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Executive Summary  
This document is the report part  of Deliverable 6.7 “Final Integrated Prototype” and its purpose is to 

present the latest results of T6.3 (Architecture design of the SPEEDD prototype) and T6.4 

(Implementation of the SPEEDD prototype), and the third and final version of integrated prototype 

implementation for both use cases (software). 

The goals of WP6 (Scalability and System Integration) are to develop a highly scalable event processing 

infrastructure supporting real-time event delivery and to integrate the SPEEDD components into a 

prototype for proactive event-based decision support. 

The purpose of this report is to summarize work in WP6 during months M24-M33. It describes the 

extensions made to the SPEEDD integrated prototype in the third and final version. It includes 

extensions to the use case implementations, an updated architecture to deal with performance 

challenges identified in the second prototype version, an extended DM module implementation which 

supports better uncertainty handling, and a final performance and scalability evaluation.   
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1 Introduction 
    
    
    
    

1. Purpose and Scope of the Document 
This is the third and final version of the report on the design of the SPEEDD prototype architecture and 

final version of integrated prototype implementation.  In essence, the SPEEDD architecture described in 

the D6.1 and D6.1(amended) versions has not changed.  However, due to unsatisfactory performance 

evaluation results of last year, major emphasis in this year’s work was placed in finding and eliminating 

the performance bottlenecks and improving the scalability of the provided architecture. Due to this 

work, the IBM Proton CEP engine principal implementation underwent some changes and Proton on 

STORM architecture was revised.  Additional evaluation performance testing was undertaken, which has 

shown significant performance improvements from second year’s results, as will be demonstrated later 

in the document.  Some functional changes to the DM component to better integrate uncertainty 

aspects will be discussed. Additionally some extensions to the use cases implementation appear in the 

API reference section. 

2. Relationship with Other Documents 
The current document is based on D6.1 and D6.1 (amended) versions of the architecture design 

document. It is also an extension of D6.5 document describing the integrated prototype. 

The current document refers to the system requirements for the Proactive Traffic Management use case 

described in D8.1 and for the Proactive Credit Card Fraud Management described in D7.1. 

The complex event processing module is discussed in depth in both D3.2 (resubmitted) and D3.3 along 

with information on the architecture and the event patterns, and improvements to the CEP run-time 

engine implementation to eliminate performance bottlenecks in the stand-alone version of Proton. 

The Decision Making module algorithms are described in D4.3. 

For more details on the traffic simulation module please refer to D8.4. 

The dashboard application design and the underlying approach are explained in D5.3. 

The scalability component’s approach and algorithms are described in D6.6. 

3. Updates since the first and second versions 
As mentioned in the previous section, the current document contains updates and extensions to the 

concepts introduced in the first and second design reports (D6.1 and its amended version from second 

year). Specifically, the chapters discussing the decision making and the complex event processing 

architecture new versions (v3) of these components can be found in sections 2 and 3. 
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The performance testing architecture and second performance evaluation analysis is provided in 

section ‎4.  

The API reference for SPEEDD was updated with the new events and the changes to existing events are 

described in section 6. 
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2 Decision Making Uncertainty Aspects 
 

The Decision Making (DM) module provides a host of proactive event-driven DM tools. Using the 

detected or forecasted events from the Complex Event Processing (CEP) module as inputs, it outputs 

appropriate decisions, possibly in the form of actions, to steer the system towards a desirable outcome.  

  

Figure ‎2-1 Implementation of DM in the SPEEDD topology 

Within the SPEEDD topology, DM is implemented in the form of a number of bolts that receive and 

output events to the event bus, as illustrated in Figure 2-1. The bolts implement the DM algorithm at a 

local decision maker, or DM agent. The algorithm is typically driven by detected, derived or forecasted 

events from the CEP, as well as events from other DM agents. It outputs events that could convey 

decisions or actions, as well as initiate coordination with other DM agents. The architecture is 

distributed, event-driven and modular. All of these aspects are essential to the SPEEDD philosophy. The 

distributed and modular nature of DM permits new algorithms and methods to be added without an 

overhaul. In the following, we will summarize the interface of DM to other SPEEDD components, 

realized via events. Next, we will briefly describe the internal architecture of the DM component, in so 

far as it is relevant to understanding the DM functionality. Then, we provide an in-depth discussion of 

the way DM copes with the uncertainty inherent to traffic control problems. The comprehensive 

capabilities to mitigate uncertainty in the events reported to DM is the main feature added to DM in the 

final version of the integrated prototype. 

1. DM Interface 
The DM module interacts with other components of the integrated SPEEDD prototype via events as 

depicted in Figure 2-2. DM receives events from Complex Event Processing (CEP) and the User Interface 

(UI). Events from CEP include complex events such as predictions about freeway congestion. In addition 

to the high-level, derived events, DM also uses (time-averages of) low level sensor data. 

For simplicity, we assume that all sensor data are passed through CEP, which allows us to perform the 

aggregation already in CEP. In practice, this means we compute averages over time and thereby reduce 

the number of events that need to be passed from CEP to DM.  The different types of events consumed 

by the DM module are: 
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Figure ‎2-2 The DM module interacts with other modules of the integrated prototype via (complex) events, passed through 
the event bus. The internal structure of DM, which can be described in terms of the functionality it provides, will be 
explained in the following section. 

1. Measurements: This includes all events that contain sensor readings from the micro-simulator 

or aggregates thereof, like the “AverageDensityAndSpeedPerLocationOverInterval”. Usually, 

these events contain the attributes “average_occupancy”, “average_speed” and 

“average_density” and potentially the empirical variances. DM expects that these quantities are 

given in the units used by the micro-simulator. 

2. Complex Events: This category contains detected or predicted complex events like “Congestion” 

or “PredictedCongestion” that usually describe a binary state, i.e. some conditions like 

congestion that is either (expected to be) present or not. DM expects that forecasted events are 

equipped with an attribute “uncertainty” which provides (an estimate of) the probability that 

the respective event will eventually happen as predicted. 

3. Admin Commands: Admin commands like “setMeteringRateLimits“ are sent directly from the 

UI to overwrite the internal DM algorithms. Currently, no other admin commands are used.  

Input events are assigned to an instance of the DM bolt based on the attribute dm_location. The events 

emitted by DM can be categorized as: 

1. Control actions: Events like “SetTrafficLightPhases” set the behavior of actuators like traffic 

lights. Therefore, these events are sent most importantly to the real world actuators or the 

micro-simulator in experiments, but they usually are also of interest for the user-interface which 

presents them to potential human supervisors or operators. The format of these events 

depends on the respective actuator 
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2. Coordination Events: In accordance with the design philosophy of the SPEEDD project, the DM 

module is implemented in a distributed manner, as described in the next section. Not all 

decisions by DM can be made in a fully decentralized manner and some situations require (a 

limited amount) of communication between DM agents to achieve coordinate behavior. This is 

achieved via events like “CoordinateRamps”, which are sent by one DM agent and processed by 

another one, via the general SPEEDD prototype event bus. They are not supposed to be used by 

any other component. 

3. Complex Events: The DM module is used to estimate onramp queue lengths and emits 

corresponding estimates via the event “AggregatedQueueLength” for processing by CEP. This is 

an exception in so far as that aggregation is otherwise done by CEP and the aforementioned 

event is the only one in this category. 

An overview of all event definitions is provided in the Appendix. 

2. DM Architecture 
A distributed implementation of the DM module was chosen in accordance with the overall SPEEDD 

goals of creating a scalable, modular, integrated prototype. Therefore, a hierarchical control approach 

has been chosen, with a low-level control layer that provides local feedback in an entirely decentralized, 

and therefore inherently scalable manner and a high-level coordination layer, which aims to coordinate 

the actions. This is achieved by appropriately adapting the control targets for the low-level controllers, 

such that the overall system optimizes a central control objective. In addition, the DM module contains 

algorithms for state estimation and system identification. The functionality for state estimation, system 

identification and (low-level) control can naturally be realized in a decentralized manner. Figure 2-2 

depicts the internal structure of DM for freeway-ramp metering at runtime. A single bolt may manage 

several processes ( „MeteredOnramp n“ ), that control one metered onramp each.  Therefore, each 

process runs a local „StateEstimator“, „SystemIdentification“ and „Controller“ process. Coordination is 

taken care of via a „Coordination“ algorithm which exchanges messages with other bolts via custom 

events. Note that such a controller structure necessitates prior information about the topology of the 

controlled network, i.e., information about the locations of sensors and actuators, the corresponding IDs 

and the structure of the connecting roads. 

The main purpose of the following sections is to address the question of how the DM component, that is, 

the respectie sub-components as introduced in this section, deals with the uncertainty present in traffic 

control problems. Sources of uncertainty in traffic control fall into one of three categories:  

(i) Sensor measurements are almost always corrupted by noise. For example, occupancy of a 

loop detector over an interval might not exactly correspond to the traffic density because of 

inhomogeneous traffic conditions, or measured velocities might differ from average velocities if 

cars are accelerating or slowing down. This type of uncertainty is usually modeled as additive 

noise. Then, estimates of the true values can be obtained via State Estimation using a Kalman 

filter, which we present in Section 2.3.  
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 (ii) Traffic dynamics are inherently uncertain due to varying environmental conditions or 

arbitrary driver decisions. This type of uncertainty is hard to quantify a-priori, since it might even 

be time-varying in case of changing operation conditions. Therefore, we use a model-free, data-

driven approach to estimate this uncertainty during operation based on the measured data. In 

Section 2.4, we state a suitable System Identification approach. 

(ii) Forecasted, convex events are uncertain in the sense that there is no guarantee that they will 

actually occur, but instead, the confidence in there occurrence is quantified in the event 

attributes. The quantification of the uncertainty is carried out by the Complex Event Processing 

module. The usage of these events by the Coordination algorithms is described in Section 2.5  

For completeness, it shall be mentioned that the low-level control algorithms do not operate 

directly on uncertain events, but on the outputs of state estimation, system identification and the 

coordination algorithms. They do not consider uncertainty directly. 

 

Figure ‎2-3 DM is implemented in a distributed manner, with separate processes fulfilling DM functionality for partitions of 
the road network. A single partition can be as small as a single metered onramp and the associated sensors, as depicted here. 
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3. Measurement Uncertainty  

          

Figure ‎2-4 Sensor locations at a metered onramp. 

In the SPEEDD freeway traffic control scenario, every metered onramp is equipped with loop detectors 

as depicted in Figure 2-4. At every sensor, the flow φ and the velocity v are measured. In addition, the 

occupancy is measured, which can be used to infer the traffic density ρ. The density evolves according to 

the conservation law  

We assume that we obtain uncertain measurements of these quantities. The uncertainty may result 

from missed cars (e.g. because of a line change) in case of the flow measurements or errors in the 

density estimate inferred from the measured occupancy, due to inhomogeneous traffic conditions. We 

can express this uncertainty as additive noise. Then, we can obtain a better estimate of the true values 

using a Kalman Filter. The discrete-time Kalman Filter uses measurements , consisting of the measured 

means 𝜌̃(𝑘), 𝜙̃𝑖𝑛(𝑘). and 𝜙̃𝑜𝑢𝑡(𝑘). In addition, the corresponding variances 𝜎̃𝜌(𝑘)  𝜎̃𝑖𝑛(𝑘) and 𝜎̃𝑜𝑢𝑡(𝑘) 

are reported. The Kalman Filter can be implemented in a recursive predictor-corrector form. That is, it 

only retains an internal estimate of the state 𝜌̂(𝑘)  and an estimate of the corresponding covariance Σ̂, 

instead of the entire history of all measurements. Every time a new measurement arrives, a predictor 

step  

is performed first. Than, a corrector step  

 

improves the predicted estimates using the most recent measurements, using the auxiliary quantities  
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It shall be noted that ramp metering seeks to control the traffic density immediately downstream of an 

onramp, whereas the Kalman Filter estimate corresponds to the section upstream of the ramp. Since 

downstream traffic includes the cars from the onramp in addition to the cars on the mainline, we can 

estimate the downstream density as  

 

with 𝛾𝑚 a factor close to, but larger than one, that accounts for traffic distortions resulting from the 

merging process. The onramp queue-length evolves according to a similar conservation law  

   

and similar equations for the Kalman Filter result. Note however, that occupancy measurements on the 

onramp can not be used to infer the density on the onramp as soon as a queue in stand-still is forming. 

To still retain a stable implementation, we use the fact that a minimal metering rate of r is mandatory. In 

addition, we use a priori bounds 0 ≤  𝑞(𝑡)  ≤  𝑞̅ on the queue length for correction of the estimates.  

4. Traffic Dynamics Uncertainty 
The importance of considering the effects of uncertainty in traffic dynamics can easily be exemplified 

with real-world data as depicted in Figure 2-5. These data clearly cannot be described by a single, 

deterministic function but require a stochastic model instead1. Traffic dynamics are inherently uncertain 

due to varying environmental conditions or arbitrary driver decisions. This type of uncertainty is hard to 

quantify a-priori, since it might even be time-varying in case of changing operation conditions. Therefore, 

we use a model-free, data-driven approach to estimate this uncertainty during operation based on the 

measured data, as described in detail in the corresponding section in the final Decision Making 

deliverable (D4.3). Here, it suffices to state that the System Identification component can estimate a 

stochastic model of the fundamental diagram based on data at runtime. The main interest is in 

identifying the density that maximizes the flow (in expectation), which is then provided to the low-level 

control algorithm as the control target. However, the estimation is computationally expensive and 

should not be performed every single time a new measurement arrives. It is performed periodically, that 

is, every N measurement events, if re-estimation is not triggered before. This might happen due to the 

                                                           
1
 Note that this figure does not rule out a deterministic model outright, since dependencies on other variables 

might exist that explain the variance in the data in a deterministic fashion However, even higher order road traffic 
models, or models considering additional independent variables, do not reduce the unexplained noise in real-
world traffic data significantly. 
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arrival of certain complex events at DM, which indicate that an up-to-date, accurate model is necessary. 

Such events are described in the next section. 

  

Figure ‎2-5 Data dample of real-world density-flow data pairs. These data can only poorly be represented by a single, 
deterministic function. However, a stochastic model, here depicted via its mean and 90% confidence interval, seems suitable. 

 

5. Uncertainty in Complex Events 
This section addresses the question on how complex events, and in particular uncertain complex events, 

are handled by DM. The handling of uncertain measurement events (AverageDensityAndSpeed-

PerLocationOverIntervall, AverageOnRampValuesOverInterval, AverageOffRampValuesOverInterval) 

has been discussed in detail in Section 2.3. Furthermore, the usage of the events setMeteringRateLimits 

and Coordinate Ramps is straightforward, since these events dictate a specific behavior of DM, without 

any uncertainty. We provide an overview of the handling of the remaining events next:  

Event name Trigger Control Re-estimation Uncertainty 

PredictedCongestion Depending on 
uncertainty. 

Depending on 
uncertainty. 

Used for waiting-time 
trade-off as described in 

this section. 

Congestion Yes Yes Not present. 

ClearCongestion Yes No Not present. 

PredictedRampOverflow Depending on 
uncertainty. 

Depending on 
uncertainty. 

Used for waiting-time 
trade-off as described in 

this section. 

ClearOnRampOverflow Yes No Not present. 

PossibleIncident No Yes Used to determine if data 
are discarded before re-

estimation. 
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Figure ‎2-6 Freeway congestion caused by ramp overflow of bottleneck-adjacent ramp 

 

Figure ‎2-7 Prevention of ramp overflow and hence freeway congestion by ramp coordination 

From the table, it can be seen that processing of the events ClearCongestion and 

ClearOnRampOverflow is straightforward, since they act as (certain) triggers for DM. Similarly, the 

event Congestion acts as a trigger but also initiates a re-estimation of the traffic dynamics as described 

in the previous section.   

In case of a PossibleIncident, a re-estimation of the traffic dynamics is performed as well. In addition, 

we use a threshold on the uncertainty to determine if past traffic measurements are discarded before 

re-estimation. The rationale is that an incident as defined in the event definition will cause a change in 

the traffic dynamics. Therefore, past traffic measurement are considered outdated if the likelihood of an 

incident is sufficiently high. 

To discuss the rationale DM is using to process PredictedCongestion and PredictedRampOverflow 

events, it is necessary to briefly review the idea of ramp coordination. Consider a freeway segment as 

depicted in Figures 2-5 and 2-6. Assume furthermore that, during a limited period of time, the traffic 

demand exceeds the bottleneck (in red) capacity such that the demand cannot be served completely. In 

case of entirely uncoordinated ramp metering, the onramp immediately upstream of the bottleneck will 

solely attempt to prevent a congestion forming at the bottleneck. In practice, this situation will usually 

lead to ramp overflow quickly (predicted by the  PredictedRampOverflow event) and a congestion 

spreading upstream from the bottleneck is the result, as depicted in Figure 2-5. A PredictedCongestion 

event, while ramp metering at the closest ramp is already active (or a PredictedRampOverflow as 

discussed before), indicates that metering only the closest ramp might be insufficient to prevent the 

congestion. In such a case, one might consider using multiple upstream ramps that coordinate in holding 

traffic back on the onramps. Multiple ramps provide more storage space than a single one and therefore 

might prevent or at least delay the formation of a congestion queue, as depicted in Figure 2-6. However, 
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using multiple ramps comes at a cost. More cars are held back on the onramps, resulting in time lost for 

the drivers if the coordination was ultimately unnecessary to prevent congestion. In SPEEDD, the 

uncertainty is quantified in the aptly named attribute "uncertainty" and it is interpreted as the 

probability P[event_happens] that the event will happen within the time horizon T. We use the (un-) 

certainties P[congestion] (we will use the shorthand notation P[C] in the following) and 

P[ramp_overflow] to perform a trade-off between the (potential) benefits of preventing a congestion 

and the possibility of wasting driver's time on the onramps.  

To do so, we first estimate the additional waiting time on the onramps. Let us consider a set of two 

onramps, the upstream (US) onramp and the downstream (DS) onramp. In case of a predicted 

congestion, the downstream onramp will always be active but the additional waiting time ∆𝑇𝑊𝑇 on the 

upstream onramp can be bounded as 

 

for a situation in which coordinated ramp metering was ultimately unnecessary and therefore, the total 

amount of cars stored on both ramps is less than the space available on the downstream ramp  

   

Recall also that we use a coordination scheme which seeks to balance the occupancies on both onramps  

  

Conversely, consider the case in which a congestion occurs, that could have been delayed if 

coordination was used. A congestion reduces the capacity F of a bottleneck by a (small) percentage p. 

Therefore, if the formation of congestion is delayed, more cars can pass the bottleneck. Note that a 

prediction of a congestion in T mean that during the time period [0, T] (we assume the event arrives at 

time t = 0 for ease of presentation) the traffic demand exceeds on average the bottleneck capacity and 

causes an overflow of the downstream ramp. Rarely, a congestion might arise despite the corresponding 

ramp not being full. We disregard this case in the computation of the decision on whether to coordinate. 

The average, surplus demand is equal to 

 

In case coordination is used, the surplus demand can also been stored on the upstream onramp, which 

delays the congestion by  
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This delay until the occurrence of congestion allows a total, surplus number of cars equal to 

  

to pass the bottleneck in comparison to the case in which no coordination was used. The number of cars 

not passing the bottleneck will accumulate additional waiting time during the whole duration D of the 

congestion, which has to be estimated offline from data. The additional time spent in congestion 

therefore equals 

  

The decision on whether to activate ramp coordination if a congestion is predicted depends on whether 

the expected costs of activating ramp coordination, equal to 𝐸[𝑐𝑜𝑠𝑡_𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛]  = (1 −

𝑃[𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛])  ∙  ∆𝑇𝑊𝑇 or the expected costs of not activating ramp coordination 

𝐸[𝑐𝑜𝑠𝑡_𝑛𝑜_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛]  =  𝑃[𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛] ∙  ∆𝑇𝑇𝑇 are higher. The metric used for predicted ramp 

overflow is very similar, since ramp metering decision will be disregarded if a ramp overlfow is imminent 

and the surplus cars are admitted to the freeway. Thus, ramp overflow ultimately also causes congestion 

on the mainline. 
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3 Scalability and Performance 
1. Problems addressed 

As part of the D6.5 deliverable a performance evaluation of the SPEEDD prototype was performed.  The 

performance evaluation was done on a Mesos cluster of 4 machines, running Kafka and STORM 

frameworks. The evaluation was based on the fraud use case, since this is the use case with the strictest 

performance requirements in the project. The details for the testing configurations and the testing 

methodology can be found in the D.5 document, as well as detailed performance evaluation results. 

As the result of the second version performance analyses some problems with regards to the 

architecture performance and scalability were identified (please refer to section 4 of D6.5 document for 

more information on the issues identified): 

1. Exponential growth in processing latency of input events over time 

 

Figure ‎3-1 Increase in processing latency over time for 500 eps 

The reason for latency growth was not clear, and it was hypothesized that the latency might 

grow due to growing state and amount of stored data in the system over time. 

2. Bottleneck in scalability due to limitation of distribution of data between instances of a context 

bolt in Proton on STORM architecture. 

Quoting from performance analyses section in D6.5 (section 4):  

“…learnt that all of the bolts composing Proton component’s sub-tree in SPEEDD topology divide 

the load uniformly, except one bolt – the contextBolt. For contextBolt, at most three executors 

were actually processing tuples even when the topology had more. The reason for such behavior 

is the grouping strategy currently implemented in ProtonOnStorm: the combination of EPA name 
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and context type groups all the events that will be processed by the same contextBolt instance. 

There are three EPA agents in the EPN for the Credit Card use case, therefore there are exactly 

three  

groups. This is one significant factor that limits the parallelism of the topology.” 

 

Figure ‎3-2 - Active context bolt instances out of all existing instances demonstrates the 

limitation in distribution of tuples among instances of the context bolt – even though that in the 

topology configuration  16 instances of context bolt are created, only 3 of them are actively 

receiving and processing event tuples (the active bolts receiving and transmitting events are 

marked in red in the figure). 

 

Figure ‎3-2 - Active context bolt instances out of all existing instances 

2. Approach 
Two parallel approaches were adopted for minimizing processing latency on the one hand, and 

improving system scalability on the other, in SPEEDD prototype: 

1. Proton run-time engine investigation for bottlenecks - Since the main component contributing 

to processing latency in the analyzed prototype was the CEP component profiling tools were 

used to identify the performance bottlenecks in Proton’s core engine implementation.  

As a result of this, bottlenecks due to waiting locks and thread-pool exhaustion issues were 

discovered, and fixed.  Please refer to section 6 of D3.2 for detailed problem description, 

corrective actions taken, and the updated results. 

2. Proton on STORM architecture was revised to remove the bottleneck in context bolt scalability. 

The following section describes in details the changes made to the Proton on STORM 

implementation. 
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3. Proton on STORM architecture enhancements  
As a result of non-functional analyses of application execution, including performance analyses, we have 

reached the conclusion that Proton’s architecture on top of STORM can be modified and enhanced to 

better utilize the distribution infrastructure provided by STORM.  

Specifically, a bottleneck was identified in tuple-distribution mechanism of tuples sent from routing bolt 

to context-service bolt. 

In our previous implementation of Proton on STORM, we used the Storm field grouping option on the 

metadata routing fields – the agent name and the context name – to route the incoming events 

between the routing bolt to the context processing bolt. (refer to Figure ‎3-3 - Proton on STORM general 

architecture with the old grouping scheme for zoom in into Proton on STORM component architecture 

and old distribution scheme) 

However, this makes the distribution of input events very application-dependent and limited to the 

actual number of agent-context pairings existing in the application. For example, as demonstrated in 

Figure ‎3-6 Runtime distribution of Transaction instances, for an application of 3 EPAs “sitting” on three 

different contexts, all input events at this stage would be partitioned into 3 groups and sent to three 

instances of context bolt, even if the number of tasks specified for this bolt in STORM’s topology is 

higher than this number. 

As opposed to that, the distribution of tuples outgoing from context bolt to EPA manager bolt instances 

is pretty efficient, since it is based on segmentation context values, which is assumed to be more or less 

uniformly distributed between all input events. The utilization of EPA manager bolt’s instance is 

application-independent and can be further tuned by specifying the amount of tasks for this bolt. 

Addition of such segmentation partition information to field grouping directive between routing and 

context bolts should achieve the same level of distribution as in epaManagerBolt. As an example, 

consider a segmentation context based on customerId. By adding this information to fieldGrouping, 

instead of partitioning on 3 agents+context pairs, and therefore distributing all input tuples only 

between 3 context bolt instances, the distribution would be based on the number of available 

customerIds in the input data.  

Therefore, as an enhancement of Proton on STORM architecture, we changed the mechanism of 

distribution of input tuples between the routing bolt and context bolt, to make it segmentation-

dependent, the same way as EPA manager bolt distribution scheme is segmentation-dependent, instead 

of application-dependent. 
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Figure ‎3-3 - Proton on STORM general architecture with the old grouping scheme 

Focusing on the highlighted part of the topology shown in Figure ‎3-3 - Proton on STORM general 

architecture with the old grouping scheme:   

Zooming in into the context bolt implementation, the previous and the updated versions can be seen in 

Figure ‎3-4 Field grouping approach based on metadata and Figure ‎3-7 Field grouping approach based 

on segmentation partitioning correspondingly:  

In Figure ‎3-4 Field grouping approach based on metadata we can see that in v2 of Proton on STORM 

architecture the grouping scheme used was based on AgentName+ContextName. 

  

 

Figure ‎3-4 Field grouping approach based on metadata 
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If we take for example the fraud application, and focus on 3 EPAs (see Figure ‎3-5 Fraud application's 

EPAs

 

Figure ‎3-5 Fraud application's EPAs (refer to D3.2 for the EPAs details) 

 

 

Figure ‎3-6 Runtime distribution of Transaction instances 

In the new proposed architecture, the distribution of tuples between the routing bolt and context 

service bolts is not only be based on application metadata, which is limited in applications with small 

number of EPAs and contexts, but, as described previously, on segmentation context partitions as 

shown in Figure ‎3-7 Field grouping approach based on segmentation partitioning: 

 

Figure ‎3-7 Field grouping approach based on segmentation partitioning 
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Therefore, for the previous example, the distribution of tuples would be unlimited since it is dependent 

on runtime segmentation values (see Figure ‎3-8 Runtime distribution of Transaction instances in the 

new approach) 

 

Figure ‎3-8 Runtime distribution of Transaction instances in the new approach 

To allow for segmentation-based partitioning of tuples in the RoutingBolt, the following necessary 

changes needed to be made in the Proton on STORM architecture and implementation: 

 Allow routing bolt’s inspection of the relevant context information metadata to get the 

composed segmentation context expression definitions 

 Allow access from routing bolt to expression evaluator for expression evaluation 

 Evaluation of composed segmentation expression for each tuple, and addition of this 

information to field grouping expression 

 

  



28 
 

                                                        Final Integrated Prototype 

 

4 Second Performance Analysis 
1. Objectives 

The objectives of the second performance analysis are as follows: 

1) Assess the current system performance 

2) Explore processing latency improvements, if any 

3) Explore scalability improvements, if any 

4) Verify the ability of the system to match performance requirements set by the use cases 

2. Approach 
The approach for testing the performance of the integrated prototype was the same as described in the 

section 4-2 of D6.5. We summarize the general testing architecture here; please refer to document D6.5 

for more details. 

The conceptual view of the performance testing architecture is presented in Figure ‎4-1 SPEEDD 

Performance Testing Architecture - Conceptual View.The event emitter streams events from the test 

data set to speedd-in-events topic at the required rate. A module called “analyzer” records all the events 

– both input and emitted ones. For every event the analyzer registers the time it’s been encountered. 

The output of the analyzer is a test log which is processed later by the “stats” utility which computes 

latencies for every output event.  

 

Figure ‎4-1 SPEEDD Performance Testing Architecture - Conceptual View 
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For every output event the “stats” utility computes the following values: 

1) End-to-end latency – time period between the input event and the derived event from the Kafka 

consumer perspective 

2) Input latency – time period between posting input event to Kafka and its detection by SPEEDD 

storm topology  

3) Processing latency – time taken by derivation process in SPEEDD STORM topology 

4) Output latency – time taken to deliver the derived event to the event consumer on Kafka 

In order to correlate the derived event with the latest input event that triggered the derivation, we 

leverage the feature of Proton that allows attaching to a derived event the matching set of contributing 

input events. Thus, given in instance of the derived event one can easily obtain the list of the events that 

has contributed to the event pattern, along with their timestamps – so it’s straightforward to compute 

the latency as defined above. 

The performance tests were executed on a cluster comprised of four physical machines of the following 

configuration: 

 CPU: 2 x Intel Xeon E5520 @ 2.27GHz -- Cores : 16threads (8 cores) 

 RAM: 12GB ECC 

 Disks: 2x1TB (RAID1) 

 NIC : 4 x 1Gbps 

 OS: Debian 8 

The cluster has the Mesos2 framework installed that manages the computational resources thus 

simplifying the task of cluster configuration and resource allocation. A single virtual machine runs on 

every physical machine (to simplify maintenance and management), with exception of one machine 

where another small VM runs that functions as a mesos gateway server. 

The storm-mesos3 framework used to run STORM cluster on Mesos, the kafka-mesos4 framework used 

for running Kafka cluster on Mesos. 

The topology of the Mesos cluster is shown in the Figure ‎4-2 Mesos cluster topology 

                                                           
2
 http://mesos.apache.org/ 

3
 https://github.com/mesos/storm 

4
 https://github.com/mesos/kafka 
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Figure ‎4-2 Mesos cluster topology 

Table ‎4.1 - Performance Test Configurations states the different configurations tested (for information 

regarding STORM terminology and CEP parallelism hint please refer to section 4 of D6.5) 

As one can see in the table, configurations that involve multiple Kafka partitions and brokers were not 

tested in this version. The reason for that is that initial test results have demonstrated that the 

messaging layer in its minimal configuration (single broker, single executor for kafka-storm spout, 1-2 

executors for kafka-bolt) was operating significantly below its capacity, and further increase of 

messaging power would not improve the performance of the entire system. 

Table ‎4.1 - Performance Test Configurations 

Config # Brokers # Workers CEP Par Hint # Other Executors # Other Tasks 

1 1 1 1 1 1 
2 1 1 2 2 2 
3 1 2 4 4 4 
4 1 4 8 4 4 
5 1 4 16 8 8 
6 1 16 16 8 8 

  

 

3. Performance Test Results 
We have used the Credit Card Fraud Management scenario for the performance evaluation. This use 

case imposes the strictest performance requirements (latency<25 milisec). We had several purposes in 
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the performance evaluation – to compare the performance of current prototype to the 2nd year version 

to see if the advancements in the implementation and architecture have managed to achieve their 

purpose and demonstrate a significant improvement in performance, to validate the performance of the 

prototype versus the use case requirements, and to demonstrate the ability to scale. Therefore we have 

built our test suite around the test suite of 2nd year to allow comparability of performance results, since 

this test suite was enough to achieve our other purposes. 

 

With regards to processing latency improvements and scalability improvements our results demonstrate 

that:  

 In 3rd year prototype we have managed to eliminate the bottlenecks leading to waiting locks 

and thread pool exhaustion, and which in turn led to exponential growth in processing latency 

over time. Figure ‎4-3 Latency for 50 eps rate, 2nd year , Figure ‎4-4  Latency for 50 eps, 3rd year 

prototype, Figure ‎4-5 Latency for 500 eps, 2nd year and Figure ‎4-6 Latency for 500 eps,3rd 

year prototype show the processing latencies measured in first performance evaluation (v2 in 

second year) and second performance evaluation (v3 in third year) for both 50 and 500 eps 

injection rates. 

 

Figure ‎4-3 Latency for 50 eps rate, 2nd year 
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Figure ‎4-4  Latency for 50 eps, 3
rd

 year prototype   
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Figure ‎4-5 Latency for 500 eps, 2nd year 



34 
 

                                                        Final Integrated Prototype 

 

 

Figure ‎4-6 Latency for 500 eps,3rd year prototype 

  

 As demonstrated in the figures above, we can see that the processing latency was increasing 

exponentially over time in the second year prototype.  For event rate of 50 eps the maximal processing 

latency reached was around 60,000 ms, while in the 3rd year prototype processing latency at peak 

reached 1,200 ms. For injection rate of 500 eps the change is even more dramatic – in 2nd year 

prototype the maximal latency observed was around 250,000 ms , while in 3rd year prototype peak 

latency is 1,600 ms.  

The figures also demonstrate the lack of general trend of latency increase over time in 3rd year 

prototype – while there might be some peaks of latency (due to reasons which will be specified later in 

the section), the average latency stays the same over time, around 14 ms for injection rate of 50 eps and 

45 ms for injection rate of 500 eps for this particular configuration which is depicted in the Figures (4 

workers and parallelization factor 8). 

 With regards to scalability, as described previously in section 3, and seen in Figure ‎3-2 - Active 

context bolt instances out of all existing instances, the scalability of the context bolt 

component was limited by the number of EPAs-context pairs in the application, impairing  

application’s scalability . After the changes to the distribution scheme, the context bolt 
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scalability is no more limited to the application’s metadata, as can be seen from Figure ‎4-7 

Scalability of context bolt, 3rd year prototype (the active context bolts instances receiving and 

emitting tuples are marked in red, we can see that all of instances are active). We can see that 

in the 3rd year prototype, all existing context bolt instances process data, as opposed to 

Figure ‎3-2 - Active context bolt instances out of all existing instances, where out of all existing 

context bolt instances, tuples were routed only to 3 instances. 

 

Figure ‎4-7 Scalability of context bolt, 3
rd

 year prototype 

The performance results are summarized in  Table ‎4.2. In the section below we provide a detailed 

analysis of the observed results and our conclusions. 

 Table ‎4.2 - Performance Results Summary (90% percentile values)

  
Config 

Number 
of 

workers 

CEP parallelization 
factor 

End-to-end latency (ms) 50 
events/sec 

End-to-end latency (ms) 
500 events/sec 

1 1 1 31 189 

2 1 2 86 253 

3 2 4 25 111 

4 4 8 14 44.7 

5 4 16 16 87 

6 8 16 11 16 

  

4. Performance Analysis and Conclusions 
Current performance results can be seen in Table ‎4.2 - Performance Results Summary (90% percentile 

values). The Figure ‎4-8 Performance Results: Adding more workers improves latency summarizes those 
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results. It can be seen from the trend in the figures that adding more executors to a worker doesn’t help 

to achieve better latency results. On the contrary, it reduces the performance by a number of 

milliseconds. This is logical, as CEP already uses thread parallelization to distribute the data load 

between multiple threads within the same JVM, therefore adding more tasks to an existing JVM 

(worker) only adds management overhead on those additional tasks.  

Adding more workers to the STORM topology on the other hand, significantly reduces the latency, since 

the data load is distributed between more JVMs, each one with its own separate resources. The 

influence of addition of workers to the higher injection rate topology is more dramatic, as in the case of 

50 eps less workers are sufficient to handle the load and give satisfactory performance results, while as 

the injection rate increases a better data distribution can be achieved between numerous processing 

units, the less backlog is created per separate processing instances and the better the performance 

results.  

 

Figure ‎4-8 Performance Results: Adding more workers improves latency 

The cluster on which the testing was performed is limited in resources and therefore cannot be 

configured to support large topologies consisting of hundreds of workers, however we can extrapolate 

by the given results that the system can be easily scaled out by adding sufficient amount of workers to 

the topology to allow for faster injection rates and providing the required performance for those rates.  

Some additional points to consider when analyzing the performance results: 

1. The provided values for end-to-end latency are the 90% percentile of the transactions.  The 

average values are much lower (for example, for configuration 1 with 50 eps injection rate, the 

percentile latency is 31 ms, while the average latency is 20 ms). This is due to the peaks in 

latency which occur from time to time. The peaks usually occur across all types of latency (in-

latency, processing latency and out-latency) at the same time, which leads us to the conclusion 

that at this moment the system is executing some additional work on the background, like JVM 
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garbage collection. In any case, we should keep in mind that on the average, the latency is even 

lower than summarized in the results Table ‎4.2 - Performance Results Summary (90% percentile 

values) 

2. The placement of the STORM workers on the cluster nodes is managed by the storm-on-mesos 

framework. We have seen that the placement is far from optimized – in many configurations all 

the workers in the topology were placed on a single cluster node, leaving all the workload of the 

topology to this single node. The results of performance tests in such cases were probably 

suboptimal, but nevertheless they were included in the evaluation. With optimal placement of 

workers to allow for optimal cluster resource consumption we predict the performance will be 

further improved. 

The detailed results of the performance testing are available as an excel spreadsheet in the project’s 

document repository: http://speedd-project.eu/deliverables 

  

http://speedd-project.eu/deliverables
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5 Use case extensions 
In this section we will summarize the additions of new events and patterns and changes to existing 

events and patterns which were done to demonstrate some UI features, to support uncertainty 

extensions in DM component and to farther promote the use case implementation. Further information 

concerning the changes can be found in the ‎7Appendix – SPEEDD Event Reference and in D3.3 Third 

version of event recognition and forecasting technology.  

1. Fraud use case 

 

Figure ‎5-1 Fraud use case , 3rd year prototype 

As can be seen in Figure ‎5-1 Fraud use case , 3rd year prototype, an IncreasingAmounts event has been 

added to the fraud use case implementation in the prototype. This event is a result of a Trend pattern 

detection, and visualized in a different manner than the rest of fraud events in the UI. For further 

information, please see the IncreasingAmounts for the event description, the D3.3 for the pattern 

description and D5.3 for visualization description. 

 

2. Traffic use case 
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Figure ‎5-2 Traffic use case, 3rd year prototype 

For the traffic use case, a new derived event was introduced in 3rd year prototype – PossibleIncident. 

This event depicts an occurrence of sudden buildup of traffic in the monitored section of the road, and is 

used by decision making in its traffic management algorithms. 

Additionally the average calculation events were updated with standard deviation calculations for 

density and flow.   

Additional information regarding the additions and updates to the patterns and events, and their usage 

in the DM module, can be found in IncreasingAmounts, the D3.3 deliverable and the D 4.3 deliverable. 
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6 Conclusions 
In this document, we presented the updates to SPEEDD architecture performed in order to improve the 

performance and increase the scalability of the system. We have described the changes done to the 

Complex Event Processing engine to achieve those improvements. The DM component was extended 

with support for uncertainty in the input and derived events to allow for better and faster decision 

making. Additionally we have outlined the updates performed to the API events to support additional 

functionality added to the UI, DM and CEP modules as part of use cases implementation extension in 

year 3rd prototype (specifics can be found in the 3rd year deliverables of each module).  Last but not least, 

a second performance evaluation was performed with the same tests/configurations as first year 

performance to allow comparability of results.  

To sum up our findings in the second performance evaluation: 

 We have achieved drastic improvement in the latency results in the 3rd year prototype as 

opposed to the 2nd year prototype 

 The scalability bottleneck in the prototype was eliminated; the data load can be distributed and 

processed optimally between all the instances of processing tasks in the cluster. 

 We have demonstrated the scalability potential of SPEEDD architecture. The BigData systems 

comprise of clusters of hundreds of nodes running thousands of processing instances. Given 

such infrastructure and based on the scalability trend we have seen in the performance 

evaluation, we have shown that the SPEEDD architecture can be scaled out horizontally to 

achieve required goals. 
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7 Appendix – SPEEDD Event Reference 
This section contains reference information about the event types used in SPEEDD along with the 

structure of the event objects.  

1. Common attributes for all events emitted by Proton 

Attribute Name Attribute Type Description 

Certainty Double The certainty that this event happen (value 
between 0 to 1) 

OccurrenceTime Date No value means it equals the event 
detection time, other option is to use one of 
the defined distribution functions with 
parameters 

ExpirationTime Date Only till this time the cost and certainty 
parameters of the event are valid, and only 
till this time a proactive action is considered 

Cost Double The cost of this event occurrence. Negative 
if this is an opportunity 

Duration Double Used in case the this event occur within an 
interval 

2. Credit Card Fraud Management Use Case 

7.1.1 Transaction 

Attribute Name Attribute Type Description 

card_pan String Hashed card PAN 

terminal_id String Unique terminal ID 

transaction_id String Unique identified of the transaction 

cvv_validation Integer CVV validation response code 

amount_eur Double Transaction amount in EUR 

acquirer_country Integer Acquirer country code  

card_country Integer Card country code 

is_cnp Integer CNP (“Card Not Present”) transaction 
indicator: 1 if CNP, 0 if CP 

card_exp_date Date Card expiration date 

7.1.2 SuddenCardUseNearExpirationDate 

Attribute Name Attribute Type Description 

card_pan String Hashed card PAN 

TransactionsCount Integer Number of transactions in the pattern 

is_cnp Integer CNP (“Card Not Present”) transaction 
indicator: 1 if CNP, 0 if CP 

transaction_ids String[] ids of transactions that contributed to the 
pattern 

timestamps Long[] Timestamps of the transactions that 
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contribute to the pattern 

acquirer_country Integer Acquirer country code 

card_country Integer Card country code 

7.1.3 TransactionsInFarAwayPlaces 

Attribute Name Attribute Type Description 

card_pan String Hashed card PAN 

transaction_ids String[] ids of transactions that contributed to the 
pattern 

timestamps Long[] Timestamps of the transactions that 
contribute to the pattern 

acquirer_country Integer Acquirer country code 

card_country Integer Card country code 

 

7.1.4 IncreasingAmounts 

Attribute Name Attribute Type Description 

card_pan String Hashed card PAN 

TrendCount Integer Number of transactions in the participant 
set 

is_cnp Integer CNP (“Card Not Present”) transaction 
indicator: 1 if CNP, 0 if CP 

transaction_ids String[] ids of transactions that contributed to the 
pattern 

amounts Double[] Amounts of all transactions that contribute 
to the pattern 

timestamps Long[] Timestamps of the transactions that 
contribute to the pattern 

acquirer_country Integer Acquirer country code 

card_country Integer Card country code 

 

7.1.5 TransactionStats 

Attribute Name Attribute Type Description 

Country Integer Country code 

average_transaction_amount_eur Double Average transaction amount over the 
measured period 

transaction_volume Double Total transaction volume 

transaction_count Double Number of transactions counted 

 

3. Traffic Management Use Case 

7.1.6 AggregatedSensorRead 

Attribute Name Attribute Type Description 
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location String Id of the sensor location (collection  
point) 

lane String Lane (e.g. slow, fast, onramp, offramp) 

occupancy Double Fraction of time that the cross-section of 
the sensor is occupied (%) 

vehicles Integer Number of vehicles passed over the 
sensor 

average_speed Double Average speed of the vehicles over the 
reported period 

7.1.7 SimulatedSensorReadingEvent 

Attribute Name Attribute Type Description 

detectorId String Id of the simulation detector (imitating 
sensor) 

dm_location String Location-based partition id 

vehicle_speed Double Average speed 

vehicle_count_car Integer Number of cars passed over the sensor 

vehicle_count_truck Integer Number of trucks passed over the sensor 

density_car Double Average density of cars 

density_truck Double Average density of trucks 

occupancy Double Average occupancy of the section 

7.1.8 Congestion 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

dmPartition String Location-based partition id 

sensorId String Identifies the simulated detector ID 

average_density Double Average density of the vehicles over the 
reported period 

problem_id String Identifies the problem detected by 
SPEEDD 

 
 

  

7.1.9 PredictedCongestion 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

average_density Double Average density of the vehicles over the 
reported period 

problem_id String Identifies the problem detected by 
SPEEDD 

7.1.10 ClearCongestion 

Attribute Name Attribute Type Description 
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location String Id of the sensor location (collection  
point) 

problem_id String Identifies the problem detected by 
SPEEDD 

dmPartition String Location-based partition id 

sensorId String Detector id of the simulated sensor 

7.1.11 CoordinateRamps 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector id of the simulated sensor 

targetOccupancy Double Calculated target occupancy 

problem_id String Identifies the problem detected by 
SPEEDD 

dmPartition String Location-based partition id 

 

7.1.12 AggregatedQueueLength 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector id of the simulated sensor 

queueLength Double Calculated queue length for the location 

maxQueueLength Double Maximum possible queue length for the 
given location 

dmPartition String Location-based partition id 

7.1.13 PredictedRampOverflow 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector id of the simulated sensor 

dmPartition String Location-based partition id 

7.1.14 PossibleIncident 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector id of the simulated sensor 

dmPartition String Location-based partition id 

problem_id String Identifies the problem detected by 
SPEEDD 
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7.1.15 ClearOnRampOverflow 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector id of the simulated sensor 

dmPartition String Location-based partition id 

 

7.1.16 AverageOnRampValuesOverInterval   

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector Id 

average_flow Double Average flow of the traffic over the 
reported period 

average_speed Double Average speed of the vehicles over the 
reported period 

average_occupancy Double Average density of the traffic over the 
reported period 

dmPartition String Location-based partition id 

standard_dev_flow Double Standard deviation in average_flow 
among the onramp events falling within 
time window 

standard_dev_density Double Standard deviation in average_density 
among the onramp events falling within 
time window 

           

7.1.17 AverageOffRampValuesOverInterval   

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector Id 

average_flow Double Average flow of the traffic over the 
reported period 

average_speed Double Average speed of the vehicles over the 
reported period 

average_occupancy Double Average density of the traffic over the 
reported period 

dmPartition String Location-based partition id 

standard_dev_flow Double Standard deviation in average_flow 
among the onramp events falling within 
time window 
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standard_dev_density Double Standard deviation in average_density 
among the onramp events falling within 
time window 

        

7.1.18 AverageDensityAndSpeedPerLocationOverIntervall 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

sensorId String Detector Id 

average_flow Double Average flow of the traffic over the 
reported period 

average_speed Double Average speed of the vehicles over the 
reported period 

average_occupancy Double Average density of the traffic over the 
reported period 

dmPartition String Location-based partition id 

standard_dev_flow Double Standard deviation in average_flow 
among the onramp events falling within 
time window 

standard_dev_density Double Standard deviation in average_density 
among the onramp events falling within 
time window 

 

7.1.19 AverageDensityAndSpeedPerLocation 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

average_flow Double Average flow of the traffic over the 
reported period 

average_speed Double Average speed of the vehicles over the 
reported period 

average_density Double Average density of the traffic over the 
reported period 

 

7.1.20 PredictedTrend 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

problem_id String Identifies the problem detected by 
SPEEDD 

dmPartition String Location-based partition id 

sensorId String Detector id of the simulated sensor 
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average_density Double The value of “average_density” (the 
normalized density) attribute in the last 
participant in the trend 

count Integer Number of participants in the detected 
trend 

4. Traffic Control Actions 
The following events are emitted by the Decision Making module in order to mitigate or prevent 

congestion via controlling the metering rates on the ramp, i.e. the fraction of the green light. 

7.1.21 UpdateMeteringRateAction 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

lane String Lane (e.g. slow, fast, onramp, offramp) 

density Double Current density at the controlled section 

newMeteringRate Double New value of the metering rate (fraction 
of the green light) 

controlType String auto | partial | full 

7.1.22 setMeteringRateLimits 

This event is emitted by the dashboard application in response to the operator’s command to limit the 

automatic metering rates to the specified range. 

Attribute Name Attribute Type Description 

location String Id of the sensor location (collection  
point) 

upperLimit Double Maximal value of the metering rate 

lowerLimit Double Minimal value of the metering rate 

5. AIMSUN Simulation Control Commands 

7.1.23 setTrafficLightPhaseTime 

Attribute Name Attribute Type Description 

junctionID Integer Intersection id 

phaseID Integer Phase of the traffic light 

phaseTime Iinteger New phase time (seconds) 

7.1.24 setSpeeddLimit 

Attribute Name Attribute Type Description 

sectionID Integer Controlled section of the road 

speedLimit Integer New speed limit 

 

 


