. In IWQoS 2014, 2014. doi: 10.1109/IWQoS.2014.6914297. URL http://dx.doi.
org/10.1109/IWQoS.2014.6914297.

C. G. Lopes and A. H. Sayed. Distributed adaptive incremental strategies: Formulation and performance
analysis. In Proc. ICASSP, 2006. doi: 10.1109/ICASSP.2006.1660721. URL http://dx.doi.
org/10.1109/ICASSP.2006.1660721.

A. S. M. L. M Silberstein, D Geiger. Scheduling mixed workloads in multi-grids: the grid execution
hierarchy. In High Performance Distributed Computing, pages 291–302, 2006.
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